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DISTORTION OF LIPSCHITZ FUNCTIONS ON c0(Γ)

PETR HÁJEK AND MATĚJ NOVOTNÝ

(Communicated by Thomas Schlumprecht)

Abstract. Let Γ be an uncountable cardinal. We construct a real symmet-

ric 1-Lipschitz function on the unit sphere of c0(Γ) whose restriction to any
nonseparable subspace is a distortion.

1. Introduction

Let us start by recalling the classical definitions of oscillation stability and dis-
tortion. Let X be a real infinite dimensional Banach space, and let f : SX → R be
a real valued function. The function f is said to be oscillation stable if for every
infinite dimensional subspace Z ⊂ X and ε > 0 there exists a further subspace
Y ⊂ Z such that the oscillation of f on SY is at most ε, i.e., |f(x) − f(y)| ≤ ε,
x, y ∈ SY .

The function f is said to be a distortion if there exists an ε > 0 such that
for every infinite dimensional subspace Y of X there exist x, y ∈ SY such that
|f(x)− f(y)| ≥ ε.

It is clear that oscillation stability and distortion are in a sense opposite prop-
erties. More precisely, any function f on SX is either oscillation stable, or it is a
distortion on SX ∩ Y for some subspace Y ⊂ X. On the other hand, the distortion
passes to subspaces and so a distorting function is not oscillation stable on any
subspace of X.

It is a classical result of James [7] that every equivalent norm on the Banach space
c0, resp. �1, is oscillation stable. On the other hand, the spaces �p, 1 < p < ∞, admit
a distorting renorming by the results of Odell and Schlumprecht [11]. It turns out,
by combining the result of [11] with the work of Milman [10] that every equivalent
norm on a Banach space is oscillation stable if and only if the space in question is
saturated by copies of c0, or �1.

The supply of Lipschitz functions on a Banach space is much larger than that
of renormings, so one would expect that distorting Lipschitz functions are more
abundant. Using the concepts of asymptotic set ([15], [4], [11]) and the Mazur map,
one can transfer the distorting norm from the unit sphere of �2 into a distorting
Lipschitz function on the unit sphere of �1. So while all equivalent norms on the
space �1 are oscillation stable, Lipschitz functions may be distorting. The details
of this procedure are described, e.g., in the article of Odell-Schlumprecht in [12].
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It is important to note that the transfer preserves the symmetry of the mappings
involved.

As regards the remaining relevant space c0, there is the following result by Gowers
[3].

Theorem 1 (Gowers). Every Lipschitz function f : Sc0 → R is oscillation stable.

Putting the above-mentioned results together, one can conclude that every Lip-
schitz function on a Banach space is oscillation stable if and only if the space in
question is saturated by copies of c0.

Our interest in the present note lies in the nonseparable oscillation stabilization
(resp. distortion) of Lipschitz functions. More precisely, letX be a nonseparable real
Banach space with density character Γ, and f : SX → R be a Lipschitz function.
Given a nonseparable subspace Y of X (say of the same density character Γ), and
ε > 0 is there a further infinite dimensional subspace Z (of the density character
Γ) of Y such that f on SZ has oscillation at most ε? In the special case of �p(Γ)
spaces this problem can be resolved by using the separable results combined with
their symmetry. Indeed, let (X, ‖ · ‖) be a Banach space with a symmetric (possibly
uncountable) Schauder basis {eγ}γ∈Γ, where Γ is any nonempty set. We say that
a function f : X → R is symmetric if the value f(x) is preserved under any
permutation of the coordinates of x. It is clear that a symmetric function on X is
uniquely determined by its values on the span of any countably infinite set {eγi

}∞i=1.
Thanks to the construction of Maurey [9] of a distorting and symmetric norm on
every �p, 1 < p < ∞, it is easy to formally extend the distorting (and symmetric)
norms onto �p(Γ), 1 < p < ∞, for every infinite set Γ. It is immediate to check that
the extensions will preserve the distortion.

Similarly, one can extend the distorting Lipschitz and symmetric function from
�1 (constructed using the symmetric distorting norm on �2), onto arbitrary �1(Γ).
The distortion property will again be preserved.

It is natural to ask if there exists any nonseparable Banach space X such that
all norms (resp. Lipschitz functions) on X are oscillation stable (resp. distorted)
in the nonseparable sense. The obvious remaining test space is of course the space
c0(Γ).

Our main result, solving the Problem 199 in the recent book of Guirao, Mon-
tesinos and Zizler [5], is that there exists a nonseparably distorting Lipschitz func-
tion on c0(Γ). More precisely, we have the next result.

Theorem 2. There is a 1-Lipschitz symmetric function F : Sc0(Γ) → R, such that
for every nonseparable subspace Y ⊆ c0(Γ) there are points x, y ∈ SY such that
|F (x)− F (y)| > 1

4 .

On the other hand, the nonseparable oscillation stability of equivalent norms
on c0(Γ), resp. �1(Γ) still holds. This folklore result is apparently well-known to
experts in the field. We would like to thank Tomasz Kania for bringing this fact
to our attention. The case of �1(Γ) was dealt with in the paper of Giesy [2]. The
case of c0(Γ) seems not to have been published in the refereed journal, although
there exists a short note of Granero containing the proof. For the convenience of
the reader, we have included in this note the formal statement and the proof, which
goes along the lines of the classical James theorem.
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Theorem 3. Let Γ be an uncountable cardinal, X = c0(Γ) (resp. �1(Γ)). For every
equivalent norm ||| · ||| on X, ε > 0 and a subspace Z ⊂ X there exist a constant
c > 0 and a subspace Y ⊆ Z with densY = densZ such that c− ε < |||x||| ≤ c for
every point x ∈ Y , ‖x‖ = 1.

In the sequel we will need the following well-known fact [1, p. 12]. Suppose (M,d)
is a metric space and g : S → R a K-Lipschitz function on some S ⊆ M . Then the
following formula defines a K-Lipschitz function ĝ : M → R such that ĝ|S = g:

(1) ĝ(x) = inf
y∈S

{g(y) +Kd(x, y)}.

In the construction of F , we will use a simple modification of the formula (1),
which will ensure that the range of F is contained in [0, 1]. We omit the completely
straightforward proof.

Lemma 4 (Modified extension formula). Suppose (M,d) is a metric space and
g : S → R a K-Lipschitz function on some S ⊆ M , taking values only in the interval
[0, 1]. Then the following formula defines a K-Lipschitz function g : M → R, taking
values only in [0, 1] such that g|S = g:

(2) g(x) = min{ inf
y∈S

{g(y) +Kd(x, y)}, 1}.

2. Proofs of the results

Proof of Theorem 2. To prove the theorem, it suffices to construct (as we will do)
the symmetric 1-Lipschitz function F : c0(ω1) → R and show it does not stabilize
on the sphere of any subspace Y ⊆ c0(ω1) with densY = ω1. Indeed, in the general
case we use the symmetric extension of F to c0(Γ), and we check easily that any
nonseparable space Y ⊂ c0(Γ) contains a further nonseparable subspace of density
ω1, which is contained in some c0(Λ), Λ ⊂ Γ, |Λ| = ω1.

The meaning of symmetry is that the function value F (x) does not depend on
the particular distribution of the coordinates of the vector x in the domain, but
only on the set of the coordinate values of x. We define an equivalence relation ∼ on
c00(ω1) in the following way: x ∼ y whenever | supp x| = | supp y| and there exists a
bijection f from supp x to supp y (both understood as finite sets of ordinal numbers)
such that x(γ) = y(f(γ)). We will call every equivalence class [x] ∈ X := c00(ω1)/ ∼
a shape.

Note that if x ∼ y, x, y ∈ c00(ω1), then ‖x‖ = ‖y‖. Next, let us denote by
L = {Si}∞i=1 the sequence of all shapes of norm one with finite support and rational
coordinates.

Lemma 5. Let x, y,∈ Sj , j ∈ N. Then for any shape S ∈ L, d(x, S) = d(y, S)
holds.

Proof. The statement of the lemma follows readily from the fact that for every
w ∈ S there exists a z ∈ S such that ‖x − w‖ = ‖y − z‖. To prove the latter
statement, if x ∼ y, then there is a bijection ϕ : supp x → supp y such that for
every γ ∈ ω1 we have x(γ) = y(ϕ(γ)). Set sy = inf{α| ∀β ∈ supp y : β < α}. Define
a mapping ψ : suppw → ω1 by

ψ(γ) =

{
ϕ(γ) , γ ∈ supp x ∩ suppw ,

α+ γ , γ ∈ suppw \ suppx .
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Clearly ψ is a bijection onto its image. If we define z as z(ψ(γ)) = w(γ) for γ ∈
suppw and 0 elsewhere, then z ∈ [w] = S. It follows from the definition of z that
‖x− w‖ = ‖y − z‖. Therefore d(x, S) = d(y, S) for any shape S ∈ L. �

We define inductively a function π : L → L, which is going to “clone” every shape
to an identical shape repeated several times in a row. Suppose x ∈ S1 with supp x =
{1, ..., k} for some k ∈ N. Define π(S1) = [y], where y(i) = y(k + i) = y(2k + i) =
... = y(k2 + i) = x(i) for i ∈ {1, ..., k} and y(γ) = 0 for γ ∈ ω1 \ {1, ..., k(k + 1)}.

Suppose π has been defined for all Si, i < j, and

k = max{max
i≤j

| suppSi|,max
i<j

| supp π(Si)|}.

If x ∈ Sj is such that supp x = {1, . . . , l} for some l ∈ N, then we set π(Sj) = [y],
where y(i) = y(l + i) = y(2l + i) = · · · = y(kl + i) = x(i) for i ∈ {1, . . . , l} and
y(γ) = 0 for γ ∈ ω1 \ {1, . . . , (k + 1)l}.

Note that for all i < j ∈ N the distance between any x ∈ π(Sj) and y ∈
Si ∪ π(Si) ∪ Sj is equal to 1. Indeed, every element x with Sj has some coordinate
which equals 1 or −1 and therefore π(Sj) has at least k+1 such coordinates, where k
is the maximum “length” of a support of previously treated shapes (Si or π(Si) for
i ≤ j or i < j respectively). Therefore, there exists a point γ ∈ ω1 where |x(γ)| = 1
and y(γ) = 0.

We construct our function F on the set S =
⋃
{x : x ∈ [x], [x] ∈ L} by an

inductive repetition of the extension operation. The extension onto the unit sphere
Sc0(ω1) is then unique and 1-Lipschitz as the set S is dense in Sc0(ω1). Moreover,
as the values of F will depend only on the shape [x] ∈ L, it follows that F is
symmetric.

Set F (x) = 0 for all x ∈ S1 and F (y) = 1 for all y ∈ π(S1). Such a function
is clearly 1-Lipschitz. After having defined F on the set S1 ∪ π(S1), we extend F
to the set S1 ∪ π(S1) ∪ S2 via the extension formula (2). Of course, if π(S1) = S2,
the extension is trivial (as the domain has not increased) and we move to the
definition of F (π(S2)) described below. Note that F (S2) ⊆ [0, 1]. We will check
below in the general inductive step that F is constant on the set S2. Furthermore,
we set F (π(S2)) = 1 if F (S2) ≤ 1

2 and F (π(S2)) = 0 if F (S2) >
1
2 . Thus F is still

1-Lipschitz, as π(S2) has distance one from each of the sets S1, π(S1) and S2.
Let us describe the general inductive step. Suppose F has been defined on the

sets S1, . . . , Sj−1, π(S1), . . . , π(Sj−1) and it is constant on every such a set. We use
the formula (2) to extend F to the set Sj if it hasn’t been defined there yet. Note
that again F (Sj) ⊆ [0, 1]. Let us check that F is constant on Sj (or Sl). Pick two
points x, y,∈ Sj . Using (1)

(3) F̂ (y) = inf
w∈

⋃j−1
i=1 Si∪π(Si)

{F (w) + ‖y − w‖}.

Since by our inductive assumption F is constant on every set Si, π(Si), i ∈
{1, ..., j − 1}, replacing y with x in the formula (3) and using Lemma 5 gives the
same value. As the formula gives the same values for all x ∈ Sj , so does the formula
(2). We conclude F is constant on Sj .

Finally, having defined F on the sets S1, ..., Sj and π(S1), ..., π(Sj−1), we set
F (π(Sj)) = 1 if F (Sj) ≤ 1

2 and F (π(Sj)) = 0 if F (Sj) >
1
2 . We finish the defini-

tion of F by extending it continuously onto Sc0(ω1). Clearly, F is 1-Lipschitz and
symmetric.
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Next we are going to show that for every subspace Y ⊆ c0(ω1) with densY = ω1

there exist two points x, y ∈ SY with |F (x)− F (y)| > 1
4 .

Our next lemma, which is probably a folklore result, is a variant to some results
of Rodriquez-Salinas [13].

Lemma 6. Let Y ⊆ c0(ω1) be a subspace with densY = ω1. Then there exists
a transfinite sequence {xγ}ω1

γ=1 of norm one vectors from Y with pairwise disjoint
supports, i.e.,

supp(xα) ∩ supp(xβ) = ∅, α �= β.

In particular, Y contains a subspace isomorphic to c0(ω1).

Proof. We proceed by transfinite induction. Choose a norm one vector x1 ∈ SY .
After having chosen {xγ : 1 ≤ γ < Ω}, for some Ω < ω1, we consider the countable
set Λ =

⋃
γ<Ω supp(xγ) ⊂ [1, ω1). Since Y ⊂ c0(ω) is a nonseparable Weakly

Compactly Generated (WCG) space ([6, p. 211]), it is also a Weakly Lindeloff
Determined (WLD) space, and so w∗ − densY ∗ = ω1 ([6, p. 181]). Hence V =

{δγ : γ ∈ Λ}w
∗

is the proper w∗-closed subspace of Y ∗. Hence Z = {y ∈ Y : y(γ) =
0, γ ∈ Λ} = V⊥ is a nontrivial subspace of Y , and we may find the next element
of the sequence xΩ ∈ SZ . This procedure yields the desired long sequence {xγ : 1 ≤
γ < ω1}, which is equivalent to the long Schauder basis of c0(ω1). �

Choose a sequence {yγ}γ∈ω1
of norm one vectors in c0(ω1) with finite support and

rational coordinates such that supp yγ ⊆ supp xγ and ‖xγ − yγ‖ < 1
8 . As {yγ}γ∈ω1

is an uncountable sequence and L is countable, it follows that there exists a shape
S ∈ L which corresponds to infinitely many yγ . So there is an infinite sequence of
distinct indices {γi}∞i=1 from the set ω1 such that yγi

∈ S for each i ∈ N. Let d be
the number of times S is cloned in π(S). Then set

x =

d∑
i=1

xγi
, y =

d∑
i=1

yγi

and observe x ∈ Y , ‖x− y‖ < 1
8 . Indeed,

‖x− y‖ = sup
α∈ω1

∣∣∣∣∣
d∑

i=1

xγi
(α)−

d∑
i=1

yγi
(α)

∣∣∣∣∣ = max
i∈{1,...,d}

supα∈supp xγi
|xγi

(α)− yγi
(α)|

= max
i∈{1,...,d}

‖xγi
− yγi

‖ <
1

8

as all the xγi
have disjoint supports and supp yγi

⊆ supp xγi
, i ∈ {1, ..., d}. Therefore

we get

|F (x)−F (xγ1
)| ≥ |F (y)−F (yγ1

)| − |F (x)−F (y)| − ‖xγ1
− yγ1

‖ ≥ 1

2
− 1

8
− 1

8
=

1

4
.

�
The strategy of the proof of Theorem 3 is similar to that of the classical James

proof in the separable case. Namely, we are constructing a (long) sequence of dis-
jointly supported vectors in Z (equivalent to the canonical basis of X) so that
the one-sided estimate of the norm on their linear span nearly satisfies either the
supremum (resp. the summable) norm. To this end we need to find a biorthogonal
system of functionals such that their supports are disjoint with those of the orthog-
onal vectors, thus guaranteeing the desired one-sided estimates. This is the main
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technical step in the proof. The estimates going in the opposite direction are then
satisfied automatically thanks to the extremal properties of the canonical norms on
X.

Proof of Theorem 3. Let Z ⊂ X be a closed subspace of density character Λ.
By Lemma 6 (for c0(Γ)), resp. a result of Rosenthal [14] (for �1(Γ)) there exist

a subspace Y1 ⊂ Z which is isomorphic to c0(Λ), resp. �1(Λ). So we may assume
without loss of generality that Z = X.

We start with the case X = c0(Γ). Let Γ be an uncountable cardinal, and let
||| · ||| be an equivalent norm on c0(Γ). For Λ ⊂ Γ, denote

SΛ = sup{|||x||| : x ∈ c0(Γ), supp(x) ⊂ Λ, ‖x‖ ≤ 1}.
Let S = infΛ⊂Γ,|Λ|=|Γ| SΛ, ε > 0. Choose Λ ⊂ Γ such that SΛ < S + ε. For

simplicity of notation, we may assume without loss of generality that Λ = Γ. This
means, in particular, that S ≤ SΛ < S+ ε, for every Λ ⊂ Γ. By a simple transfinite
induction, choose a transfinite sequence {uα}Γα=1 of disjointly and finitely supported
vectors from c0(Γ), ‖uα‖ ≤ 1, such that S ≤ |||uα||| < S + ε. Indeed, once the
initial segment {uα : 1 ≤ α < Δ} has been constructed for some Δ < Γ, set
Λ = Γ \

⋃
1≤α<Δ supp(uα), and use the property S ≤ SΛ < S + ε to find uΔ.

Choose a sequence {fα}Γα=1 ⊂ B(�1,|||·|||∗) finitely supported and such that

fα(uα) > S − ε.

For the rest of the proof we distinguish two cases.

Case 1. Suppose that cof(Γ) > ω0 (i.e., the cofinality of Γ is an uncountable car-
dinal). Then, by passing to a suitable subset and reindexing, we may assume in
addition that | supp(fα)| = n for some fixed n ∈ N. So we have

|{uα : uα �= uβ , supp(fβ) ∩ supp(uα) �= ∅}| ≤ n, whenever β < Γ.

Our next objective is to pass to a biorthogonal system {(uα, fα)}α∈Λ indexed by
a set Λ ⊂ Γ of cardinality Γ.

To this end, we first partition the set {uα}Γα=1 using transfinite induction as
follows. Let

U1 = {u1} ∪ {uα : supp(fα) ∩ supp(u1) �= ∅}.
Having found the sets Uα, α < Ω < Γ, we let UΩ = ∅ provided uΩ ∈

⋃
γ<Ω Uγ ,

and otherwise we let

UΩ = {uΩ} ∪ {uα : α ∈ Γ \ {β : uβ ∈
⋃
γ<Ω

Uγ}, supp(fα) ∩ supp(uΩ) �= ∅}.

If the set Ξ = {β : |Uβ | = 1} has cardinality |Γ|, then it is clear that supp(uα)∩
supp(fβ) = ∅ for every distinct α, β ∈ Ξ. In this case we are done choosing Λ = Ξ.
Otherwise, we discard the elements uα, α ∈ Ξ from future consideration by assuming
for simplicity of notation that Ξ = ∅. Consider now the set

W1 =
Γ⋃

α=1

(Uα \ {uα}).

It is clear that W1 ⊂ {uα}Γα=1 has cardinality |Γ|. Moreover,

|{uα ∈ W1 \ {uβ} : supp(fβ) ∩ supp(uα) �= ∅}| ≤ n− 1, whenever uβ ∈ W1.
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Repeating the previous argument inductively at most n-times, we arrive at the
finite sequence of sets Wn ⊂ Wn−1 ⊂ · · · ⊂ W1 so that

|{uα ∈ Wn \ {uβ} : supp(fβ) ∩ supp(uα) �= ∅}| = 0, whenever uβ ∈ Wn.

We have found the biorthogonal system by letting Λ = Wn.

Case 2. Suppose that cof(Γ) = ω0. We partition the set Γ =
⋃∞

n=1 Γn where
Γn ↗ Γ is an increasing sequence of uncountable regular cardinals [8, pp. 27, 40].
We reindex the original sequence {uα}Γα=1 as a collection {un

α}α∈Γn
, n ∈ N. Since

Γn are uncountable and regular, their cofinality cof(Γn) is larger than ω0. By the
previous Case 1 we may assume without loss of generality that | supp(fn

α )| = kn is
constant for α ∈ Γn, and supp(fn

α ) ∩ supp(un
β) = ∅ for distinct α, β ∈ Γn. Clearly,

by removing a suitable subset of cardinality at most Γm−1 from {um
α }α∈Γm

we may
also assume supp(fn

α ) ∩ supp(um
β ) = ∅ for α ∈ Γn, β ∈ Γm, m > n. It remains to

deal with the case m < n. We will proceed by induction in n, with replacing the
original index sets Γ1, . . . ,Γn with suitable subsets of the same cardinality and such
that the condition supp(fn

α ) ∩ supp(um
β ) = ∅ for all α ∈ Γn, β ∈ Γm, m < n will be

achieved.
Let us describe the general inductive step for n. We distinguish the following

cases. Either there is m < n and a some um
β , β ∈ Γm such that the set

Qβ = {α ∈ Γn : supp(um
β ) ∩ supp(fn

α ) �= ∅}
has cardinality Γn. In this case, remove β from Γm, and replace Γn by the set Qβ .
For n still fixed, this can be repeated at most kn-times and results in the relation
supp(fn

α ) ∩ supp(um
β ) = ∅ for all α ∈ Γn, β ∈ Γm, m < n. Note that in this case we

have removed at most kn elements from the original set
⋃

m<n{um
β }β∈Γm

, and the
reduced set Γn has the same cardinality as the original one.

Alternatively, during one of the previous finitely many inductive steps, all Qβ

have cardinality less than Γn. Then we replace Γn by Γn \
⋃

β∈
⋃n−1

i=1 Γi
Qβ , which

is a set of cardinality Γn and leads again to the relation supp(fn
α ) ∩ supp(um

β ) = ∅
for all α ∈ Γn, β ∈ Γm, m < n. Clearly, an inductive step n affects the index sets
Γm,m < n by removing at most finitely many terms, and the cardinality of the
reduced Γn remains the same. Hence, upon completing the whole induction in n,
the final sets Γm will have the same cardinality as the original ones. This ends the
argument in the case cof(Γ) = ω0.

Once our system is biorthogonal the result for c0(Γ) follows easily. Indeed, when-
ever ai ∈ R, αi ∈ Λ, i = 1, . . . , k,

max
j∈{1,...,k}

fαj
(

k∑
i=1

aiuαi
) ≤ (S − ε)max

i
|ai| ≤ |||

k∑
i=1

aiuαi
||| ≤ (S + ε) max

i∈{1,...,k}
|ai|.

The argument for X = �1(Γ) is easier. Let Γ be an uncountable cardinal, and let
||| · ||| be an equivalent norm on �1(Γ). For Λ ⊂ Γ denote

SΛ = inf{|||x||| : x ∈ �1(Γ), supp(x) ⊂ Λ, ‖x‖ ≤ 1}.
Let S = supΛ⊂Γ,|Λ|=|Γ| SΛ. Choose Λ ⊂ Γ, |Λ| = |Γ| such that SΛ > S − ε

4 .
For simplicity of notation, we may assume without loos of generality that Λ = Γ.
This means, in particular, that S ≥ SΛ ≥ S − ε

4 , for every Λ ⊂ Γ. By a simple

transfinite induction, choose a transfinite sequence {uα}Γα=1 of disjointly and finitely
supported vectors from �1(Γ), ‖uα‖ ≤ 1, such that S ≥ |||uα||| ≥ S − ε

4 . Indeed,
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once the initial segment {uα : 1 ≤ α < Δ} has been constructed for some Δ < Γ,
set Λ = Γ \

⋃
1≤α<Δ supp(uα), and use the property S ≥ SΛ ≥ S − ε

4 to find uΔ. It
is now easy to verify the property

S ≥ |||
∑

aiuαi
||| ≥ S − ε

4

whenever
∑

|ai| = 1. �
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