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Abstract. We present lower bounds for the orbit length of reduction modulo
primes of parametric polynomial dynamical systems defined over the integers,
under a suitable hypothesis on its set of preperiodic points over C. Applying
recent results of Baker and DeMarco (2011) and of Ghioca, Krieger, Nguyen
and Ye (2017), we obtain explicit families of parametric polynomials and initial
points such that the reductions modulo primes have long orbits, for all but a
finite number of values of the parameters. This generalizes a previous lower
bound due to Chang (2015). As a by-product, we also slightly improve a
result of Silverman (2008) and recover a result of Akbary and Ghioca (2009)
as special extreme cases of our estimates.

1. Introduction

Recently, there has been active interest in the study of orbits of reductions
modulo primes of algebraic dynamical systems defined over Q; see [AkbGhi09,
BGH+13,Cha15,DOSS15,Sil08]. In this paper, we obtain lower bounds for the orbit
length of the reduction modulo primes of dynamical systems defined by polynomials
with integer coefficients, under a suitable hypothesis on its set of preperiodic points
over C.

One of the first results in this subject is due to Silverman [Sil08], where he
studies the orbit length for the reduction modulo a prime p of a dynamical system
on a quasiprojective variety over a number field and a non-preperiodic point. In
particular, he gives a weak lower bound for the length of these orbits that is satisfied
for every p [Sil08, Corollary 12], and a stronger one that is satisfied for almost all
p, in the sense of the analytic density [Sil08, Theorem 1]. This latter lower bound
has been slightly improved by Akbary and Ghioca [AkbGhi09], who also show that
it holds for almost all p in the sense of the natural density of primes.

In [Cha15], Chang has given a result of a new type involving two distinct orbits.
Let F = Xd + T, G = Xd + a ∈ Z[X,T ] for a fixed integer d ≥ 2 and a ∈ Z[T ] \ Z
with ad−1 �= T d−1. For a prime p, we denote by Fp the algebraic closure of Fp.

For t ∈ Fp, we set Ft for the map Fp → Fp defined by x �→ Ft(x) = F (x, t), and
similarly for Gt. By [Cha15, Theorem 1], there are constants c1, c2 > 0 depending
only on d and a such that, for almost all p (in the sense of the natural density of
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primes) there is a set T ⊆ Fp with #T ≤ c1 such that, for all t ∈ Fp \ T ,

(1.1) max {#OrbFt
(0),#OrbGt

(0)} ≥ c2 log p,

where OrbFt
(0) and OrbGt

(0) denote the orbits of the point 0 ∈ Fp in the dynamical
systems given by the iterations of Ft and of Gt, respectively. This theorem relies
on a previous result of Ghioca, Krieger and Nguyen [GKN16] on the finiteness of
the set of t ∈ C for which 0 ∈ PrePerC(Ft) ∩ PrePerC(Gt), the intersection of the
sets of preperiodic points of Ft and of Gt.

Inspired by this result, in the present paper we study the length of the orbits of
the reduction of several parametric dynamical systems and several starting points.
In more precise terms, let X = (X1, . . . , Xm) and T = (T1, . . . , Tn) be groups of
variables and, for ν = 1, . . . , r, let Fν = (Fν,1, . . . , Fν,m) ∈ Z[X,T ]m, that we
consider as a family of n-parametric systems of m-variate polynomials. Indeed,
given a field K and a point t = (t1, . . . , tn) ∈ Kn, we denote by Ft the map
Km → Km defined, for x ∈ Km, by Ft(x) = F (x, t). Hence, the system F defines
an n-parametric family of polynomial dynamical systems on Km.

Given a subset S ⊆ Cm, an important problem in this context is to understand
the size and the structure of the set of points t ∈ Cn such that

(1.2) S ⊆
r⋂

ν=1

PrePerC(Fν,t).

Some particular cases of this problem have been studied by Ghioca, Krieger and
Nguyen [GKN16], Ghioca, Krieger, Nguyen and Ye [GKNY17], and Baker and
DeMarco [BDeM11]. Indeed, the set of preperiodic points of an algebraic dynamical
system over C is a classical object of study. Most of the results and conjectures
in this subject hint that, under suitable hypothesis, this set of preperiodic points
should be rather small; see also [BDeM13, GHT13, GHT15, GNT15, Ing12]. The
sparsity of these sets suggests that the set of parameters t such that (1.2) holds
should be small, typically finite or empty.

Our first main result in this paper (Theorem 2.1) gives a lower bound for the
orbit length of the reduction modulo primes of algebraic dynamical systems de-
pending on n parameters, under the assumption that the set of parameters t ∈ Cn

satisfying (1.2) for a given subset of starting integer points S ⊆ Zm is finite. Our
proof consists of translating the condition about the lengths of the orbits into a
system of polynomial equations with integer coefficients, to which we apply a result
by D’Andrea, Ostafe, Shparlinski and Sombra [DOSS15, Theorem 2.1].

As a consequence, we recover a result in [AkbGhi09], and slightly improve a
result in [Sil08] (Corollaries 2.3 and 2.4). Combined with results in [GKNY17] and
in [BDeM11], this gives explicit families of parametric polynomials and initial points
such that the reductions modulo primes have long orbits, for all but a finite number
of values for the parameters (Corollaries 2.5 and 2.6). In addition, Corollary 2.5
contains Chang’s lower bound (1.1) as a particular case, and sharpens the constant
c2 therein.

Our second main result (Theorem 2.7) applies to the case n = 1, that is, to
systems of polynomials depending on one parameter. Here, we can strengthen
Theorem 2.1 to a result that is valid for every prime. Its proof follows by apply-
ing a divisibility property for the resultant of two polynomials whose reductions
modulo a prime have several common roots, due to Gómez, Gutiérrez, Ibeas and
Sevilla [GGIS09].
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2. Statement of the main results

Boldface symbols denote finite sets or sequences of objects, where the type and
number is clear from the context. For m ≥ 1 and n ≥ 0 we set X = (X1, . . . , Xm)
and T = (T1, . . . , Tn), which we consider as groups of variables and of parameters ,
respectively.

Given a system F = (F1, . . . , Fm) ∈ Z[X,T ]m, its iterations are given by

F (0) = X and F (k) = F (F (k−1),T ) for k ≥ 1.

For a field K and a point t = (t1, . . . , tn) ∈ Kn, we consider the map

(2.1) Ft : K
m −→ Km, x �−→ F (x, t).

Hence, F defines an n-parametric family of polynomial dynamical systems on
Km. Given a vector w ∈ Km, we denote by OrbFt

(w) the orbit of w under
the map in (2.1). Such a point is preperiodic with respect to Ft if its orbit is
finite, and the set of these preperiodic points is denoted by PrePerK(Ft). We refer
to [AnaKhr09,Sch95,Sil07] for a background on these dynamical systems.

We also assume the convention that the maps and the orbits are considered in
the domain of the definition of the initial point (which is either Z or Fp).

Although we are mostly interested in the case of n parameters with n ≥ 1, we
sometimes consider the non-parametric case when n = 0 (thus K0 = {0}) and
recover a result in [AkbGhi09] and slightly improve another result in [Sil08].

For a vector a ∈ Z�, we define its height, denoted by h(a), as the logarithm of the
maximum of the absolute values of its coordinates, if a �= 0, and as 0 otherwise. For
a polynomial G with integer coefficients, its height, denoted by h(G), is defined as
the height of its vector of coefficients. For a family of polynomials G = (G1, . . . , G�)
with integer coefficients, we respectively define its degree and height as

degG = max
1≤i≤�

degGi and h(G) = max
1≤i≤�

h(Gi).

Given functions

f, g : N −→ R,

the symbol f 
 g means that there is a constant c ≥ 0 such that |f(k)| ≤ c g(k)
for all k ∈ N. To emphasize the dependence of the implied constant c on a list of
parameters ρ, we write f 
ρ g.

We first present a lower bound for the length of the orbits of reduction modulo
primes of several parametric multivariate polynomial systems and several initial
points.

Theorem 2.1. Let Fν ∈ Z[X,T ]m, ν = 1, . . . , r, be a family of r ≥ 1 parametric
systems of polynomials and aj ∈ Zm, j = 1, . . . , s, a family of s ≥ 1 integer vectors,
such that the set

(2.2) {t ∈ Cn : aj ∈ PrePerC(Fν,t) for all ν, j}
is empty if n = 0, or finite if n ≥ 1. Set κ for the cardinality of this set, and let
d ≥ max{2, degFν} for all ν and h ≥ max{h(Fν), h(aj)} for all ν and j. Let also
L ≥ 1. Then there is an integer AL ≥ 1 with

logAL 
m,n,r,s,h

{
LdL if n = 0,

L3n+3d(3n+2)L if n ≥ 1,
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such that, for every prime p not dividing AL, for all but at most κ values of t ∈ F
n

p ,

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) > L.

Remark 2.2. When n = 0, the case r = s = 1 already contains the cases when
r and s are arbitrary. Indeed, we recall that C0 = {0} and so t = 0. Now, let
Fν ∈ Z[X]m, ν = 1, . . . , r, and aj ∈ Zm, j = 1, . . . , s, such that the set in (2.2) is
empty. Note that accordingly to our general convention there is only one possible
specialization of Fν with t = 0 and Fν,0 = Fν . The previous condition then implies
that there exist ν0 and j0 such that

aj0 /∈ PrePerC(Fν0,0).

Theorem 2.1 applied to this system and this initial point implies that, for all p � AL,

#OrbFν,0
(aj mod p) > L,

which gives the conclusion for the whole families Fν , ν = 1, . . . , r, and aj , j =
1, . . . , s.

We have the following result for all sufficiently large primes.

Corollary 2.3. With conditions as in Theorem 2.1, for any 0 < ε < 1
(3n+2) log d ,

there exists a constant c depending only on m,n, r, s, h and ε such that, for all p ≥ c
and all but at most κ values of t ∈ F

n

p ,

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) > ε log log p.

When n = 0, this conclusion also holds for any 0 < ε < 1
log d .

This result applied to a polynomial system F ∈ Z[X]m and a point a ∈ Zm with
infinite orbit with respect to the map F : Cm → Cm, shows that there is a constant
c(m,h) such that, for every p ≥ c(m,h),

#OrbF (aj mod p) >
log log p

log d
.

This refines the lower bound in [Sil08, Corollary 12] for a dynamical system on the
affine space defined by polynomials with integer coefficients, by giving its explicit
dependence on the degree of F .

For a subset P of the set of primes, its natural density is defined as the real
number

lim
Q→∞

#{p ∈ P : p ≤ Q}
#{p prime : p ≤ Q} ,

whenever this limit exists. We can also deduce from Theorem 2.1 the following
stronger lower bound for the length of the orbits of the system F modulo a prime
p that is valid for almost all primes p, in the sense of the natural density of this set.

Corollary 2.4. Under the conditions of Theorem 2.1, for any 0 < ε < 1
(3n+2) log d ,

the set of primes p such that, for all but at most κ values of t ∈ F
n

p ,

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) ≥ ε log p,

has natural density 1. When n = 0, this conclusion also holds for any 0 < ε < 1
log d .
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For a polynomial system F ∈ Z[X]m and a point a ∈ Zm with infinite orbit over
C, Corollary 2.4 recovers [AkbGhi09, Theorem 1.1(1)].

The result of Ghioca, Krieger, Nguyen and Ye in [GKNY17] mentioned in the
introduction implies that, for d ≥ 2 and u, v ∈ Z[T ] \Z such that ud−1 �= vd−1, the
set of t ∈ C such that the point 0 ∈ C is preperiodic both for the map x �→ xd+u(t)
and the map x �→ xd + v(t), is finite.

The following result is a direct consequence of Corollaries 2.3 and 2.4. It gen-
eralizes Chang’s lower bound (1.1) to a larger family of pairs of polynomials and,
moreover, it refines the value of the constant c2 in that lower bound.

Corollary 2.5. Let d ≥ 2 and u, v ∈ Z[T ] \ Z such that ud−1 �= vd−1. Then, for
any 0 < ε < 1

5 log d , there exists κ ≥ 0 such that, for every sufficiently large p and

all but at most κ values of t ∈ Fp,

max
{
#Orbxd+u(t)(0),#Orbxd+v(t)(0)

}
> ε log log p.

Furthermore, the set of primes p such that, for all but at most κ values of t ∈ Fp,

max
{
#Orbxd+u(t)(0),#Orbxd+v(t)(0)

}
≥ ε log p,

has natural density 1.

Another instance where our results can be applied is given by the result of Baker
and DeMarco [BDeM11, Theorem 1.1] mentioned in the introduction: given d ≥ 2
and a1, a2 ∈ Z, the set of t ∈ C such that both a1 and a2 are preperiodic for the
map X �→ Xd + t is infinite if and only if ad1 = ad2. The following result is also a
direct consequence of Corollaries 2.3 and 2.4.

Corollary 2.6. Let d ≥ 2 and a1, a2 ∈ Z with ad1 �= ad2. Then, for any 0 < ε <
1

5 log d , there exists κ ≥ 0 such that, for every sufficiently large p and all but at most

κ values of t ∈ Fp,

max {#OrbXd+t(a1 mod p),#OrbXd+t(a2 mod p)} > ε log log p.

Furthermore, the set of primes p such that, for all but at most κ values of t ∈ Fp,

max{#Orbxd+t(a1 mod p),#Orbxd+t(a2 mod p)} ≥ ε log p,

has natural density 1.

For systems depending on a single parameter T , we can strengthen Theorem 2.1
to a result that is valid for every prime.

As usual, we use ordpz to denote the p-adic order of z ∈ Z.

Theorem 2.7. Let Fν ∈ Z[X, T ]m, ν = 1, . . . , r, be a family of r ≥ 1 parametric
systems of polynomials and aj ∈ Zm, j = 1, . . . , s, a family of s ≥ 1 integer vectors,
such that the set

(2.3) {t ∈ C : aj ∈ PrePerC(Fν,t) for all ν, j}
is finite. Set κ for the cardinality of this set, and let d ≥ max{2, degFν} for all
ν and h ≥ max{h(Fν), h(aj)} for all ν and j. Let also L ≥ 1. Then there is an
integer AL ≥ 1 with

logAL 
m,r,s,h L2d2L,

such that, for every prime p, for all but at most κ+ ordp AL values of t ∈ Fp,

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) > L.
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Theorem 2.7 contains Theorem 2.1 for systems depending on a single parameter,
with a better control for the integer AL: this latter result corresponds to the primes
p such that ordp AL = 0.

As a consequence of Theorem 2.7, we obtain the following result valid for all
primes, and which is a sharper version of Corollary 2.4 for the case of n = 1
parameter.

Corollary 2.8. With conditions as in Theorem 2.7, for any 0 < ε < 1
2 log d , there

exists 0 < γ < 1 such that, for every Q ≥ 2 and every prime p ≤ Q, the number of
values of t ∈ Fp such that

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) ≤ ε log p

is bounded by κ+ cp, with ∑
p≤Q

cp 
m,n,r,s,h Qγ .

3. Preliminaries

In this section, we gather some bounds on the heights and degrees of some
polynomials. We also need some rather general statements about the reduction
modulo primes of systems of multivariate polynomials and about the divisibility of
resultants.

We start with bounds for the height of sums and products of polynomials, whose
proof can be derived from [KPS01, Lemma 1.2].

Lemma 3.1. Let Gi ∈ Z[T1, . . . , Tn], i = 1, . . . , s. Then

(1) h

(
s∑

i=1

Gi

)
≤ max

1≤i≤s
h(Gi) + log s;

(2) −2 log(n+ 1)
s∑

i=1

degGi≤h

(
s∏

i=1

Gi

)
−

s∑
i=1

h (Gi)≤ log(n+ 1)
s∑

i=1

degGi.

We also need the upper bound from [DOSS15, Lemma 3.4] for the degree and
the height of iterations of polynomial dynamical systems.

Lemma 3.2. Let Gi ∈ Z[T1, . . . , Tn], i = 1, . . . , n, be polynomials of degree at most
d ≥ 2 and height at most h. Set G = (G1, . . . , Gn) and, for k ≥ 0, let G(k) denote
the k-th iterate of G. Then

degG(k) ≤ dk and h
(
G(k)

)
≤ h

dk − 1

d− 1
+ d(d+ 1)

dk−1 − 1

d− 1
log(n+ 1).

Crucial to our strategy is the following result on the reduction modulo primes
of systems of multivariate polynomials over the integers, whose proof relies on the
arithmetic Nullstenllensatz from [DKS13].

Theorem 3.3 ([DOSS15, Theorem 2.1]). Let Gi ∈ Z[T1, . . . , Tn], i = 1, . . . , s, be
n ≥ 1 polynomials of degree at most d ≥ 2 and height at most h, whose zero set in
Cn has a finite number κ of distinct points. Then there is an integer A ≥ 1 with

logA ≤ (11n+ 4)d3n+1h+ (55n+ 99) log((2n+ 5)s)d3n+2

such that, if p is a prime not dividing A, then the zero set in F
n

p of the polynomials
Gi mod p, i = 1, . . . , s, consists of exactly κ distinct points.
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Given two univariate polynomials F1, F2 ∈ Z[T ], if their reductions Fi mod p,
i = 1, 2, have a common zero in Fp, then their resultant Res(F1, F2) is divisible
by p. The following result refines this property for polynomials whose reduction
modulo p has several common roots.

Theorem 3.4 ([GGIS09]). Let A be a unique factorization domain with field of
fractions K, p ∈ A an irreducible element, and F1, F2 ∈ A[T ] two univariate poly-
nomials whose reductions modulo p do not vanish identically and have at least N
common roots in K, counted with multiplicities. Then pN | Res(F1, F2).

Indeed, for our application it is sufficient to use the result of [KS99, Lemma 5.3]
taking only into account the number of different roots of the reductions of the
polynomials Fi modulo p.

4. Proofs of the main results

In this section, we prove the results stated in §2. We start with Theorem 2.1
and its consequences.

Proof of Theorem 2.1. Fix 1 ≤ ν ≤ r and 1 ≤ j ≤ s. Given 0 ≤ k ≤ L− 1, a point
t ∈ Cn verifies that

F (L)
ν (aj , t) = F (k)

ν (aj , t)

if and only if it lies in the zero set of the ideal

Iν,j,k =
(
F

(L)
ν,i (aj ,T )− F

(k)
ν,i (aj ,T ) : 1 ≤ i ≤ m

)
⊆ Z[T ].

Hence, #OrbFν ,t(aj) ≤ L if and only if t lies in the zero set of the ideal
∏L−1

k=0 Iν,j,k.
For each ν = 1, . . . , r, i ∈ {1, . . . ,m}L and j = 1, . . . , s, consider the polynomial

Ψν,i,j =

L−1∏
k=0

(
F

(L)
ν,ik+1

(aj ,T )− F
(k)
ν,ik+1

(aj ,T )
)
∈ Z[T ].

This gives a set of rsmL generators of the ideal

r∑
ν=1

s∑
j=1

L−1∏
k=0

Iν,j,k ⊆ Z[T ].

Hence, for a point t ∈ Cn,

(4.1) max
1≤ν≤r
1≤j≤s

#OrbFν ,t(aj) ≤ L

if and only if Ψν,i,j(t) = 0 for all ν, i and j. Moreover, the set of such parameters
t is contained in the set of t ∈ Cn such that aj ∈ PrePerC(Fν,t) for all ν and j. By
hypothesis, this latter set is empty if n = 0, and finite if n ≥ 1. Hence, the number
of possible values of t’s satisfying (4.1) is finite and bounded above by the constant
κ.

For ν = 1, . . . , r, consider the family of m + n polynomials in m + n variables
given by

Rν = (Fν ,T ) ∈ Z[X,T ]m+n.

For k ≥ 0, we have that R
(k)
ν = (F

(k)
ν ,T ). Hence, the k-th iteration of the system

Fν with respect to the variables X can be recovered from the first m coordinate
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polynomials of the k-th iteration of the system Rν . Applying Lemma 3.2 to Rν ,

we deduce that degF
(k)
ν ≤ dk and

h(F (k)
ν ) ≤ h

dk − 1

d− 1
+ d(d+ 1)

dk−1 − 1

d− 1
log(m+ n+ 1) 
m,n,r,s,h dk.

By Lemma 3.1, for all ν, i, j,

(4.2) degΨν,i,j ≤ LdL and h(Ψν,i,j) 
m,n,r,s,h LdL.

When n = 0, the polynomials Ψν,i,j are constant. As in Remark 2.2, our hy-
pothesis that there is no t ∈ C0 = {0} satisfying (4.1) implies that there exist ν0
and j0 such that aj0 /∈ PrePerC(Fν0,0), and thus Ψν0,i,j0 �= 0 for all i. In this case
we take AL = gcd{Ψν0,i,j0 : i ∈ {1, . . . ,m}L}.

When n ≥ 1, we set AL for the positive integer given by Theorem 3.3 applied to
this family of polynomials, which satisfies

logAL ≤ (11n+ 4)(LdL)3n+1LdL + (55n+ 99) log
(
(2n+ 5)(rsmL)

)
(LdL)3n+2


m,n,r,s,h L3n+3d(3n+2)L.

In both cases, for every prime p � AL, the system of equations

Ψν,i,j(aj mod p, t) = 0

has at most κ solutions t ∈ F
n

p . Similarly as before, this is equivalent to the
statement that

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) > L,

for all but at most κ values of t ∈ F
n

p , which proves the theorem. �

Proof of Corollary 2.3. Theorem 2.1 applied with L = �ε log log p� implies that for
any p, there is a positive integer AL with

(4.3) logAL 
m,n,r,s,h

{
(ε log log p)(log p)ε log d if n = 0,

(ε log log p)3n+3(log p)ε (3n+2) log d if n ≥ 1,

such that if p � AL, then for all but at most κ values of t ∈ F
n

p ,

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) > ε log log p.

To establish that p � AL, we note that the bound (4.3) implies that there is a
constant c, depending on the parameters m, n, r, s and h, such that AL < p for all
p ≥ c. For those primes p, we obviously have that p � AL and the result follows. �

Proof of Corollary 2.4. Let Q ≥ 2. Theorem 2.1 applied with L = �ε logQ� implies
that there is an integer AL ≥ 1 with

(4.4) logAL 
m,n,r,s,h

{
(ε logQ)Qε log d if n = 0,

(ε logQ)3n+3 Qε(3n+2) log d if n ≥ 1,

such that, for all p ≤ Q with p � AL, for all but at most κ values of t ∈ F
n

p ,

(4.5) max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) > ε logQ ≥ ε log p.
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The divisibility p | AL is possible for at most logAL/ log 2 primes p. Hence, the
bound (4.4) implies that the set of primes p ≤ Q not satisfying (4.5) is of size
Om,n,r,s,h (Q

γ) for an exponent 0 < γ < 1. Hence, this subset of primes has natural
density 0, and thus its complement has natural density 1, as stated. �

We now treat polynomial systems depending on a single parameter T .

Proof of Theorem 2.7. For each ν = 1, . . . , r, i ∈ {1, . . . ,m}L and j = 1, . . . , s,
consider the polynomial

Ψν,i,j =

L−1∏
k=0

(
F

(L)
ν,ik+1

(aj , T )− F
(k)
ν,ik+1

(aj , T )
)
∈ Z[T ].

As in the proof of Theorem 2.1, a point t ∈ C verifies that

max
1≤ν≤r
1≤j≤s

#OrbFν ,t(aj) ≤ L

if and only if Ψν,i,j(t) = 0 for all ν, i and j. The set of such t is contained in the
set (2.3) and, by the hypothesis on this latter, the number of such values of t is
finite and bounded above by the constant κ.

As in (4.2), the number of such polynomials is rsmL, and their degree and height
are bounded by

(4.6) degΨν,i,j 
m,r,s,h LdL and h(Ψν,i,j) 
m,r,s,h LdL.

Let H ∈ Z[T ] be a primitive polynomial that is a greatest common divisor in
Q[T ] of the polynomials Ψν,i,j , and write

Φ0, . . . ,Φu

for the distinct non-zero polynomials of the form Φl = Ψν,i,j/H for some ν, i and
j. We have that u < rsmL, and we deduce from (4.6) and Lemma 3.1(2) that, for
l = 0, . . . , u,

deg Φl 
m,r,s,h LdL and h(Φl) 
m,r,s,h LdL.

Let U = (U1, . . . , Uu) be a group of variables and set

Φ =

u∑
l=1

UlΦl and R = Res(Φ0,Φ) ∈ Z[U ],

where the resultant is computed with respect to the variable T . Since the poly-
nomials Φl are coprime, it follows that Φ0 and Φ are coprime. Moreover, Φ0 is
non-zero and so R is non-zero too. Using Sylvester’s determinantal formula for the
resultant and Lemma 3.1(2), we deduce that

degR 
m,r,s,h L2d2L and h(R) 
m,r,s,h L2d2L,

and we set AL ∈ Z \ {0} as any non-zero coefficient of this polynomial.
Let p be a prime and denote by Λp ⊆ Fp the subset of t ∈ Fp such that

max
1≤ν≤r
1≤j≤s

#OrbFν,t
(aj mod p) ≤ L.

As before, this coincides with the zero set of the reductions of the polynomials
Ψν,i,j modulo p. Let κ+ ep be the cardinality of this set, with ep ∈ Z. We denote
by Hp,Φp,Φl,p ∈ Fp[T ] the reductions modulo p of H,Φ,Φl ∈ Z[T ], l = 0, . . . , u,
respectively.
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If t ∈ Λp, then either Hp(t) = 0 or Φl(t) = 0, l = 0, . . . , u. The number of

zeros of Hp is bounded by degH ≤ κ. The number of common zeros in Fp of the

polynomials Φl,p coincides with the number of common zeros in Fp of Φ0,p and Φp.
By Theorem 3.4, this number is bounded above by ordp R, the largest power of p
dividing all coefficients of R. In turn, this is also bounded above by ordp AL (which
is the p-adic order of one of the non-zero coefficients of R). It follows that

max{0, ep} ≤ ordp AL,

proving the result. �

Proof of Corollary 2.8. Let Q ≥ 2. Theorem 2.7 applied with L = �ε logQ� implies
that there is an integer AL ≥ 1 such that

logAL 
m,r,s,h (logQ)2Q2ε log d

such that, for every p, for all but at most κ+ ordp AL values of t ∈ Fp,

max
ν,j

#OrbFν,t
(aj mod p) > ε logQ ≥ ε log p.

The statement follows by taking any 2ε log d < γ < 1 and cp = ordp AL. �
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Departament de Matemàtiques i Informàtica, Universitat de Barcelona. Gran Via

585, 08007 Barcelona, Spain

Email address: cdandrea@ub.edu
URL: http://www.ub.edu/arcades/cdandrea.html

School of Mathematics and Statistics, University of New South Wales. Sydney,

NSW 2052, Australia

Email address: alina.ostafe@unsw.edu.au
URL: http://web.maths.unsw.edu.au/~alinaostafe

School of Mathematics and Statistics, University of New South Wales. Sydney,

NSW 2052, Australia

Email address: igor.shparlinski@unsw.edu.au
URL: http://web.maths.unsw.edu.au/~igorshparlinski
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