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THE SPEED OF RELAXATION FOR DIFFUSION WITH DRIFT

SATISFYING EXPONENTIAL DECAY OF CORRELATIONS
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(Communicated by Joachim Krieger)

Abstract. We study the convergence speed in the L2-norm of the diffusion
semigroup toward its equilibrium when the underlying flow satisfies decay of
correlation. Our result is an extension of the main theorem given by Con-
stantin, Kiselev, Ryzhik and Zlatoš (2008). Our proof is based on Weyl as-
ymptotic law for the eigenvalues of the Laplace operator, Sobolev imbedding
and some assumption on decay of correlation for the underlying flow.

1. Introduction

Let (M, g) be a d-dimensional compact Riemannian manifold without boundary.
The Riemannian metric g yields a volume measure on M denoted by volM, a Laplace
operator denoted by Δ and a covariant derivative denoted by ∇. Moreover it also
yields a notion of divergence for C1-vector fields (see [2] for an introduction to
those notions). For a divergence free vector field u and some A ∈ R we consider
the solution φA(t) of the parabolic partial differential equation

(1.1)

{
d
dtφ

A(t) = Au · ∇φA(t) + ΔφA(t),

φA(0) = φ0.

We are interested in the asymptotic behavior of the solutions φA(t) when φ0 satisfies∫
M
φ0dvolM = 0. It is well known that∥∥φA(t)

∥∥ ≤ KAe
−ρAt ‖φ0‖ ,

where ρA is the spectral gap of the operator LA = Δ + Au · ∇ and KA is some
positive constant. Here and in the following we denote ‖·‖ the usual L2-norm on
M with respect to volM. Therefore, if A is fixed, then

∥∥φA(t)
∥∥ → 0 as t → ∞. A

natural question is to study what happens if the times t is fixed and A tends to
infinity. Franke, Hwang, Pai and Sheu proved in [7] that

lim
|A|→∞

ρA = inf

{
1

2

∫
|∇φ|2 dvolM, ‖φ‖ = 1, φ is eigenfunction of u · ∇ in H1

}
.

It follows that ρA diverges to infinity as |A| → ∞, if and only if, the anti-symmetric
operator u · ∇ has no eigenfunctions satisfying H1-regularity. However, we do not
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have any control on KA as |A| → ∞. Constantin, Kiselev, Ryzhik and Zlatoš
proved in [3], that when t is fixed

∥∥φA(t)
∥∥ → 0 as |A| → ∞, if and only if, u ·∇ has

no eigenfunction in H1. They call a vector field u having this property relaxation
enhancing. In particular, this property is satisfied when the volume preserving
flow (Φt)t∈R which is generated by the evolution equation d

dtΦt(x) = u(Φt(x)),
Φ0(x) = x is weakly mixing (see [10] for a definition). In this article we will make
the following decay of correlation assumption on the flow (Φt)t∈R:

Assumption 1.1 (Decay of correlation). We suppose that for some κ > 0, there
exist two positive constants C1, C2 such that for all f1, f2 ∈ Cκ(M) and all t > 0,
we have

|〈f1, f2 ◦ Φt〉 − 〈f1, 1〉〈1, f2〉| ≤ C1e
−C2t ‖f1‖Cκ ‖f2‖Cκ .

Results on decay of correlation for Anosov flows on compact manifolds were
proved for κ = 5 by Dolgopyat in [5]. Our main result in this paper is as follows:

Theorem 1.2. Let (φA(t))t≥0 be the solution of (1.1) with ‖φ0‖ = 1. If (Φt)t∈R

satisfies Assumption 1.1, then for any t > 0 there exist three constants At,Θt,Ξ > 0
such that ∥∥φA(t)

∥∥ < exp
[
−Θt(ln(ΞA))

2
3d+2κ+2

]
for all A > At.

Theorem 1.2 provides an answer to the question of how close the diffusion is to its
equilibrium as A grows. It thus determines the speed of the relaxation phenomenon.
The essential ingredients for the proof are Assumption 1.1 and Weyl asymptotic
law on the eigenvalues of the Laplace operator. The constants Θt and At depend
on the constants in those statements and will be made explicit in the the proof of
the main result. In particular those constants become more explicit if we consider
the problem on the torus T2 = [0, 1]2 (see Section 4).

For some fixed real valued function U defined on R
n, Hwang, Hwang-Ma and

Sheu proved in [9] that among the vector fields satisfying div(ue−U ) = 0, the zero
vector field yields the smallest spectral gap for the family of diffusion operators
Lu = Δ − ∇U · ∇ + u · ∇. This means that the convergence toward the equilib-
rium is slowest for the reversible diffusion generated by the self-adjoint operator
L = Δ − ∇U · ∇. This has some consequence in Markov Monte Carlo Methods,
where usually reversible diffusions are used to approximate a given probability dis-
tribution (see Geman, Hwang [8]). It was then suggested in [9] to perturb the
self-adjoint generator by adding some anti-symmetric operator. However, it is then
important to measure the improvement made through this device. For this it might
be important to understand the relaxation speed in the result of [3]. Our result
generalizes to diffusions generated by Lu as long as the unperturbed self-adjoint
operator L has discrete spectrum and as information on the asymptotic of its eigen-
values is available.

The paper is organized as follows. In Section 2, we present some known results
on eigenvalue distributions that will be needed in the proof of our main theorem.
We also prove a result connected to the RAGE theorem, which stands for Ruelle,
Amrein, Georgescu and Enss (see [4]). Proposition 2.5 will play a central role in the
proof of our main result, since it relates the convergence speed in RAGE theorem
with the eigenvalues of the Laplacian and the decay of correlation assumption. Our
main result, Theorem 3.1, is restated in an equivalent form and proved in Section
3. In the last section, we consider the relaxation speed on the torus.
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2. Preliminaries

On the compact manifold M the operator −Δ is a self-adjoint positive definite
operator with discrete spectrum, which is composed of non-negative eigenvalues
0 < λ1 ≤ λ2 ≤ . . . . Let us denote by N (x) =

∑
λj≤x 1 the number of eigenvalues,

counted with multiplicity, smaller or equal to x. We need the following classical
results. The detailed proofs can be found in the references.

Proposition 2.1 (Corollary 2.5 [6]). As x → +∞, we have

(2.1) N (x) = (2π)−dωdvolM(M)x
d
2 +O(x

d−1
2 ),

where ωd is the volume of the unit disk in R
d.

For simplicity of notation, we will denote Ωd := (2π)−dωdvolM(M). For more
information on the O(x(d−1)/2)-function, one can also consult [11]. The following
corollary is an immediate consequence.

Corollary 2.2. There exists a constant C3 > 0 such that for all x ≥ (2C3)
2/Ω2

d,
we have

(2.2)
Ωd

2
x

d
2 ≤

(
Ωd − C3x

− 1
2

)
x

d
2 ≤ N (x) ≤

(
Ωd + C3x

− 1
2

)
x

d
2 ≤ 3

2
Ωdx

d
2 .

Corollary 2.3. For any x > max
{
1, (C3+1)2

Ω2
d

}
, we have N (9x)−N (x) ≥ 1.

Proof. By Corollary 2.2, we have for all x > 1 with x > (C3 + 1)2/Ω2
d,

N (9x)−N (x) ≥
(
Ωd − C3(9x)

− 1
2

)
(9x)

d
2 −

(
Ωd + C3x

− 1
2

)
x

d
2

= Ωdx
d
2 (3d − 1)− C3x

d−1
2 (3d−1 + 1)

≥ x
d−1
2 (3d−1 + 1)(Ωdx

1
2 − C3) ≥ 1.

�
We denote the eigenfunctions of the operator −Δ associated to the eigenvalues

λ1, λ2, . . . by ϕ1, ϕ2, . . . . They form some orthogonal basis for the Hilbert space

H :=

{
f ∈ L2(M, volM) :

∫
M

fdvolM = 0

}
.

Let us also denote by PN the orthogonal projection on the subspace spanned by the
first N eigenvectors ϕ1, ϕ2, . . . , ϕN . The Sobolev space Hm associated with −Δ is
formed by all vectors ψ =

∑∞
j=1 cjϕj ∈ H satisfying

‖ψ‖2Hm =

∞∑
j=1

λm
j |cj |2 < ∞.

The relation between the norms ‖.‖Cκ and ‖.‖Hm is given through the following
result.

Proposition 2.4 (Sobolev imbedding [1]). There exists a constant C4 > 0 such
that for all n ≥ 1

‖ϕn‖Cκ ≤ C4 ‖ϕn‖
H

d
2
+κ+1 = C4λ

d+2κ+2
4

n .

We now present the following proposition which is central for the proof of our
main result.
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Proposition 2.5. Under Assumption 1.1 one has for any N, T > 0 and for any
function f ∈ H with ‖f‖ = 1 that

1

T

∫ T

0

‖PN (f ◦ Φt)‖2 dt ≤
√
2C1C4√
TC2

Nλ
d+2κ+2

4

N .

Remark 2.6. Proposition 2.5 gives an explicit expression for a constant in Lemma
3.2 from [3]. This lemma states that for any N, ξ > 0 and any compact set K ⊂
{f ∈ H, ‖f‖ = 1}, there exists T (N, ξ,K) such that 1

T

∫ T

0
‖PN (f ◦ Φt)‖2 dt ≤ ξ for

all T ≥ T (N, ξ,K) and all f ∈ K. According to Proposition 2.5 the explicit choice

T (N, ξ) =
2C1C

2
4N

2λ
d+2κ+2

2

N

ξ2C2

implies 1
T

∫ T

0
‖PN (f ◦ Φt)‖2 dt ≤ ξ for all T ≥ T (N, ξ). It therefore turns out that

the constant in Lemma 3.2 from [3] can be chosen not to depend on K.

Proof of Proposition 2.5. The proof follows the proof of the RAGE theorem from
the book of Cycon, Froese, Kirsch and Simon (see [4]). We use our assumption on
decay of correlation and the explicit expression for the projection operator PN to
obtain an inequality from the proof presented there. For all f ∈ H we have the
decomposition f =

∑∞
k=1 〈ϕk, f〉ϕk. By the above notation, we have

PNf =

N∑
k=1

〈ϕk, f〉ϕk.

Let us define Q(T )f = 1
T

∫ T

0
(PN (f ◦ Φt)) ◦ Φ−tdt. Thus we have

Q(T )(f) =

N∑
k=1

1

T

∫ T

0

〈ϕk ◦ Φ−t, f〉ϕk ◦ Φ−tdt,

and therefore

Q(T )Q(T )(f) =

N∑
k=1

1

T

∫ T

0

〈ϕk ◦ Φ−t, Q(T )(f)〉ϕk ◦ Φ−tdt

=
N∑

k=1

N∑
j=1

1

T 2

∫ T

0

∫ T

0

〈ϕk ◦ Φ−t, ϕj ◦ Φ−s〉 〈ϕj ◦ Φ−s, f〉ϕk◦Φ−tdsdt.

It follows that

‖Q(T )‖2 ≤
N∑

k=1

N∑
j=1

1

T 2

∫ T

0

∫ T

0

|〈ϕk ◦ Φ−t, ϕj ◦ Φ−s〉| dsdt ‖ϕk‖ ‖ϕj‖

=
N∑

k=1

N∑
j=1

1

T 2

∫ T

0

∫ T

0

|〈ϕk, ϕj◦Φt−s〉| dsdt.(2.3)

By Assumption 1.1, there exist positive constants C1, C2 such that

(2.4) |〈ϕk, ϕj ◦ Φt−s〉| ≤ C1e
−C2|t−s| ‖ϕk‖Cκ ‖ϕj‖Cκ .

By Proposition 2.4, for all n, we have

‖ϕn‖Cκ ≤ C4 ‖ϕn‖
H

d
2
+κ+1 = C4λ

d+2κ+2
4

n .(2.5)
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From (2.3), (2.4) and (2.5) we obtain

‖Q(T )‖2 ≤
N∑

k=1

N∑
j=1

1

T 2

∫ T

0

∫ T

0

C1e
−C2|t−s|C2

4λ
d+2κ+2

4

k λ
d+2κ+2

4
j dsdt

=
C1C

2
4

T 2

(
N∑

k=1

λ
d+2κ+2

4

k

)2 ∫ T

0

∫ T

0

e−C2|t−s|dsdt.(2.6)

Moreover, one has∫ T

0

∫ T

0

e−C2|t−s|dsdt = 2
C2T + e−C2T − 1

C2
2

<
2T

C2
.(2.7)

It is obvious that
∑N

k=1 λ
d+2κ+2

4

k ≤ Nλ
d+2κ+2

4

N . Combining with (2.6) and (2.7) we
obtain

(2.8) ‖Q(T )‖2 ≤ 2C1C
2
4

TC2
N2λ

d+2κ+2
2

N .

One has for all f with ‖f‖2 = 1,

1

T

∫ T

0

‖PN (f ◦ Φt)‖2 dt =
1

T

∫ T

0

〈f, (PN (f ◦ Φt)) ◦ Φ−t〉 dt

=

〈
f,

1

T

∫ T

0

(PN (f ◦ Φt)) ◦ Φ−tdt

〉

≤ ‖Q(T )f‖ ‖f‖ ≤ ‖Q(T )‖ .(2.9)

Combination of (2.8) and (2.9) gives

1

T

∫ T

0

‖PN (f ◦ Φt)‖2 dt ≤
√
2C1C4√
TC2

Nλ
d+2κ+2

4

N .

�

We also need the following classical statement on the Lipschitz norm of the flow:

Proposition 2.7. For all t ∈ R one has that ‖Φt‖Lip ≤ e‖u‖Lip|t|.

Proof. See [3], p. 661. �

3. Main result and proofs

Following the approach from [3], we prefer to work with the rescaled solution
φA(t) = φε(t/ε), which satisfies the following equation:

(3.1)

{
d
dsφ

ε(s) = (u · ∇+ εΔ)φε(s),

φε(0) = φ0.

The following theorem is then equivalent to our main result, Theorem 1.2.

Theorem 3.1. Let (φε(s))s≥0 be the solution of (3.1) with ‖φ0‖ = 1. For any
τ > 0 there exist constants Aτ ,Θτ and Ξ such that∥∥∥φε

(τ
ε

)∥∥∥ < exp

[
−Θτ

(
ln

(
Ξ
1

ε

)) 2
3d+2κ+2

]
for all ε <

1

Aτ
.
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Remark 3.2. Some explicit expressions for the constants Θτ and Aτ are given later
in Remark 3.3.

Proof. Since our proof relies strongly on the proof of Theorem 1.4 from the paper of
Constantin, Kiselev, Ryzhik and Zlatoš (see [3]) we have to introduce some concepts
and notation used there. They prove that, for any given τ and δ, there exists an
ε0(δ) such that for all ε < ε0(δ), one has ‖φε(τ/ε)‖ < δ.

Our purpose here is to make the constants involved in this statement explicit;
that means to better understand the relation between ε and δ when τ is fixed. We
will produce some explicit function εexpl(δ) with εexpl(δ) < ε0(δ). It then follows
that ∥∥∥φεexpl(δ)(τ/εexpl(δ))

∥∥∥ ≤ δ, for all δ.

The function εexpl(δ) has some explicit inverse function δexpl(ε) and it will then
follow that

‖φε (τ/ε)‖ < δexpl(ε), for all ε sufficiently small.

We will first briefly explain how the constant ε(δ) is constructed in [3]. Note that
some of the constructions presented there are simplified by the fact that Assumption
1.1 rules out point spectrum for the operator u · ∇ (see [10] p. 45 and p. 48). They
construct ε0(δ) as follows:

ε0(δ) = min

{
τ

2τ1(δ)
,

1

20λN (δ)
∫ τ1(δ)

0
B2(t)dt

}
,

where λN (δ) is a suitable eigenvalue λN(δ) satisfying e−λN(δ)τ/80 < δ and with

B(t) = d2 ‖Φt‖Lip (see proofs of Theorem 1.2 in [3] and Theorem 2.2.2 in [12]).
Without loss of generality, we assume that λN(δ)+1 > λN(δ). Moreover, according
to [3] τ1(δ) = T (N(δ), 1/20,K) where T (N, ξ,K) is a constant satisfying

1

T

∫ T

0

‖PN (f ◦ Φt)‖2 dt < ξ, for all T > T (N, ξ,K) and all f ∈ K,

where K is a suitably chosen compact subset of the set S := {f ∈ H : ‖f‖ = 1}.
However we saw in Remark 2.6 that the constant T (N, ξ,K) can be chosen inde-
pendently from K. We therefore drop the K in the notation.

If we can find explicit functions τ expl1 (δ) and λexpl
N (δ) satisfying τ expl1 (δ) > τ1(δ)

and λexpl
N (δ) > λN (δ), then the following function will be an explicit lower bound

for ε0(δ):

(3.2) εexpl0 (δ) := min

⎧⎨
⎩ τ

2τ expl1 (δ)
,

1

20λexpl
N (δ)

∫ τexpl
1 (δ)

0
B2(t)dt

⎫⎬
⎭ .

We choose the function λexpl
N (δ) := −720 ln(δ)/τ . From Corollary 2.3, we have

(3.3) N (λexpl
N (δ))−N

(
−80 ln(δ)

τ

)
≥ 1,

for all δ satisfying

(3.4)
−80 ln(δ)

τ
> max

{
1,

(C3 + 1)2

Ω2
d

}
.



RELAXATION SPEED UNDER DECAY OF CORRELATIONS 2431

This is equivalent to the existence of an eigenvalue λN(δ) satisfying

(3.5)
−80 ln(δ)

τ
< λN(δ) <

−720 ln(δ)

τ
= λexpl

N (δ).

Since we assumed λN(δ)+1 > λN(δ), we have by Corollary 2.2 that

N(δ) = N (λN(δ)) ≤
3

2
Ωdλ

d
2

N(δ)

for all δ satisfying

(3.6)
−80 ln(δ)

τ
≥ (2C3)

2

Ω2
d

.

From Remark 2.6, we obtain

τ1(δ) = T

(
N(δ),

1

20

)
=

800C1C
2
4N(δ)2λ

d/2+κ+1
N(δ)

C2

≤
1800C1C

2
4Ω

2
dλ

3d/2+κ+1
N(δ)

C2

≤ C5

(
−80 ln(δ)

τ

)3d/2+κ+1

=: τ expl1 (δ),

where

C5 := 93d/2+κ+1Ω2
d

1800C1C
2
4

C2
.

Thus the function εexpl0 (δ) given in (3.2) yields a lower bound for ε0(δ). However

the minimum in the expression of εexpl0 (δ) is not suitable for the computation of an
explicit inverse. We therefore introduce the function

(3.7) εexpl1 (δ) :=
‖u‖Lip

10d4λexpl
N (δ) exp[2‖u‖Lipτ expl1 (δ)]

for all δ satisfying the relations (3.4), (3.6) and

(3.8) −80 ln(δ) ≥ 1

90d4
.

We then have by (3.8) and the definition of λexpl
N (δ) in (3.5)

τ

2τ expl1 (δ)
=

d4(−7200 ln(δ))‖u‖Lip
10d4−720 ln(δ)

τ 2‖u‖Lipτ expl1 (δ)

>
‖u‖Lip

10d4λexpl
N (δ)[2‖u‖Lipτ expl1 (δ)]

>
‖u‖Lip

10d4λexpl
N (δ) exp[2‖u‖Lipτ expl1 (δ)]

= εexpl1 (δ).

Moreover, we obtain with Proposition 2.7 that∫ τexpl
1 (δ)

0

B2(t)dt ≤
∫ τexpl

1 (δ)

0

d4e2‖u‖Liptdt <
d4 exp[2‖u‖Lipτ expl1 (δ)]

2‖u‖Lip
and it then follows that

1

20λexpl
N (δ)

∫ τexpl
1 (δ)

0
B2(t)dt

>
‖u‖Lip

10d4λexpl
N (δ) exp[2‖u‖Lipτ expl1 (δ)]

= εexpl1 (δ).
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Therefore,

εexpl1 (δ) < min

⎧⎨
⎩ τ

2τ expl1 (δ)
,

1

20λexpl
N (δ)

∫ τexpl
1 (δ)

0
B2(t)dt

⎫⎬
⎭ = εexpl0 (δ).

However the expression for εexpl1 (δ) still contains λexpl
N (δ). In order to remove

λexpl
N (δ) we note that for all δ satisfying (3.4) we have

λexpl
N (δ) =

−720 ln(δ)

τ
= 9

(
−80 ln(δ)

τ

)

< 9

(
−80 ln(δ)

τ

)3d/2+κ+1

=
9

C5
τ expl1 (δ).

It then follows that

εexpl1 (δ) ≥ C5‖u‖Lip
90d4τ expl1 (δ) exp[2‖u‖Lipτ expl1 (δ)]

(3.9)

>
C5‖u‖Lip

90d4 exp[(1 + 2‖u‖Lip)τ expl1 (δ)]
=: εexpl(δ).

This final lower bound function can be inverted and its inverse function is given by

(3.10) δexpl(ε) = exp

[
− τ

80

(
1

C5(1 + 2‖u‖Lip)
ln
(C5‖u‖Lip

90d4
1

ε

)) 2
3d+2κ+2

]
.

The proof is complete with

Ξ :=
C5‖u‖Lip
90d4

, Θτ :=
τ

80

(
1

C5(1 + 2‖u‖Lip)

) 2
3d+2κ+2

and Aτ from the following remark. �

Remark 3.3. The relation between τ and εexpl is deduced from (3.9) and (3.7).
Adding conditions (3.4), (3.6) and (3.8) we have

(3.11)
−80 ln(δ)

τ
≥ max

{
1,

(C3 + 1)2

Ω2
d

,
(2C3)

2

Ω2
d

,
1

90d4τ

}
.

It then follows that

1

εexpl(δ)
=

90d4 exp[(1 + 2‖u‖Lip)τ expl1 (δ)]

C5‖u‖Lip

=

90d4 exp

[
(1 + 2‖u‖Lip)C5

(
−80 ln(δ)

τ

)3d/2+κ+1
]

C5‖u‖Lip
≥ Aτ

with

Aτ :=
90d4

C5‖u‖Lip
exp

[
(1+2‖u‖Lip)C5max

{
1,

(C3 + 1)2

Ω2
d

,
(2C3)

2

Ω2
d

,
1

90d4τ

}3d/2+κ+1
]
.

This condition ensures that C5‖u‖Lip/(90d4ε) > 1; therefore the formula (3.10) is
well defined.
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4. The particular case of the torus

We consider the problem on the torus T2 = [0, 1]2. In this case, we know exactly
the eigenvalues of the Laplace operator. Therefore, Corollary 2.2 and Corollary 2.3
will be simplified by Corollary 4.1. Moreover, we can give the exact value for the
constant C4 in Proposition 2.4; this is provided by Proposition 4.2. The following
are the details.

Corollary 4.1. In the case of torus T
2 = [0, 1]2, the number of eigenvalues of the

Laplace operator −Δ smaller than or equal to x is

N (x) =
∑
λ≤x

1 = #
{
(m,n) ∈ Z

2 : m2 + n2 ≤ x

4π2

}
.

It is easy to see that with all x > 0 we have N (x) ≤ (
√
x/π + 1)2. Furthermore,

N ((
√
x+ 2π)2)−N (x) ≥ 1.

Proposition 4.2. For any eigenfunction ϕn associated to the eigenvalue λn and
for any κ > 0, we get

‖ϕn‖Cκ ≤ 2κ/2κλκ/2
n .

Proposition 2.5 is based on Proposition 2.4 which is improved for the case of the
torus in Remark 2.6. If we use this in our proof, then we get the following improved
proposition.

Proposition 4.3. For any N, T > 0 and for any function f with ‖f‖ = 1, we have

1

T

∫ T

0

‖PN (f ◦ Φt)‖2 dt ≤
√
2C1√
TC2

κ2κ/2Nλ
κ/2
N .

Then we have the concrete case of Theorem 1.2.

Theorem 4.4. If (Φt)t∈R satisfies decay of correlation in Assumption 1.1, then for
any τ > 0, we have

∥∥φA(τ )
∥∥≤ exp

⎡
⎣− τ

80

((
C2π

4

C2π4 + 1600C1‖u‖Lipκ22κ
ln

(
‖u‖Lip
10d4

A

)) 1
2κ+4

−3π

)2
⎤
⎦,

where A satisfies

A ≥
10d4 exp

[(
1 +

1600C1‖u‖Lipκ
22κ

C2π4

)(√
1

90d4τ + 3π
)2κ+4

]
‖u‖Lip

.
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