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Abstract. In this paper we investigate a connection between the growth rates
of certain classes of finite structures and a generalization of VC-dimension
called VC�-dimension. Let L be a finite relational language with maximum

arity r. A hereditary L-property is a class of finite L-structures closed under
isomorphism and substructures. The speed of a hereditary L-property H is
the function which sends n to |Hn|, where Hn is the set of elements of H
with universe {1, . . . , n}. It was previously known that there exists a gap
between the fastest possible speed of a hereditary L-property and all lower

speeds, namely between the speeds 2Θ(nr) and 2o(n
r). We strengthen this gap

by showing that for any hereditary L-property H, either |Hn| = 2Θ(nr) or

there is ε > 0 such that for all large enough n, |Hn| ≤ 2n
r−ε

. This improves
what was previously known about this gap when r ≥ 3. Further, we show
this gap can be characterized in terms of VC�-dimension, therefore drawing
a connection between this finite counting problem and the model theoretic
dividing line known as �-dependence.

1. Introduction

One of the major themes in model theory is the search for dividing lines among
first-order theories. The study of dividing lines was first developed by Shelah [16].
One of the main goals of this work was to understand the function I(T, κ), which,
given an input theory T and a cardinal κ, outputs the number of non-isomorphic
models of T of size κ. Therefore, the discovery of dividing lines was fundamentally
related to infinitary counting problems. Further, many dividing lines can be char-
acterized by a counting dichotomy, including stability, NIP, VC-minimality, and
�-dependence. These facts show us that model theoretic dividing lines are closely
related to counting problems in the infinite setting.

There has been substantial work on understanding dichotomies in finitary count-
ing problems in the field of combinatorics, particularly in the setting of graphs. A
hereditary graph property is a class of finite graphs H which is closed under isomor-
phism and induced subgraphs. Given a hereditary graph property, H, the speed
of H is the function n �→ |Hn|, where Hn denotes the set of elements in H with
vertex set [n] := {1, . . . , n}. The possible speeds of hereditary graph properties
are well understood. In particular, their speeds fall into discrete growth classes, as
summarized in the following theorem.
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Theorem 1. Suppose H is a hereditary graph property. Then one of the following
holds, where Bn ∼ (n/ logn)n denotes the n-th Bell number.

(1) There are rational polynomials p0, . . . , pk such that for sufficiently large n,

|Hn| =
∑k

i=0 pi(n)i
n.

(2) There exists an integer k > 1 such that |Hn| = n(1− 1
k+o(1))n.

(3) There is an ε > 0 such that for sufficiently large n, Bn ≤ |Hn| ≤ 2n
2−ε

.

(4) There exists an integer k > 1 such that |Hn| = 2(1−
1
k+o(1))n2/2.

This theorem is the culmination of many authors’ work. We direct the reader to
[4] for the gap between cases 1 and 2 and within 2, to [4,6] for the gap between cases
2 and 3, to [2, 9] for the gap between 3 and 4, and to [9] for the gaps within case
4. Further, it was shown in [5] that there exist hereditary graph properties whose
speeds oscillate between the lower and upper bound of case 3, therefore ruling out
any more gaps in this range. Thus Theorem 1 solves the problem of what are the
possible speeds of hereditary graph properties.

On the other hand, there remain many open questions around generalizing The-
orem 1, even to the setting of r-uniform hypergraphs, when r ≥ 3. We focus on one
such problem in this paper. If H is a hereditary property of r-uniform hypergraphs,

then |Hn| ≤ 2(
n
r), and it was shown in [1] and [8] that either |Hn| = 2cn

r+o(nr) for
some c > 0 or |Hn| ≤ 2o(n

r). In other words, the fastest possible speed of a hered-
itary property of r-uniform hypergraphs is 2Θ(nr), and there is a gap between the
fastest and penultimate speeds. However, it remained open whether this gap could
be strengthened in analogy to the gap between cases 3 and 4 in Theorem 1, as we
summarize below in Question 1.

Question 1. Suppose r ≥ 3. Is it true that for any hereditary property H of
r-uniform hypergraphs, either |Hn| = 2cn

r+o(nr) for some c > 0 or there is ε > 0

such that for all large n, |Hn| ≤ 2n
r−ε

?

Given that model theoretic dividing lines are connected to infinitary counting
problems, it is natural to ask whether they are also connected to finitary counting
problems such as Question 1. The main results of this paper will establish such a
connection, as well as answer Question 1 in the affirmative.

Given a finite relational language L, a hereditary L-property is a class of finite
L-structures, H, closed under isomorphism such that if A is a model theoretic sub-
structure of B and B ∈ H, then A ∈ H. The speed of H is the function n �→ |Hn|,
whereHn denotes the set of elements in H with universe [n]. For the model theorist,
we would like to point out that studying the speed of H is the same as counting
the quantifier-free n types p(x1, . . . , xn) extending {xi �= xj : 1 ≤ i ≤ n} which
are realized in a model of the (possibly incomplete) theory axiomatizing H. The
general problems we are interested in are the following.

• What are the jumps in speeds of hereditary L-properties?
• Can these jumps be characterized via model theoretic dividing lines?

In this paper, we make progress on these problems by improving the known gap
between the penultimate and fastest possible speeds of a hereditary L-property
and by connecting this gap to the model theoretic dividing line of �-dependence.
Specifically, we will characterize this gap in terms of a cousin of VC-dimension,
which we denote VC∗

� -dimension. We now state our main result, Theorem 2.
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We will then discuss how it improves known results and how it is connected to
�-dependence.

Theorem 2. Suppose L is a finite relational language of maximum arity r ≥ 1,
and H is a hereditary L-property. Then either

(a) V C∗
r−1(H) < ∞ and there is an ε > 0 such that for sufficiently large n,

|Hn| ≤ 2n
r−ε

or
(b) V C∗

r−1(H) = ∞, and there is a constant C > 0 such that |Hn| = 2Cnr+o(nr).

When r = 1, the following stronger version of (a) holds: V C∗
0 (H) < ∞ and there

is K > 0 such that for sufficiently large n, |Hn| ≤ nK .

Theorem 2 strengthens what was previously shown in [22], that for any hereditary
L-property H, either |Hn| = 2Cnr+o(nr) for some C > 0 or |Hn| ≤ 2o(n

r), where r
is the maximum arity of the relations in L. This result generalizes the gap between
cases 3 and 4 in Theorem 1 and is new in all cases where r ≥ 3. Theorem 2 answers
Question 1 in the affirmative.

Theorem 2 also shows that the gap between the penultimate and fastest possible
speeds of a hereditary L-property is characterized by a model theoretic dividing
line. The dimension appearing in Theorem 2, VC∗

� -dimension, is a dual version
of the existing model theoretic notion of VC�-dimension (see Section 2 for precise
definitions). VC�-dimension is a direct generalization of VC-dimension defined in
terms of shattering “�-dimensional boxes”. This dimension was first introduced in
[19], where it is used to define the dividing line called �-dependence. VC�-dimension
and �-dependence have since been studied from the model theoretic point of view
in [7, 12, 13, 17, 18]. We will show that the condition VC∗

� (H) < ∞ is a natural
analogue of �-dependence for a hereditary L-property H. Thus Theorem 2 can be
seen as characterizing a gap in possible speeds of hereditary L-properties using a
version of the model theoretic dividing line of �-dependence.

Our next result shows that the gap between polynomial and exponential growth
is always characterized by VC∗

0-dimension, regardless of the arity of the language.

Theorem 3. Suppose L is a finite relational language and H is a hereditary L-
property. Then either

(a) VC∗
0(H) < ∞ and there is K > 0 such that for sufficiently large n, |Hn| ≤

nK or
(b) VC∗

0(H) = ∞ and there is a constant C > 0 such that for sufficiently large
n, |Hn| ≥ 2Cn.

Theorem 3 is new at this level of generality, in the labeled setting. There exist
general results on the polynomial/exponential counting dichotomy in the unlabeled
setting (see for instance [14,15]), and it is possible the machinery developed in that
line of work could be used to obtain the dichotomy of Theorem 3. The connection
this paper makes between this problem and VC�-dimension is new. Thus, while
the existence of the dichotomy described by Theorem 3 is not surprising given
past results, Theorem 3 draws a connection to VC�-dimension which we think is
important for understanding the larger pattern at work.

The dichotomies in Theorems 2 and 3 depend on whether VC�-dimension is finite
or infinite for certain values of �. Both results use the following theorem, which
shows that infinite VC∗

� -dimension always implies a lower bound on the speed.
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Theorem 4. Suppose L is a finite relational language of maximum arity r and H
is a hereditary L-property. If 1 ≤ � ≤ r and V C∗

�−1(H) = ∞, then there is C > 0

such that for large n, |Hn| ≥ 2Cn�

.

Somewhat surprisingly, the converse of Theorem 4 fails. In particular, we will
give an example of a hereditary property of 3-uniform hypergraphs with VC1(H) <

∞ but with |Hn| ≥ 2Cn2

for some C > 0 (see Example 1). We would like to thank
D. Mubayi for bringing said example to our attention. These observations suggest
the following interesting open problem.

Problem 1. Suppose L is a finite relational language of maximum arity r ≥ 3
and � is an integer satisfying 2 ≤ � < r. Say a hereditary L-property H has fast

�-dimensional growth if |Hn| ≥ 2Ω(n�). Characterize the hereditary L-properties
with fast �-dimensional growth.

We end this introduction with a brief outline of the paper. In Section 2 we
give background on VC�-dimension and VC∗

� -dimension. In Section 3 we present
technical lemmas needed for the proofs of our main results. In Section 4 we prove
Theorems 2 and 3 and present Example 1. In Section 5, we prove that when � > 0,
VC∗

� (H) = ∞ if and only if VC�(H) = ∞.

2. Preliminaries

In this section, we introduce VC�-dimension for � ≥ 1 and VC∗
� -dimension for

� ≥ 0. For this section, L is some fixed language. We will denote L-structures
with script letters, e.g. M, and their universes with the corresponding non-script
letters, e.g. M . Given an integer n, [n] := {1, . . . , n}. If X is a set,

(
X
n

)
= {Y ⊆

X : |Y | = n}, and if x̄ = (x1, . . . , xs) is a tuple, then |x̄| = s.

2.1. VC-dimension and VC�-dimension. In this subsection we define VC-dimen-
sion and VC�-dimension. We begin by introducing VC-dimension. Given sets
A ⊆ X, P(X) denotes the power set of X. If F ⊆ P(X), then F ∩ A denotes the
set {F ∩ A : F ∈ F}. We say A is shattered by F if F ∩ A = P(A). The VC-
dimension of F is VC(F) = sup{|A| : A ⊆ X is shattered by F}, and the shatter

function of F is defined by π(F ,m) = max{|F ∩ A| : A ∈
(
X
m

)
}. Observe that

VC(F) ≥ m if and only if π(F ,m) = 2m. One of the most important facts about
VC-dimension is the Sauer-Shelah Lemma.

Theorem 5 (Sauer-Shelah Lemma). Suppose X is a set and F ⊆ P(X). If
VC(F) = d, then there is a constant C = C(d) such that for all m, π(F ,m) ≤ Cmd.

VC-dimension is important in various fields, including combinatorics, computer
science, and model theory. We direct the reader to [20] for more details. Given
� ≥ 1, VC�-dimension is a generalization of VC-dimension which focuses on the

shattering sets of a special form. If X1, . . . , X� are sets, then
∏�

i=1 Xi is an �-

box. If |X1| = . . . = |X�| = m, then we say
∏�

i=1 Xi is an �-box of height m. If

X ′
1 ⊆ X1, . . . , X

′
� ⊆ X�, then

∏�
i=1 X

′
i is a sub-box of

∏�
i=1 Xi.

Definition 1. Suppose � ≥ 1,
∏�

i=1 Xi is an �-box, and F ⊆ P(
∏�

i=1 Xi). The
VC�-dimension of F is

VC�(F) = sup{m ∈ N : F shatters a sub-box of

�∏
i=1

Xi of height m}.
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The �-dimensional shatter function is π�(F ,m) = sup{|F∩A| : A is a height m sub-

box of
∏�

i=1 Xi}.
VC�-dimension was introduced in the model theoretic context in [19], where it

was used to define the notion of an �-dependent theory. It has since been studied
as a dividing line in [7, 12, 13, 17, 18]. Theorem 6, below, is an analogue of the
Sauer-Shelah Lemma for VC�-dimension, which was proved in [12]. This result is
closely related to the bounds on Zarankiewicz numbers in combinatorics; in fact
such bounds are the main ingredient in the proof.

Theorem 6 (Chernikov-Palacin-Takeuchi [12]). Suppose � ≥ 1, Y is an �-box,
and F ⊆ P(Y ). If VC�(F) = d < ∞, then there are constants C = C(d) and

ε = ε(d) > 0 such that for all m ∈ N, π�(F ,m) ≤ C2m
�−ε

.

We will need more complicated versions of Definition 1 and Theorem 6. This
extra complication comes from the fact that for this paper, we cannot work inside
T eq, as is done in [12] (we will not even be working in a complete theory). We
now fix some notation. Suppose X is a set and k1, . . . , k� ≥ 1 are integers. Given
ā1 ∈ Xk1 , . . . , ā� ∈ Xk� , let ā1 . . . ā� denote the element of Xk1+...+k� which is the
concatenation of the tuples ā1, . . . , ā�. Given non-empty sets A1 ⊆ Xk1 , . . . , A� ⊆
Xk� , let A1 . . . A� := {ā1 . . . ā� : ā1 ∈ A1, . . . , ā� ∈ A�}. Abusing notation slightly,

we will write
∏�

i=1 Ai for the set A1 . . . A�. Observe that
∏�

i=1 Ai ⊆ Xr, where

r = k1 + . . . + k�. We call
∏�

i=1 Ai an (�, r)-box in X. If |A1| = . . . = |A�| = m

for some m ∈ N, then we say
∏�

i=1 Ai has height m. By convention, for r ≥ 1, a
(0, r)-box of any height in X is a singleton in Xr, and a (0, 0)-box of any height
in X is the empty set. Given any 0 ≤ � ≤ r, we will say a set A is an (�, r)-box if
there is some set X such that A is an (�, r)-box in X.

Definition 2. Suppose X is a set, 1 ≤ � ≤ r, and F ⊆ P(Xr). The VC�-dimension
of F is

VC�(F) = sup{m ∈ N : F shatters an (�, r)-box of height m in X}.
The �-dimensional shatter function is π�(F ,m) = sup{|F ∩A| : A is an (�,r)-box in
X of height m}.

Theorem 6 can be directly adapted to these definitions.

Theorem 7. Suppose 1 ≤ � ≤ r, X is a set, and F ⊆ P(Xr). If VC�(F) = d < ω,
then there are constants C = C(d) and ε = ε(d) > 0 such that for all m, π�(F ,m) ≤
C2m

�−ε

.

Proof. Observe that any (�, r)-box inX is a sub-box of
∏�

i=1 X
ki , for some k1, . . . , k�

≥ 1 with k1 + . . . + k� = r. Given k1, . . . , k� ≥ 1 such that k1 + . . . + k� = r, let

F(k1, . . . , k�) = F ∩
∏�

i=1 X
ki . Our observation implies that F shatters an (�, r)-

box of height m in X if and only if F(k1, . . . , k�) shatters a sub-box of
∏�

i=1 X
ki of

height m, for some k1, . . . , k� ≥ 1 with k1 + . . .+ k� = r. Consequently,

π�(F ,m) = max{π�(F(k1, . . . , k�),m) : k1, . . . , k� ≥ 1, k1 + . . .+ k� = r} and(1)

VC�(F) = max{VC�(F(k1, . . . , k�)) : k1, . . . , k� ≥ 1, k1 + . . .+ k� = r},(2)

where the left-hand sides are computed as in Definition 2 and the right-hand
sides are computed as in Definition 1. By assumption, VC�(F) ≤ d, so (2) im-
plies that for all k1, . . . , k� ≥ 1 with k1 + . . . + k� = r, VC�(F(k1, . . . , k�)) ≤ d.
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Therefore, by Theorem 6, there are C = C(d) and ε = ε(d) > 0 such that

for all m, π�(F(k1, . . . , k�),m) ≤ C2m
�−ε

. Combining this with (1) implies that

π�(F ,m) ≤ C2m
�−ε

holds for all m. �

Note that VC1-dimension is the same as VC-dimension. Observe that in the

notation of Definition 2, for all m, π�(F ,m) ≤ 2m
�

and VC�(F) ≥ m if and only

if π�(F ,m) = 2m
�

. We will be particularly interested in the VC�-dimension of
families of sets defined by formulas in an L-structure. Given a formula ϕ(x̄; ȳ), an
L-structure M, and b̄ ∈ M |x̄|, let

ϕ(b̄;M) = {ā ∈ M |ȳ| : M |= ϕ(b̄; ā)} and Fϕ(M) = {ϕ(b̄;M) : b̄ ∈ M |x̄|}.
Note that Fϕ(M) ⊆ P(M |ȳ|). If A ⊆ M |ȳ|, we say ϕ shatters A if Fϕ(M) does.
Given 1 ≤ � ≤ |ȳ|, set VC�(ϕ,M) = VC�(Fϕ(M)). Then if H is a hereditary
L-property, set

VC�(ϕ,H) = sup{VC�(ϕ,M) : M ∈ H}.
We now define the VC�-dimension of a hereditary L-property for � ≥ 1.

Definition 3. Suppose � ≥ 1 and H is a hereditary L-property. Then
VC�(H) = sup{VC�(ϕ,H) : ϕ(x̄; ȳ) ∈ L is quantifier-free},

and we say H is �-dependent if for all quantifier-free formulas ϕ(x̄; ȳ), VC�(ϕ,H) <
ω.

Note that in Definition 3, we define VC�(H) in terms of VC�(ϕ,H) for quantifier-
free ϕ. Because we are dealing with classes of finite structures, this turns out to be
the appropriate notion. We now explain how this is related to the VC�-dimension
of a complete first-order theory and the notion of �-dependence. Suppose T is
a complete L-theory. Given a formula, ϕ(x̄; ȳ), the VC�-dimension of ϕ in T is
VC�(ϕ, T ) := VC�(ϕ,M), whereM is a monster model of T and VC�(ϕ,M) is com-
puted precisely as described above. The theory T is �-dependent if VC�(ϕ, T ) < ω
for all ϕ ∈ L. This can be related to Definition 3 as follows. Let H(T ) be the
age of M (i.e., the class of finite L-structures which embed into M). Then for
any quantifier-free ϕ, VC�(ϕ,H(T )) = VC�(ϕ, T ). Clearly if T is �-dependent,
then so is H(T ). However, the converse will not hold if all quantifier-free formu-
las have finite VC�-dimension in T , but there is a ϕ with quantifiers such that
VC�(ϕ, T ) = ω. Further, many hereditary L-properties are not ages (recall that if
L is finite and relational, then a hereditary L-property is an age if and only if it
has the joint embedding property [11]). Thus, while one can view Definition 3 as a
version of �-dependence adapted to the setting of hereditary L-properties, it differs
in fundamental ways from the notion of the VC�-dimension of a complete theory.

2.2. VC∗
� -dimension. In this sub-section we define VC∗

� -dimension, a dual version
of VC�-dimension. This is necessary because directly generalizing VC�-dimension
to the case when � = 0 does not give us a useful notion. Indeed, for any formula
ϕ(x̄) and L-structure M, ϕ trivially shatters a (0, 0)-box (i.e., the empty set). We
would like to point out that VC∗

� -dimension is stronger than the dual version of
VC�-dimension appearing in [12].

We now fix some notation. Suppose ϕ(x̄; ȳ) is a formula, X is a set, and A ⊆ X |ȳ|.
A ϕ-type over A in the variables x̄ is a maximal consistent subset of {ϕ(x̄; ā)i : ā ∈
A, i ∈ {0, 1}} (where ϕ0 = ϕ and ϕ1 = ¬ϕ). Given an integer n, S∅

n(A) is the
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set of complete quantifier-free types in the language of equality, using n variables,
and with parameters in A. Given p in Sϕ(A) or S∅

n(A), we say p is realized in an

L-structure M if A ⊆ M |ȳ|, and there is ā ∈ M |x̄| such that M |= p(ā). If H is
a hereditary L-property, SH

ϕ (A) is the set of complete ϕ-types over A which are
realized in some M ∈ H.

Definition 4. Suppose H is a hereditary L-property, m ≥ 1, ϕ(x̄; ȳ) is a formula,
X is a set, and A ⊆ X |ȳ|. Then SH

ϕ,m(A) is the set of all ϕ-types of the form
p1(x̄1) ∪ . . . ∪ pm(x̄m), satisfying:

(1) for each i ∈ [m], pi(x̄i) ∈ SH
ϕ (A), and

(2) there isM ∈ H and ā1, . . . , ām ∈ M |x̄| such thatM |= p1(ā1)∪. . .∪pm(ām).

Given ρ ∈ S∅
2|x̄|(A), S

H
ϕ,m(A, ρ) is the set of p1(x̄1) ∪ . . . ∪ pm(x̄m) ∈ SH

ϕ,m(A) such

that there is M ∈ H and ā1, . . . , ām ∈ M |x̄| with M |= p1(ā1) ∪ . . . ∪ pm(ām) ∪⋃
1≤i �=j≤m ρ(āi, āj).

Observe that in the notation of Definition 4, for any (�, |ȳ|)-box A of height m,

|SH
ϕ (A)| ≤ 2m

�

and for all ρ ∈ S∅
2|x̄|(A), |SH

ϕ,m(A, ρ)| ≤ |SH
ϕ (A)|m. Consequently,

|SH
ϕ,m(A, ρ)| ≤ 2m

�+1

. We are now ready to define the VC∗
� -dimension of a hereditary

L-property, for � ≥ 0.

Definition 5. Suppose ϕ(x̄; ȳ) is a formula, H is a hereditary L-property, and
0 ≤ � ≤ |ȳ|. Then
VC∗

� (ϕ,H) = sup{m ∈ N : for some (�, |ȳ|)-box A of height m and ρ ∈ S∅
2|x̄|(A),

|SH
ϕ,m(A, ρ)| = 2m

�+1},
and VC∗

� (H) = sup{VC∗
� (ϕ,H) : ϕ(x̄; ȳ) ∈ L is quantifier-free}.

Throughout we will use the notation VC∗
� (H) = ∞ instead of VC∗

� (H) = ω (and
similarly for other dimensions). We will frequently use the following observation.

Observation 1. For all � ≥ 0 and formulas ϕ(x̄; ȳ), VC∗
� (ϕ,H) ≥ m if and only if

there is an (�, |ȳ|)-box A of height m and ρ ∈ S∅
2|x̄|(A) such that |SH

ϕ (A)| = 2m
�

and for all (p1, . . . , pm) in SH
ϕ (A)m, p1(x̄1) ∪ . . . ∪ pm(x̄m) ∈ SH

ϕ,m(A, ρ).

On the other hand, note that for all � > 0 and formulas ϕ(x̄; ȳ), VC�(ϕ,H) ≥ m

if and only if there is an (�, |ȳ|)-box A of height m such that |SH
ϕ (A)| = 2m

�

.
Therefore VC∗

� (ϕ,H) ≥ m is a stronger statement than VC�(ϕ,H) ≥ m.
We now make a few remarks on our choice of definitions. We defined VC∗

� -

dimension using SH
ϕ,m(A, ρ) for ρ ∈ S∅

2|x̄|(A) in order to avoid pathologies in the

case when � = 0. In particular, for any non-trivial hereditary L-property H with
H2n �= ∅, |SH

x=y,n(∅)| = 2n. Indeed, H2n �= ∅ implies that for any σ ∈ {0, 1}n,
SH
x=y,n(∅) contains {(xi = yi)

σ(i) : 1 ≤ i ≤ n}. Therefore if we defined VC∗
0-

dimension using |SH
ϕ,m(A)| instead of |SH

ϕ,m(A, ρ)| for some ρ ∈ S∅
2|x̄|(A), every

hereditary L-property of interest to us would satisfy VC∗
0(x1 = x2,H) = ∞. Our

definition avoids this undesirable behavior when � = 0. Further, we will prove in
Section 5 that for any hereditary L-property H and � > 0, VC∗

� (H) = ∞ if and only
if VC�(H) = ∞. In light of this, we may extend Definition 3 to all � ≥ 0 by saying
a hereditary L-property H is �-dependent if VC∗

� (ϕ,H) < ∞ for all quantifier-free
ϕ.
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3. Technical lemmas

In this section we present two technical lemmas which we will use in the proofs
of our main results. Since we are interested in counting, it is often important to
distinguish between tuples and their underlying sets. For this reason we will often
denote sets of tuples using boldface letters and the corresponding underlying sets
using non-bold letters. Objects which are tuples will always have bars over them.
For the rest of the paper L is a fixed finite relational language with
maximum arity r ≥ 1, and H is a hereditary L-property. For the rest of the
paper, “formula” always means quantifier-free formula. Since H is now fixed, we
will from here on omit the superscripts H from the notation defined in Definition
4.

The first result of this section is Lemma 1 below. Parts (a) and (b) of Lemma 1
give quantitative bounds for the size of indiscernible sets in the language of equality,
and part (c) of Lemma 1 is an easy but useful counting fact. The proof of Lemma
1 is straightforward and appears in the appendix.

Lemma 1. Suppose X is a set, s, t ∈ N, B ⊆ Xt is finite, and B is the underlying
set of B. Then the following hold.

(a) |S∅
s (B)| ≤ 2(

s
2)(|B|+ 1)s.

(b) There is B
′ ⊆ B which is an indiscernible subset of Xt in the language of

equality satisfying |B′| ≥
(
|B|/2(

t
2)

)1/2t

.

(c) |B| ≤ t|B| and |B|1/t ≤ |B|.

If 0 < � ≤ r and A =
∏�

i=1 Ai is an (�, r)-box, then a sub-box of A is an (�, r)-

box of the form
∏�

i=1 A
′
i, where for each 1 ≤ i ≤ �, A′

i ⊆ Ai is non-empty. By
convention, for any r ≥ 0, the only sub-box of a (0, r)-box is itself. Our next result
of this section is Lemma 2 below, which gives us information about types over
sub-boxes.

Lemma 2. Let ϕ(x̄; ȳ) be a formula, and let �,K,N,m be integers satisfying K �
N ≥ m ≥ 1, and 0 ≤ �. If A is an (�, |ȳ|)-box of height K satisfying |Sϕ(A)| = 2K

�

,
then for any sub-box A′ ⊆ A of height m, the following hold.

(a) The underlying set of A′ has size at most |ȳ|m.

(b) |Sϕ(A
′)| = 2m

�

.

(c) Suppose � > 0, M is an L-structure, and D ⊆ M |x̄| contains one realization
of every element of Sϕ(A). Then D contains at least N realizations of every
element of Sϕ(A

′).

(d) If |Sϕ,K(A, ρ)| = 2K
�+1

for some ρ ∈ S∅
2|x̄|(A), then |Sϕ,m(A′, ρ�A′)| =

2m
�+1

, and there is M ∈ H and D ⊆ Mm|x̄| such that D contains one
realization of every element of Sϕ,m(A′, ρ�

A′), and M contains at least N
elements not in A′ or in any element of D.

Proof. Let A be the underlying set of A and let A′ be the underlying set of A′. We
first show (a). If � = 0, then A = A

′ implies either |ȳ| = 0 and |A′| = 0 ≤ |ȳ|m or

|ȳ| > 0 and |A′| = 1 ≤ |ȳ|m. If � > 0, then A =
∏�

i=1 Ai, where for each i, Ai ⊆ Aki

for some ki ≥ 1 and such that
∑�

i=1 ki = |ȳ|. Because A′ is a sub-box of A of height

m, we have A′ =
∏�

i=1 A
′
i, where for each i, A′

i ⊆ Ai has size m. For each i,



VC�-DIMENSION AND THE SPEED OF A HEREDITARY L-PROPERTY 3119

Lemma 1 part (c) implies |A′
i| ≤ kim. Consequently, |A′| ≤

∑�
i=1 kim = |ȳ|m.

Thus (a) holds. For parts (b), (c), and (d), we will use the following claim.

Claim 1. There are Γ1, . . . ,Γ2m� ⊆ Sϕ(A) and pairwise distinct p1, . . . , p2m� in
Sϕ(A

′) such that:

(i) For each 1 ≤ i ≤ 2m
�

, every element of Γi is an extension of pi to A.
(ii) If � > 0, then |Γi| ≥ N .

Proof. Suppose first � = 0. Then A′ = A. By assumption |Sϕ(A)| = 2K
�

= 2. Let
p1, p2 be the two distinct elements of Sϕ(A), and set Γ1 = {p1} and Γ2 = {p2}.
Then it is clear that p1 �= p2 ∈ Sϕ(A

′) and (i), (ii) hold. Suppose now that � ≥ 1.

Let X1, . . . , X2m� enumerate all the sub-sets of A′, and for each 1 ≤ j ≤ 2m
�

, set
pj(x̄) = {ϕ(x̄; ā) : ā ∈ Xj} ∪ {¬ϕ(x̄; ā) : ā ∈ A′ \ X}. Given X ⊆ A \ A′ and

1 ≤ j ≤ 2m
�

, set

pj,X(x̄) = {ϕ(x̄; ā) : ā ∈ Xj ∪X} ∪ {¬ϕ(x̄; ā) : ā ∈ A \ (Xj ∪X)}

and

Γj = {pj,X(x̄) : X ⊆ A \ A′}.

Since |Sϕ(A)| = 2K
�

, we must have that for all X ⊆ A, {ϕ(x̄; ā) : ā ∈ X} ∪
{¬ϕ(x̄; ā) : ā ∈ A\X} is in Sϕ(A). Consequently, for each 1 ≤ j ≤ 2m

�

, Γj ⊆ Sϕ(A).
By definition, for all p ∈ Γj , p�A′ = pj . For each j, since Γj ⊆ Sϕ(A) and since
any realization of an element of Γj is a realization of pj , we have pj ∈ Sϕ(A

′). By
definition, p1, . . . , p2m� are pairwise distinct. Thus we have shown that p1, . . . , p2m�

are pairwise distinct elements of Sϕ(A
′) and (i) holds. For each j, |Γj | ≥ |P(A \

A′)| ≥ 2K
� − 2m

� ≥ N , where the last inequality is because K � N ≥ m. Thus (ii)
holds. This finishes the proof of Claim 1. �

Now fix Γ1, . . . ,Γ2m� , p1, . . . , p2m� as in Claim 1. Since the pi are pairwise distinct

elements of Sϕ(A
′), we immediately have that |Sϕ(A

′)| = 2m
�

, so (b) holds. We

now show that (c) holds. Suppose � > 0, M is an L-structure, and D ⊆ M |x̄|

contains one realization of every element of Sϕ(A). Then M contains a realization

of every element in
⋃2m

�

i=1 Γi. Since each Γi contains at least N extensions of pi, this
shows that M contains at least N realizations of each pi. This finishes the proof
of (c).

We now prove (d). Suppose |Sϕ,K(A, ρ)| = 2K
�+1

for some ρ ∈ S∅
2|x̄|(A). Since

K � m, we may assume that K ≥ m2m
�+1. Thus we may fix a sequence

(α1, . . . , αK) ∈ Sϕ(A)
K such that for each 1 ≤ j ≤ 2m

�

,

|{α1, . . . , αm2m� } ∩ Γj | = m.(3)

Then |Sϕ,K(A, ρ)| = 2K
�+1

implies by Observation 1 that α := α1(x̄1) ∪ . . . ∪
αK(x̄K) ∈ Sϕ,K(A, ρ). Thus there isM ∈ H containing pairwise distinct ā1, . . . , āK
realizing α such that for each i �= j, M |= ρ(āi, āj). For each 1 ≤ j ≤ 2m

�

,
since every element of Γj extends pj , (3) implies that {ā1, . . . , ām2m�} contains m
realizations of pj . This means that for all (pj1 , . . . , pjm) in Sϕ(A

′)m, we may choose
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pairwise distinct tuples c̄1, . . . , c̄m ∈ {ā1, . . . , ām2m�} with the property that M |=
pj1(c̄1)∪. . .∪pjm(c̄m). Let D consist of one such realization for each (pj1 , . . . , pjm) ∈
Sϕ(A

′)m. Note that (c̄1, . . . , c̄m) ∈ D implies that M |= ρ�A′(c̄i, c̄j) for each i �= j
(since D ⊆ {ā1, . . . , ām2m�}m).

We have now shown that for every (pj1 , . . . , pjm) ∈ Sϕ(A
′)m, pj1(x̄1) ∪ . . . ∪

pjm(x̄m) is in Sϕ,m(A′, ρ�A′). To finish the proof of (d), we just have to show that
M contains at least N elements not appearing in A′ or D. Let D be the underlying
set of D and let E be the underlying set of the tuples E = {ām2m�+1, . . . , āK}.
Since K ≥ m2m

�+1, |E| ≥ K/2. This along with Lemma 1 part (c) and the fact
that E ⊆ M |x̄| implies that (K/2)1/|x̄| ≤ |E|1/|x̄| ≤ |E|. Since D ⊆ M |x̄|m and

|D| = m2m
�

, Lemma 1 part (c) implies that |D| ≤ |x̄|m2m
�

. We have already
shown that |A′| ≤ |ȳ|m. Combining these bounds, we obtain that |E \ (A′ ∪D)| ≥
(K/2)1/|x̄|−|x̄|m2m

�−|ȳ|m ≥ N , where the last inequality is because K � N ≥ m.
This finishes the proof of (d). �

4. Proofs of main theorems

In this section, we prove the main results of this paper. We begin with Theorem
4, which we restate here for convenience. If M is an L-structure and A ⊆ M , then
M[A] denotes the L-structure induced on A by M.

Theorem 4. If 1 ≤ � and VC∗
�−1(H) = ∞, then there is C > 0 such that for

sufficiently large n, |Hn| ≥ 2Cn�

.

Proof. Assume 1 ≤ � and VC∗
�−1(H) = ∞. By definition, there is a quantifier-free

formula ϕ(x̄; ȳ) such that VC∗
�−1(ϕ,H) = ∞. Let s = |x̄| and t = |ȳ| + |x̄|. Fix n

large and K � n. Then VC∗
�−1(ϕ,H) ≥ K implies there is an (�− 1, |ȳ|)-box A of

height K and ρ ∈ S∅
2s(A) such that |Sϕ,K(A, ρ)| = 2K

�

. Fix m = �n/3t�. Note that
m ≤ n � K.

Choose a sub-box A′ ⊆ A of height m and let A′ be the underlying set of A′. By

Lemma 2 part (a), |A′| ≤ |ȳ|m ≤ tk. By Lemma 2 part (d), |Sϕ,m(A′, ρ�A′)| = 2m
�

,

and there is M ∈ H and D ⊆ Mm|x̄| such that D contains one realization of every
element of Sϕ,m(A′, ρ�

A′), and M contains n elements not appearing in A′ or in
D. Let D be the underlying set of D and let E ⊆ M be a set of n elements in
M \ (A′ ∪D).

Given C̄ ∈ D, let C be the underlying set of C̄. For all C̄ ∈ D, C̄ ∈ Mm|x̄|

implies by Lemma 1 part (c) that |C| ≤ |x̄|m ≤ tm. Since every element of D
realizes the same equality type over A′, we have that for all C̄, C̄ ′ ∈ D, |C| = |C ′|
and |C ∪ A′| = |C ′ ∪ A′|. Given C̄ ∈ D, note that

|C ∪A′| ≤ |C|+ |A′| ≤ tm+ tm = 2tm ≤ 2t(n/3t) = 2n/3.(4)

Since E has size n and is disjoint from D ∪ A′, (4) implies we may choose E′ ⊆ E
such that for all C̄ ∈ D, |C ∪ A′ ∪ E′| = n. Now for each C̄ ∈ D, set MC̄ =
M[C ∪ A′ ∪ E′]. Because H is a hereditary L-property, MC̄ ∈ H for all C̄ ∈ D.
Fix some C̄∗ = (c̄∗1, . . . , c̄

∗
m) ∈ D. Given C̄ = (c̄1, . . . , c̄m) ∈ D, note that C̄∗

and C̄ have the same equality type over A′ ∪ E′. Therefore there is a bijection
fC̄ : C ∪ A′ ∪ E′ → C∗ ∪ A′ ∪ E′ which fixes A′ ∪ E′ and which sends c̄i to c̄∗i for
each 1 ≤ i ≤ m. Let M∗

C̄
be the L-structure with universe C∗ ∪A′ ∪E′ and which

is isomorphic to MC̄ via the bijection fC̄ . Since H is closed under isomorphism,
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M∗
C̄
∈ H for all C̄ ∈ D. Clearly C̄ �= C̄ ′ implies that M∗

C̄
�= M∗

C̄′ (since then C̄ and

C̄ ′ realize distinct elements of Sϕ,m(A, ρ�A′)). Thus {M∗
C̄
: C̄ ∈ D} consists of |D|

distinct elements of H, all with universe C∗∪A′∪E′. Since |C∗∪A′∪E′| = n and H
is closed under isomorphism, this shows that |Hn| ≥ |D| = 2m

�

. Since m = �n/3t�
and n is large, we have |Hn| ≥ 2m

� ≥ 2Cn�

for C = (1/4t)�. �
We will use the following result from [22] in our proof of Theorem 2.

Theorem 8. Suppose H is a hereditary L-property. Then the following limit exists:

π(H) = lim
n→∞

|Hn|1/(
n
r).

Moreover, if π(H) > 1, then |Hn| = π(H)(
n
r)+o(nr), and if π(H) ≤ 1, then |Hn| =

2o(n
r).

We now fix some notation. A formula ϕ(x̄; ȳ) is trivially partitioned if |ȳ| = 0.
Given a set X and n ≥ 1, Xn = {(x1, . . . , xn) ∈ Xn : i �= j implies xi �= xj}. If

M ∈ H, ϕ(x̄; ȳ) is a formula, A ⊆ M |ȳ|, and ā1, . . . , āk ∈ M |x̄| are pairwise distinct,
then define qftpMϕ (ā1, . . . , āk;A) to be the element p1(x̄1)∪ . . .∪ pk(x̄k) of Sϕ,k(A)
such that M |= p1(ā1) ∪ . . . ∪ pk(āk).

The following notation is from [3]. Let Index be the set of pairs (R, p) where
R(x1, . . . , xt) is a relation of L and p is a partition of [t]. Given (R, p) ∈ Index,
define Rp(z̄) to be the formula obtained as follows. Suppose p1, . . . , ps are the
parts of p, and for each i, mi = min pi. For each xj ∈ {x1, . . . , xt}, find which
part of p contains j, say pi, then replace xj with xmi

. Relabel the variables
(xm1

, . . . , xms
) = (z1, . . . , zs) and let Rp(z̄) be the resulting formula. Now let

rel(L) consist of all formulas ϕ(ū; v̄) obtained by permuting and/or partitioning the
variables of a formula of the form Rp(z̄)∧

∧
1≤i �=j≤|z̄| zi �= zj , where (R, p) ∈ Index.

Given a formula ϕ(ū; v̄) and an L-structure M, let ϕ(M) = {āb̄ ∈ M |ū|+|v̄| :
M |= ϕ(ā; b̄)}. Observe that if ϕ(ū; v̄) ∈ rel(L) and M is an L-structure, then
ϕ(M) ⊆ M |ū|+|v̄| and |ū| + |v̄| ≤ r. We will use the fact that any L-structure M
is completely determined by knowing ϕ(M) for all trivially partitioned ϕ ∈ rel(L)
or by knowing ϕ(M) for all ϕ(ū; v̄) ∈ rel(L) with |ū| = 1. Given a formula ϕ(ū; v̄)
and n ≥ 1, set

Fϕ(n) := {U ⊆ [n]|ū|+|v̄| : there is M ∈ Hn with ϕ(M) = U}.
We now prove Theorem 3 and then Theorem 2, which we restate here for conve-
nience. Recall H is a fixed hereditary L-property and the maximum arity of L is
r.

Theorem 3. One of the following holds.

(a) V C∗
0 (H) < ∞ and there is K > 0 such that for sufficiently large n, |Hn| ≤

nK or
(b) V C∗

0 (H) = ∞ and there is a constant C > 0 such that for sufficiently large
n, |Hn| ≥ 2Cn.

Proof. If VC∗
0(H) = ∞, then Theorem 4 implies there is a constant C > 0 such

that for large n, |Hn| ≥ 2Cn, so (b) holds. Suppose now that V C∗
0 (H) = d < ∞.

Fix ϕ(x̄) a trivially partitioned formula from rel(L). Set k = (d + 1)r2(
r
2) and

fix n � k, d, |x̄|. Observe that Fϕ(n) ⊆ [n]|x̄| because ϕ ∈ rel(L). We show
that VC(Fϕ(n)) < k. Suppose towards a contradiction that VC(Fϕ(n)) ≥ k.
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Then there is U ⊆ [n]|x̄| of size k shattered by Fϕ(n). In other words, for all Y ⊆ U ,
there is MY ∈ Hn with ϕ(MY ) = Y . Lemma 1 part (b) implies there is U∗ ⊆ U
which is an indiscernible set with respect to equality and which has size at least

(k/2(
|x̄|
2 ))1/|x̄| ≥ (k/2(

r
2))1/r = d+1. Let V = {v̄1, . . . , v̄d+1} consist of d+1 distinct

elements of U∗. Let ρ ∈ S∅
2|x̄|(∅) be such that for all i �= j, ρ(v̄i, v̄j) holds (this exists

because V ⊆ U∗ and U∗ is an indiscernible set with respect to equality). Note that

for any Y, Y ′ ⊆ V , Y �= Y ′ implies qftpMY
ϕ (v̄1, . . . , v̄d+1) �= qftp

MY ′
ϕ (v̄1, . . . , v̄d+1).

This shows that |Sϕ,d+1(∅, ρ)| = 2|V | = 2d+1, contradicting that VC∗
0(H) = d. Thus

|VC(Fϕ(n))| ≤ k, and consequently, |Fϕ(n)| ≤ Cnk, where C = C(k) > 0 is from
Theorem 5. Every M ∈ Hn can be built by choosing, for each trivially partitioned
ϕ(x̄) ∈ rel(L), an element of Fϕ(n) to be ϕ(M). Hence

|Hn| ≤
∏

ϕ∈rel(L)

|Fϕ(n)| ≤ (Cnk)|rel(L)| = C |rel(L)|n|rel(L)|k ≤ n2|rel(L)|k,

where the last inequality is because n is large and |rel(L)|, C are constants. Thus
(a) holds where K = 2|rel(L)|k. �

Theorem 2. One of the following holds.

(a) V C∗
r−1(H) < ∞ and there is an ε > 0 such that for sufficiently large n,

|Hn| ≤ 2n
r−ε

or
(b) V C∗

r−1(H) = ∞ and there is a constant C > 0 such that |Hn| = 2Cnr+o(nr).

When r = 1, (a) can be replaced by the following stronger statement:

(a’) V C∗
0 (H) < ∞ and there is a constant K > 0 such that for sufficiently large

n, |Hn| ≤ nK .

Proof. If VC∗
r−1(H) = ∞, then Theorem 4 implies there is a constant C such that

for large n, |Hn| ≥ 2Cnr

. By Theorem 8, π(H) > 1 and |Hn| = π(H)(
n
r)+o(nr).

Clearly this implies there is C ′ > 0 such that |Hn| = 2C
′nr+o(nr), so we have shown

that (b) holds.
Assume now that VC∗

r−1(H) = d < ∞. If r = 1, then (a’) holds by Theorem
3. So assume r ≥ 2. Fix ϕ(x̄; ȳ) ∈ rel(L) with |x̄| = 1 and n � d. Observe

that Fϕ(n) ⊆ [n]1+|ȳ| because ϕ ∈ rel(L). We show that VCr(Fϕ(n)) ≤ d. If
1 + |ȳ| < r, this is obvious from the definition, so assume 1 + |ȳ| = r. Suppose
towards a contradiction that VCr(Fϕ(n)) > d. Then there is an (r, r)-box A ⊆ [n]r

of height d + 1 such that Fϕ(n) shatters A. In other words, if U1, . . . , U2(d+1)r

enumerate the sub-sets of A, then for each 1 ≤ j ≤ 2(d+1)r , there is Mj ∈ Hn

with ϕ(Mj) = Uj . By definition, A =
∏r

i=1 Ai, for some A1, . . . , Ar ⊆ [n]. Enu-
merate A1 = {a1, . . . , ad+1}, and set A′ =

∏r
i=2 Ai. Since A has height d + 1,

the elements of A1 are all pairwise distinct, and since A ⊆ [n]r, the elements of

A1 are distinct from the elements in A2 ∪ . . . ∪ Ar. Let ρ ∈ S∅
2 (A

′) say x1 �= x2

and that x1, x2 are both distinct from all the elements of A2 ∪ . . . ∪ Ar. Then

for each 1 ≤ i �= j ≤ 2(d+1)r , qftpMi
ϕ (a1, . . . , ad+1;A

′) �= qftp
Mj
ϕ (a1, . . . , ad+1;A

′)

are distinct elements of Sϕ,d+1(A
′, ρ). This implies that |Sϕ,d+1(A

′, ρ)| = 2(d+1)r .
But now VC∗

r−1(ϕ,H) ≥ d+ 1, contradicting our assumption that VC∗
r−1(H) = d.

Thus VCr(Fϕ(n)) ≤ d. Consequently, |Fϕ(n)| ≤ C2n
r−ε

, where C = C(d) and
ε = ε(d) > 0 are from Theorem 7. Every M ∈ Hn can be built by choosing, for
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each ϕ(x̄; ȳ) ∈ rel(L) with |x̄| = 1, an element of Fϕ(n) to be ϕ(M). Thus

|Hn| ≤
∏

ϕ∈rel(L)

|Fϕ(n)| ≤ (C2n
r−ε

)|rel(L)| = C |rel(L)|2|rel(L)|nr−ε ≤ 2n
r−ε/2

,

where the last inequality is because n is large and |rel(L)|, C are constants. Thus
(a) holds. �

We end this section with Example 1, which shows that VC�(H) < ∞ does not

necessarily imply |Hn| ≤ 2o(n
�+1) when 0 < � < r − 1. In particular, we give

an example of a hereditary L-property H where the largest arity of L is 3, where

VC1(H) < ∞, but where |Hn| ≥ 2Cn2

, for some C > 0.

Example 1. A 3-uniform hypergraph is a pair (V,E) where V is a set of vertices

and E ⊆
(
V
3

)
. A sub-hypergraph of (V,E) is a pair (V,E′) where E′ ⊆ E. Given a

3-uniform hypergraph G = (V,E) and xy ∈
(
V
2

)
, let dG(xy) = |{e ∈ E : xy ⊆ e}|.

Let L = {E(x, y, z)} and let H be the hereditary L-property consisting of finite

3-uniform hypergraphs G = (V,E) with the property that for all pairs xy ∈
(
V
2

)
,

dG(xy) ≤ 1. It is straightforward to verify that VC(H) = 1 < ∞.
A Steiner triple system is a 3-uniform hypergraph G = (V,E) with the property

that for all xy ∈
(
V
2

)
, dG(xy) = 1. By [10, 21], if n ≡ 1 mod 6 or n ≡ 3 mod 6,

then there exists a Steiner triple system on n vertices. For all n satisfying n ≡ 1
mod 6 or n ≡ 3 mod 6, letGn be a Steiner triple system with vertex set [n]. Then if

n is large, e(Gn) =
(n2)
(32)

≥ n2

7 . Consequently, the number of sub-hypergraphs of Gn

is at least 2
n2

7 . Clearly any sub-hypergraph of Gn is in Hn, so |Hn| ≥ 2
n2

7 . We now

show that for all sufficiently large n, |Hn| ≥ 2
n2

14 . Assume n is sufficiently large. If

n ≡ 1 mod 6 or n ≡ 3 mod 6, then we have already shown that |Hn| ≥ 2
n2

7 > 2
n2

14 .
If n �≡ 1 mod 6 and n �≡ 3 mod 6, then for some i ∈ {1, 2}, one of n−i ≡ 1 mod 6 or
n−i ≡ 3 mod 6 holds. Note that |Hn| ≥ |Hn−i|, because for all ([n−i], E) ∈ Hn−i,
we have ([n], E) ∈ Hn. Thus

|Hn| ≥ |Hn−i| ≥ 2
(n−i)2

7 ≥ 2
(n−2)2

7 = 2
n2

7 − 4n
7 + 4

7 ≥ 2
n2

14 ,

where the last inequality is because n is large. Thus VC(H) = VC1(H) = 1, but

|Hn| ≥ 2n
2/14.

5. Equivalence of VC�(H) = ∞ and VC∗
� (H) = ∞ when � ≥ 1

In this section we prove that when 1 ≤ �, VC�(H) = ∞ if and only if VC∗
� (H) =

∞.

Theorem 9. For all 1 ≤ �, VC�(H) = ∞ if and only if VC∗
� (H) = ∞.

Proof. Suppose VC∗
� (H) = ∞. Fix d. We show that VC�(H) ≥ d. Let N � d

and choose ϕ(x̄; ȳ) such that VC∗
� (ϕ,H) = ∞. Then VC∗

� (ϕ,H) ≥ N implies

there are an (�, |ȳ|)-box A =
∏�

i=1 Ai of height N and ρ ∈ S∅
2|x̄|(A) such that

|Sϕ,N (A, ρ)| = 2N
�+1

. Fix a sub-box A
′ of A of height d. By Lemma 2 parts (b) and

(d), |Sϕ(A
′)| = 2d

�

, and there is M ∈ H realizing every element of Sϕ,d(A
′, ρ�A′).

Consequently, M realizes every element of Sϕ(A
′). Thus ϕ shatters A′ in M, and

VC�(H) ≥ d.
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Suppose conversely that VC�(H) = ∞. Fix d ∈ N. We show that VC∗
� (H) ≥ d.

Choose ϕ(x̄; ȳ) such that VC�(ϕ,H) = ∞. Let s = |x̄|, t = |ȳ|. Fix K � n � d, s, t,
and let C = C(n), ε = ε(n) > 0 be from Theorem 7. Note that C = C(n) implies
that K � C. Since VC�(ϕ,H) ≥ K, there is an (�, |ȳ|)-box A of height K and
M ∈ H such that ϕ(x̄; ȳ) shatters A in M. Let D ⊆ M |x̄| contain one realization of

each element of Sϕ(A), and let A be the underlying set of A. Note that |D| = 2K
�

.
By Lemma 2 part (a), |A| ≤ Kt. Combining this with Lemma 1 part (a) yields

that |S∅
s (A)| ≤ 2(

s
2)(|A|+1)s ≤ 2(

s
2)(Kt+1)s. Consequently, there is ν(x̄) ∈ S∅

s (A)
such that

|{ā ∈ D : M |= ν(ā)}| ≥ |D|/2(
s
2)(Kt+ 1)s = 2K

�

/2(
s
2)(Kt+ 1)s ≥ C2K

�−ε/10

,

where the last inequality is because K � C, s, t, n and � ≥ 1. Let D′ = {ā ∈ D :
M |= ν(ā)}. By Lemma 1 part (b), there is D′′ ⊆ D′ which is an indiscernible set
in the language of equality such that

|D′′| ≥
(
|D′|/2(

s
2)

)1/2s

≥ C1/2s2K
(�−ε/10)/2s

2(
s
2)/2s

≥ C2K
�−ε/5

,

where the last inequality is because K � C, s, n and � ≥ 1. Our definition of D′′

implies there is ρ(x̄, ȳ) ∈ S∅
2s(A) such that for every ā �= b̄ ∈ D′′, M |= ρ(ā, b̄). Now

let F = {ϕ(ā;M) ∩ A : ā ∈ D′′}. Since the elements of D′′ realize distinct ϕ-types

over A, |F| ≥ |D′′| ≥ C2K
�−ε/5

. Thus by Theorem 7, F shatters a sub-box A′ of A
of height n. This implies there is a set D′′′ ⊆ D′′ containing one realization of every

element of Sϕ(A
′), and |Sϕ(A

′)| = 2n
�

. Now let B be a sub-box of A′ of height d. By

Lemma 2 parts (b) and (c), |Sϕ(B)| = 2d
�

, and D′′′ contains at least d realizations of
every element of Sϕ(B). This implies that for every (pi1 , . . . , pid) ∈ Sϕ(B)

d, there
are pairwise distinct āi1 , . . . , āid in D′′′ realizing pi1(x̄1) ∪ . . . ∪ pid(x̄d). Because
āi1 , . . . , āid are in D

′′′ ⊆ D
′′ and B ⊆ A, we have that M |= ρ�B(āiu , āiv) for all

1 ≤ u �= v ≤ d. Thus we have shown that |Sϕ,d(B, ρ�B)| ≥ |Sϕ(B)
d| = 2d

�+1

, and
consequently, VC∗

� (H) ≥ VC∗
� (ϕ,H) ≥ d. �

6. Appendix

In this appendix we prove Lemma 1.

Lemma 1. Suppose X is a set, s, t ∈ N, B ⊆ Xt is finite, and B is the underlying
set of B. Then the following hold.

(a) |S∅
s (B)| ≤ 2(

s
2)(|B|+ 1)s.

(b) There is B
′ ⊆ B which is an indiscernible subset of Xt in the language of

equality satisfying |B′| ≥
(
|B|/2(

t
2)

)1/2t

.

(c) |B| ≤ t|B| and |B|1/t ≤ |B|.

Proof. Every p(x1, . . . , xs) = p(x̄) ∈ S∅
s (B) can be constructed as follows.

• Choose S ⊆
(
[s]
2

)
, and for each ij ∈ S, put xi = xj in p(x̄), and for each

ij /∈ S, put xi �= xj in p(x̄). There are at most 2(
s
2) ways to do this.

• For each i ∈ [s], do one of the following. Either put xi �= b in p(x̄) for all
b ∈ B or choose b ∈ B and then put xi = b in p(x̄) and put xi �= b′ in p(x̄)
for all b′ ∈ B \ {b}. There are at most (|B|+ 1)s ways to do this.
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This shows that |S∅
s (B)| ≤ 2(

s
2)(|B| + 1)s, so we have proved part (a). We now

prove (b). First, by part (a), there are at most 2(
t
2) equality types over the empty

set in the variables x1, . . . , xt, so there is B0 ⊆ B with |B0| ≥ |B|/2(
t
2) such that all

elements in B0 have the same equality type over the empty set. Let q(x̄) ∈ S∅
t (∅)

be such that for all b̄ ∈ B0, q(b̄) holds. Let B0 be the underlying set of B0. We now

build a sequence Y1 ⊇ Y2 ⊇ . . . ⊇ Yt such that for each 1 ≤ i ≤ t, |Yi| ≥ |B0|1/2
i

and Yt is an indiscernible set in the language of equality.

Step 1. Let B1 = {b ∈ B0 : there is (b1, . . . , bt) ∈ B0 with b = b1}. If there
is b ∈ B1 such that |{(b1, . . . , bt) ∈ B0 : b1 = b}| ≥ |B0|1/2, then define Y1 =
{(b1, . . . , bt) ∈ B : b1 = b}. Observe that in this case, every tuple in Y1 has first
coordinate equal to b and |Y1| ≥ |B0|1/2. If there is no such b, then note that

|B0| ≤
∑
b∈B1

|{(b1, . . . , bs) ∈ B0 : b1 = b}| ≤ |B1||B0|1/2.

This implies that |B1| ≥ |B0|1/2. Let Y1 consist of exactly one element of the form
(b, b2 . . . , bt) ∈ B0 for each b ∈ B1. Observe that in this case, all tuples in Y1 have
pairwise distinct first coordinates and |Y1| = |B1| ≥ |B0|1/2. In both cases, we have
defined Y1 so that |Y1| ≥ |B0|1/2 and so that Y1 is indiscernible with respect to
formulas of the form ϕ(x1, y1) in the language of equality (i.e., those which only
use the variable x1, y1).

Step i + 1. Suppose by induction we have defined Y1 ⊇ . . . ⊇ Yi such that |Yi| ≥
|B0|1/2

i

and such that the elements in Yi are indiscernible with respect to formulas
of the form ϕ(x1, . . . , xi, y1, . . . , yi) in the language of equality. Let

Bi+1 = {b ∈ B0 : there is (b1, . . . , bt) ∈ Yi with b = bi+1}.

If there is b ∈ Bi+1 such that |{(b1, . . . , bt) ∈ Xi : bi+1 = b}| ≥ |Yi|1/2, then define
Yi+1 = {(b1, . . . , bt) ∈ Xi : bi+1 = b}. In this case, we have |Yi+1| ≥ |Yi|1/2 ≥
|B0|1/2

i+1

, and every tuple in Yi+1 has its (i+ 1)-st coordinate equal to b. If there
is no such b, then note that

|Yi| ≤
∑

b∈Bi+1

|{(b1, . . . , bt) ∈ B0 : bi+1 = b}| ≤ |Bi+1||Yi|1/2.

This implies that |Bi+1| ≥ |Yi|1/2 ≥ |B0|1/2
i+1

. Let Yi+1 consist of exactly one
element of the form (b1, . . . , bt) ∈ Yi with bi+1 = b for each b ∈ Bi+1. Then all

tuples in Yi+1 have distinct (i+1)-st coordinates and |Yi+1| = |Bi+1| ≥ |B|1/2i+1

. In

both cases, |Yi+1| ≥ |B0|1/2
i+1

. Combining the definition of Yi+1 with the inductive
hypothesis implies that Yi+1 is an indiscernible set with respect to formulas of the
form ϕ(x1, . . . , xi+1, y1, . . . , yi+1) in the language of equality.

At stage t, we obtain Yt ⊆ B0 with |Yt| ≥ |B0|1/2
t

and which is an indiscernible
set with respect to formulas of the form ϕ(x1, . . . , xt, y1, . . . , yt) in the language of
equality; i.e., Yt is an indiscernible sub-set of Xt in the language of equality.

For part (c), we obtain the upper bound as follows. Given b̄ = (b1, . . . , bt), let⋃
b̄ = {b1, . . . , bt}. Then |B| ≤

∑
b̄∈B

| ∪ b̄| ≤
∑

b̄∈B
t = |B|t. For the lower bound,

observe that B ⊆ Bt implies that |B| ≤ |B|t, so |B|1/t ≤ |B|.

�
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