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ON THE ARITHMETICALLY COHEN-MACAULAY PROPERTY

FOR SETS OF POINTS IN MULTIPROJECTIVE SPACES

GIUSEPPE FAVACCHIO, ELENA GUARDO, AND JUAN MIGLIORE

(Communicated by Irena Peeva)

Abstract. We study the arithmetically Cohen-Macaulay (ACM) property for
finite sets of points in multiprojective spaces, especially (P1)n. A combinato-

rial characterization, the (�)-property, is known in P
1 × P

1. We propose a
combinatorial property, (�s) with 2 ≤ s ≤ n, that directly generalizes the
(�)-property to (P1)n for larger n. We show that X is ACM if and only if it
satisfies the (�n)-property. The main tool for several of our results is an ex-
tension to the multiprojective setting of certain liaison methods in projective
space.

1. Introduction

A motivating problem in algebraic geometry and commutative algebra concerns
multiprojective spaces. Given a finite collection of points X ⊆ P

a1 × · · · × P
an

it is interesting to describe the homological invariants of the quotient ring of X.
An important property is whether the collection is arithmetically Cohen-Macaulay
(ACM) or not, i.e., whether the quotient ring is a Cohen-Macaulay ring. It is no
longer the case (as it is in projective space) that a finite set of points is automatically
ACM. It is of interest to understand which finite sets of points are ACM.

A characterization of finite sets with the ACM property is only known in P
1×P

1.
We know several classifications of ACM sets of reduced and fat points in P

1×P
1, in

terms of the Hilbert function, separators, and combinatorial properties (for example
see [1, 3–9]). Unfortunately, Examples 3.4 and 4.10 in [6] and Examples 3.4, 3.12
and 5.10 in [7] show that these characterizations cannot be generalized to other
ambient spaces such as Pn×P

m or Pa1 ×· · ·×P
an , but there remains the hope that

they can be generalized to P
1 × P

1 × · · · × P
1 = (P1)n.

Our focus in this paper is to better understand ACM sets of points in (P1)n

by extending some standard tools in the homogeneous setting to the multihomoge-
neous setting. These include basic double G-linkage, liaison addition, and liaison.
Although our focus in this paper is not on Hilbert functions, we do give multigraded
Hilbert function formulas for these generalized constructions.

For a set of points X in P
1×P

1, it is known (cf. for instance [10, Theorem 4.11])
that X is ACM if and only if it satisfies the so-called (�)-property (see Remark 2.8
of this paper for the definition). We first give a new proof of this result using liaison
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theory (Corollary 2.9). In P
1 × P

1, the (�)-property is equivalent to the inclusion
property (Definition 2.5). However, we use liaison addition to show in Example 2.12
that the inclusion property does not characterize ACM sets of points in P

1×P
1×P

1

(or (P1)n for larger n).
On the other hand, we show in Proposition 2.7 that the inclusion property does

imply the ACM property in (P1)n. If X ⊂ (P1)n is an ACM set of points and πi

is any projection to a copy of (P1)n−1, then X decomposes in a natural way to a
disjoint union of level subsets (see Definition 2.5). We show in Theorem 3.2 that
these level subsets are all ACM, as are their complements.

We introduce for sets of points in (P1)n the (�s)-property for 2 ≤ s ≤ n (Defini-
tion 3.6), a generalization of the (�)-property, and we show in Theorem 3.16 that
for s = n this characterizes the ACM property.

In [11] the authors began the study of the Hilbert function of any finite set of
points, X, in P

1 × P
1 × P

1. We hope that the characterization in this paper will
help in the future classification of Hilbert functions of ACM finite sets of points in
(P1)n.

2. Some constructions and a new proof

We work over a field of characteristic zero.

Definition 2.1. For V = P
a1 × · · · × P

an we define

πi : V → P
a1 × · · · × P̂ai × · · · × P

an

to be the projection omitting the i-th component and

ηi : V → P
ai

to be the projection to the i-th component.

Let e1, . . . , en be the standard basis of N
n. Let xi,j , with 1 ≤ i ≤ n and

0 ≤ j ≤ ai for all i, j, be the variables for the different Pai . Let

R = K[x1,0, . . . , x1,a1
, . . . , xn,0, . . . , xn,an

],

where the degree of xi,j is ei.
A subscheme X of V is defined by a saturated ideal, IX , generated by a system

of multihomogeneous polynomials in R in the obvious way. We say that X is
arithmetically Cohen-Macaulay (ACM ) if R/IX is a Cohen-Macaulay ring.

Let N = a1 + · · · + an + n. Given a subscheme X of V together with its
homogeneous ideal IX , we can also consider the subscheme X̄ of P

N−1 defined
by IX . Notice that if X is a zero-dimensional subscheme of V , IX almost never
defines a zero-dimensional subscheme of PN−1. For example, if n = 2, a1 = a2 = 1,
then a finite subset, X, of P1 × P

1 corresponds to a finite union of lines, X̄, in P
3

(of a certain type). The subscheme X ⊂ V is ACM if and only if the subscheme
X̄ ⊂ P

N−1 is ACM.
The following construction is a special case of so-called Basic Double G-Linkage;

cf. [16, Lemma 3.4] for a more general version or [10, Theorem 4.9] for what is used
here.

Proposition 2.2 ([16, Corollary 3.5]). Let V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ P
n be ACM of the

same dimension ≥ 1. Let H1, . . . , Hr be hypersurfaces, defined by forms F1, . . . , Fr,
such that for each i, Hi contains no component of Vj for any j ≤ i. Let W0 ⊂ V1

be an ACM subscheme, and for each i ≥ 1 let Wi be the ACM scheme defined by
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the corresponding hypersurface sections: IWi
= IVi

+ (Fi). Let Z be the sum of the
Wi, viewed as divisors on Vr. Then

(i) Z is ACM.
(ii) As ideals we have

IZ = IVr
+ Fr · IVr−1

+ FrFr−1IVr−2
+ · · ·+ FrFr−1 · · ·F2IV1

+ FrFr−1 · · ·F1IW0
.

(iii) Let di = degFi. The Hilbert functions are related by the formula

hZ(t) = hWr
(t) + hWr−1

(t− dr) + hWr−2
(t− dr − dr−1) + . . .

+hW1
(t− dr − dr−1 − · · · − d2) + hW0

(t− dr − dr−1 − · · · − d1).

A multihomogeneous version of the above proposition, taking W0 to be empty
(since for the purposes of this paper it is not needed), is given in the next proposi-
tion. Recall that the ideal of a zero-dimensional subscheme of the multiprojective
space defines a subscheme of higher dimension in projective space.

Proposition 2.3. Let V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ P
a1 × · · · × P

an be ACM of the same
dimension ≥ 1. Fix h ∈ {1, . . . , n}. Let H1, . . . , Hr be hypersurfaces, defined by
multihomogeneous forms F1, . . . , Fr with degree deg(Fi) = Dieh := di ∈ N

n, for
some Di ∈ N, such that for each i, Hi contains no component of Vj for any j ≤ i.
Let Wi be the ACM schemes defined by the corresponding hypersurface sections:
IWi

= IVi
+ (Fi). Let Z be the sum of the Wi, viewed as divisors on Vr. Then

(i) Z is arithmetically Cohen-Macaulay.
(ii) As ideals we have

IZ = IVr
+ Fr · IVr−1

+ FrFr−1IVr−2
+ · · ·+ FrFr−1 · · ·F2IV1

+ (FrFr−1 · · ·F1).

(iii) The Hilbert functions are related by the formula

hZ(t) = hWr
(t) + hWr−1

(t− dr) + hWr−2
(t− dr − dr−1) + . . .

+hW1
(t− dr − dr−1 − · · · − d2).

Remark 2.4. As the name suggests, basic double G-linkage actually does something
stronger: it preserves the even Gorenstein liaison class (originally [15], but see
[16, Lemma 3.4(iv)]). This means that in Proposition 2.2 something stronger is
actually true: without initially assuming that W0 is ACM we have that Z is ACM
if and only if W0 is, since the ACM property is preserved under liaison. This latter
is a standard fact whose roots go back at least to Gaeta in the 1940s and 1950s,
to Hartshorne in the 1960s, to Rao in the 1970s, and to Schenzel [18] in 1982 (the
first time Gorenstein liaison was considered rather than only complete intersection
liaison), and is based on the fact that the Hartshorne-Rao modules are invariant up
to shifts and duals in the Gorenstein liaison class and are all zero if and only if the
scheme is ACM. These facts are collected in [14, Lemma 1.2.3 and Theorem 5.3.1].

This has the following consequence, which we will use in Corollary 2.9. We
follow the notation of Proposition 2.2. Let W0 ⊂ P

1 × P
1 be a finite set. Let

V1 be a union of hyperplanes of multidegree (0, 1) containing W0 and let F1 be
a hyperplane of multidegree (1, 0) not containing any point of X. Let W1 be the
complete intersection of V1 and F1, and let Z = W0 ∪W1. Then Z is ACM if and
only if W0 is ACM.

Definition 2.5. Let X ⊂ (P1)n be a finite, reduced subscheme and fix a value
of i, 1 ≤ i ≤ n. Let {[k1, �1], . . . , [kt, �t]} = ηi(X). For 1 ≤ j ≤ t, let Hj be the
hyperplane defined by �jxi,0 − kjxi,1 and let Xj = X ∩ Hj . We call the Xj the
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i-level sets of X. We say that X has the inclusion property with respect to πi if the
subsets πi(Xj) of (P1)n−1, for 1 ≤ j ≤ t, admit a total ordering by inclusion and
are all ACM.

Note that the i-level sets are a natural stratification of the points of X obtained
by taking all points with prescribed i-th coordinate.

Example 2.6. Let X ⊂ P
1 × P

1 × P
1 be the following set of points:

�

π1

�π2

�
���
π3

The next pictures show the decompositions of X as unions of 1-level sets, 2-level
sets, and 3-level sets respectively. Note that X has the inclusion property with
respect to π1 but not with respect to π2 or π3.

X4

X3

X2

X1

X′
1 X′

2 X′
3

X′′
3

X′′
2

X′′
1

Indeed, we have π1(X4) ⊇ π1(X3) ⊇ π1(X2) ⊇ π1(X1), but no such chain of
inclusions holds for π2(X

′
1), π2(X

′
2), and π2(X

′
3) or for π3(X

′′
1 ), π3(X

′′
2 ), and π3(X

′′
3 ).

Proposition 2.7. Let X ⊂ (P1)n be a finite set. Assume that for some 1 ≤ i ≤ n,
X has the inclusion property with respect to πi. Then X is ACM.

Proof. Recall that the inclusion property includes the assumption that the i-level
sets are all ACM. We first note that if W is a finite subset of (P1)n−1, then π−1

i (W )
is a finite union of lines (copies of the i-th P

1) in V sitting over W . We have
that the finite set W is ACM if and only if the curve π−1

i (W ) is ACM, since they
are defined by the same equations. Furthermore, in the notation of Definition 2.5,
Xj = π−1

i (πi(Xj)) ∩Hj .
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Notice that

X = [π−1
i (πi(X1)) ∩H1] ∪ · · · ∪ [π−1

i (πi(Xt)) ∩Ht].

The inclusion property then implies an analogous inclusion property for the curves
π−1
i (πi(Xj)). Since all these curves are ACM, the result follows from Proposition

2.2. �

Remark 2.8. Note that for P1 × P
1, X satisfies the inclusion property with respect

to πi (for i = 1, 2) if and only if it satisfies the so-called (�)-property, namely, that
even after re-indexing, X contains no subset of type (a) in Remark 3.10 below (cf.
[10, Definition 3.19]), where it is understood that the intersection points that are
non-bullets do not lie in X. In Definition 3.6 we will extend the (�)-property to
higher dimension.

The following is part of the known classification of ACM sets of points in P
1×P

1

(again see [10, Theorem 4.11]). We now give a short new proof of this result.

Corollary 2.9. Let V = P
1 × P

1. Let X ⊂ V be a finite set of points. Then X is
ACM if and only if X satisfies the inclusion property with respect to either π1 or
π2.

Proof. Notice that in P
1 all finite subsets are ACM, so i-level sets in P

1 × P
1

are automatically ACM. Then the fact that if X satisfies the inclusion property
with respect to one of the projections then X is ACM follows immediately from
Proposition 2.7.

We now prove the converse. Suppose that X is ACM but does not satisfy the
inclusion property with respect to either projection. Without loss of generality, we
may assume that there is no value j such that

|π−1
1 (π1(X)) ∩Hj | = |Xj | or |π−1

2 (π2(X)) ∩Hj | = |Xj |.
In other words, thinking of X as a subset of the intersection points of a grid of
“horizontal” lines and “vertical” lines, we may assume that no row or column
contains the maximum possible number of points of X. Indeed, if this were the
case, then we could remove such a row or column of points, and what remains
would still be ACM thanks to Remark 2.4.

We now consider X as a union of lines in P
3. The “vertical” lines of our grid

correspond to a union of planes in P
3 containing X, as do the “horizontal” lines,

and these unions have no plane in common. Hence they provide a geometric link of
X to some union of lines Y in P

3, which is again ACM by standard results in liaison
theory (cf. [14]). Notice that the product of the minimal number of “vertical” lines
in the grid containing X is a minimal generator of IX , as is the product of the
minimal number of “horizontal” lines in the grid containing X (Theorem 1.2 in
[3]).

The key observation is that if we view Y as part of our grid, it is simply the
points of the grid that do not belong to X. By our observation, the minimal set of
“vertical” and “horizontal” lines containing Y are identical to those containing X.
If we link back using the same complete intersection, we re-obtain X. But now in
both links we have used minimal generators for the ideal. Since X has codimension
two (a crucial ingredient!), if X were ACM, a sequence of two links using minimal
generators in both cases would result in a set of points whose number of minimal
generators is two less than that of X. (This is due primarily to Apery and Gaeta;
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see for instance [14, Theorem 6.1.3], applied twice.) Since we instead have exactly
X again, X is not ACM, so we have our contradiction. �

It is natural to wonder if the analogue of Corollary 2.9 holds for a larger prod-
uct of P1’s. We now show that this is not the case. For simplicity we will give
our example for P

1 × P
1 × P

1, but the same idea and construction works for any
number. Of course one direction of a supposed analogue of Corollary 2.9 is given
by Proposition 2.7, so we need to exhibit an ACM set of points not satisfying the
inclusion property with respect to any of the three projections. We will use the
following result, which generalizes an unpublished result of P. Schwartau and is a
multihomogeneous version of [2, Corollary 1.6, Theorem 1.3, and Corollary 1.5].

Theorem 2.10. Let V1, . . . , Vr be subschemes of Pa1 × · · · × P
an , with 2 ≤ r ≤ n.

Assume that Vi are all equidimensional of codimension r. Choose multihomogeneous
polynomials F1, . . . , Fr with di = degFi = Di · ei ∈ N

n so that

Fi ∈
⋂

1 ≤ j ≤ r
j �= i

IVj

and (F1, . . . , Fr) is a regular sequence. Let V be the complete intersection scheme
defined by (F1, . . . , Fr). Let I = F1IV1

+ · · ·+FrIVr
and let Z be the scheme defined

by I. Then:

(i) As sets, Z = V1 ∪ · · · ∪ Vr ∪ V .
(ii) I is a saturated ideal.
(iii) If hX(t) denotes the Hilbert function of a scheme X, then we have

hZ(t) = hV (t) + hV1
(t− d1) + · · ·+ hVr

(t− dr).

(iv) Z is ACM if and only if V1, . . . , Vr are all ACM.

Remark 2.11. If ΔhX(t) denotes the first difference of the Hilbert function of a
scheme X (see [7, Definition 2.8]) then we note that item (iii) is equivalent to

(2.1) ΔhZ(t) = ΔhV (t) + ΔhV1
(t− d1) + · · ·+ΔhVr

(t− dr).

With this construction we now show that the analogue of Corollary 2.9 does not
hold for P1 × P

1 × P
1.

Example 2.12. In P
1 × P

1 × P
1 consider the points

V1 = ([1, 1], [1, 1], [1, 1]) , V2 = ([2, 1], [2, 1], [2, 1]) , V3 = ([3, 1], [3, 1], [3, 1]).

Note that IVi
= (x1,0 − ix1,1, x2,0 − ix2,1, x3,0 − ix3,1) and all three are ACM. Let

F1 = (x1,0 − 2x1,1)(x1,0 − 3x1,1),
F2 = (x2,0 − x2,1)(x2,0 − 3x2,1),
F3 = (x3,0 − x3,1)(x3,0 − 2x3,1).

Let

I = F1IV1
+ F2IV2

+ F3IV3
.

Theorem 2.10 shows that I is the saturated ideal of the union of 11 points, namely
V1, V2, V3 and the 8 points of intersection of F1, F3, and F3, and that X is ACM.
One checks, however, that X fails to have the inclusion property with respect to
any direction.
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�

π1

�π2

�
���
π3

V1

V2

V3

The same idea can be used to construct an example for a product of any number
of copies of P1.

Remark 2.13. Using formula (2.1) we can write the first difference of the Hilbert
function of X in Example 2.12. We get

ΔhX(0, j, k) =

0 1 2 3 · · ·
0 1 1 1 0 · · ·
1 1 1 0 0 · · ·
2 1 0 0 0 · · ·
3 0 0 0 0 · · ·

ΔhX(1, j, k) =

0 1 2 3 · · ·
0 1 1 0 0 · · ·
1 1 1 0 0 · · ·
2 0 0 0 0 · · ·
3 0 0 0 0 · · ·

ΔhX(2, 0, 0) = 1 and ΔhX(i, j, k) = 0 otherwise. One can check that there is no
hyperplane containing 6 points, but

∑
j,k ΔhX(0, j, k) = 6. So we cannot generalize

Theorem 3.1 in [11]; i.e., we are not able to count the number of points on a plane
directly from the Hilbert function even in the ACM case.

Having the preceding example, it becomes of great interest to find a characteri-
zation of those sets of points in P

1 ×P
1 ×P

1 and, more generally, in (P1)n that are
ACM. We will do this in the next section.

Remark 2.14. It is not hard to show that if we move the point V2=([2, 1], [2, 1], [2, 1])
in the above picture to the bottom plane,

the Hilbert function remains the same, but now X does have the inclusion property.
This shows that from the Hilbert function one cannot determine whether or not an
ACM set of points has the inclusion property.

3. ACM sets of points in (P1)n

Let R = K[x1,0, x1,1, x2,0, x2,1, . . . , xn,0, xn,1] be the coordinate ring for (P1)n,
which we shall also view as the coordinate ring for P2n−1. Let X ⊂ (P1)n be a finite
set of points. Since IX defines both a set of points in (P1)n and a union of linear
varieties in P

2n−1, we will abuse notation and denote by X also the subvariety of
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P
2n−1 defined by this ideal. As above, we can view the i-level sets of X with respect

to any direction, and we often refer to them simply as level sets.

Notation 3.1. Let X be as above. We write X = X1 ∪X2 ∪ · · · ∪Xr to represent
the decomposition of X into level sets with respect to some direction; without
loss of generality we assume it is the first. Viewed in P

2n−1, any given Xi is the
intersection of a hyperplane defined by a linear form �i in the variables x1,0 and x1,1

and a variety Xi in P
2n−1 defined by the variables x2,0, x2,1, . . . , xn,0, xn,1. Xi is

ACM in P
2n−1 if and only if Xi is ACM in the i-th copy of (P1)n−1, which in turn

is equivalent to Xi being ACM as a subscheme of P2n−1 (with ideal (�i)+ IXi
). We

denote by IXi
the corresponding ideal in R. For convenience we will denote by A1,i

the hyperplanes in the variables x1,0 and x1,1 containing at least one point of X,
by A2,i the hyperplanes in the variables x2,0 and x2,1 containing at least one point
of X, etc. We will abuse notation and use the same notation for the corresponding
linear forms.

Theorem 3.2. Let X ⊂ (P1)n be a finite set. Choose any of the n projections;
without loss of generality assume it is π1. Let X1, . . . , Xr be the level sets with
respect to this projection. If X is ACM, then for each i, both Xi and X\Xi =

X1 ∪ · · · ∪ X̂i ∪ · · · ∪Xr are ACM.

Proof. Notice that the first assertion follows immediately from the second by re-
moving level sets one at a time.

We now prove that X\Xi is ACM. We have n families of linear forms, namely
the A1,i that are linear combinations of x1,0 and x1,1, the A2,i that are linear
combinations of x2,0 and x2,1, etc. We replace each of these linear forms by a new
variable. Supposing that

|{A1,i | A1,i ∩X �= ∅}| = r1,
|{A2,i | A2,i ∩X �= ∅}| = r2,

...
|{An,i | An,i ∩X �= ∅}| = rn,

let us call the new variables a1,1, . . . , a1,r1 , a2,1, . . . , a2,r2 , . . . , an,1, . . . , an,rn . Let S
be the polynomial ring in these r1+ · · ·+rn variables. We form the monomial ideal
in S given by the intersection of ideals of the form (a1,i, a2,j , . . . , an,k) corresponding
to the components ofX. This intersection defines a height nmonomial ideal, J ⊂ S.

Consider J as an ideal, say J , in the ring T =S[x1,0, x1,1, x2,0, x2,1, . . . , xn,0, xn,1],

where S is defined in the previous paragraph. Being a cone, J continues to
be a height n monomial ideal. Consider the linear forms a1,i1 − A1,i1 , a2,i2 −
A2,i2 , . . . , an,in − An,in , where 1 ≤ i1 ≤ r1, . . . , 1 ≤ in ≤ rn. Let L be the ideal
generated by all these linear forms. We have that

R/IX ∼= T/(J, L),

the former of which is ACM. Since the ideals IX of R and J of T both have height
n, we can view the addition of each linear form in L as a proper hyperplane section,
giving that T/J is also Cohen-Macaulay.

Now let x be any of the r1+ r2+ · · ·+ rn variables of S (viewed in T ). Corollary
3.2(a) of [12] (see also Theorem 1.5 in [13] and Proposition 1.2 in [17]) shows that
the following inequality holds for the projective dimension:

pd(T/(J, x)) ≤ pd(T/J) + 1.
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From the exact sequence

0 → T/(J : x)(−1) → T/J → T/(J, x) → 0

it then follows, by the Depth Lemma (see [19, Lemma 1.3.9] or [20, Lemma 3.1.4]),
that T/(J : x) is also Cohen-Macaulay. Then again passing to the hyperplane
sections, we see that X\Xi is ACM. �

The following corollary is immediate.

Corollary 3.3. If X ⊂ (P1)n is ACM, then the union of any number of level sets
of X in any given direction is ACM.

Corollary 3.4. If X ⊂ (P1)n is a finite ACM set of points, then its multihomoge-
neous ideal (hence also its homogeneous ideal) is minimally generated by products
of linear forms of type Ai,j.

Proof. This follows from the argument in Theorem 3.2, since the monomial ideal
passes to an ideal generated by products of linear forms, and the ACM property
means that the Betti diagram (in particular the minimal generators) is preserved
under proper hyperplane sections. �

Remark 3.5. Corollary 3.4 is not true without the ACM assumption. Indeed, the
ideal of three general points in P

1×P
1×P

1 is easily seen to have minimal generators
of degree (1, 1, 0), (1, 0, 1), (0, 1, 1) that are not products of linear forms.

Let P,Q ∈ (P1)n. We denote by YP,Q a height n multihomogeneous complete
intersection of least degree containing P and Q, with each minimal generator being
a product of at most two hyperplanes in the same family {Aj,1, . . . , Aj,rj} (see
Notation 3.1 and Theorem 3.2 for the notation).

Definition 3.6. Let X be a finite set of points in (P1)n and let s be an integer
such that 2 ≤ s ≤ n. Then X has the (�s)-property if, for any integer s′ such that
2 ≤ s′ ≤ s, there do not exist two points P,Q ∈ (P1)n with either of the following
properties:

(i) P,Q ∈ X such that the ideal defining YP,Q has exactly s′ minimal genera-
tors of degree 2 and X ∩ YP,Q = {P,Q};

(ii) P,Q /∈ X such that the ideal defining YP,Q has exactly s′ minimal genera-
tors of degree 2 and YP,Q ∩X = YP,Q \ {P,Q}.

Remark 3.7. If P,Q have the property that YP,Q has only one minimal generator of
degree 2, this does not violate the (�s)-property for any s because of the condition
that 2 ≤ s′. Thus a set X with the (�s)-property may have two such points.

Example 3.8. Let X := {Q112, Q121, Q122, Q211, Q212, Q221} be the set of 6 points
in P

1 × P
1 × P

1 where Qijk := {[i : 1], [j : 1], [k : 1]} . One can check that X has
the (�2)-property and it does not have the (�3)-property. Indeed, for instance the
smallest complete intersection containingQ112, Q121 is defined by (A1, B1B2, C1C2),
which contains a third point of X, where for the convenience of the reader we have
denoted Ai := x10 − ix11, Bj := x20 − jx21, and Ck := x30 − kx31. However,
X fails the (�3)-property. Indeed, the smallest complete intersection Y contain-
ing the points Q111, Q222 /∈ X is defined by (A1A2, B1B2, C1C2), and Y ∩ X =
Y \{Q111, Q222} (in this case this is actually equal to X).
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Remark 3.9. It is natural for us, considering the ambient space we are studying,
to define the (�s)-property by using a geometric interpretation. Moreover, we will
describe this property from a combinatorial point of view in Lemmas 3.14 and 3.15.

Remark 3.10. For points in P
1 × P

1, the (�2)-property coincides with the (�)-
property of [10, Definition 3.19] (see also Remark 2.8 above). For points in P

1 ×
P
1 × P

1 we can rewrite Definition 3.6 as follows. Let X be a finite set of points
in P

1 × P
1 × P

1. Then X has the (�3)-property if there is no complete intersection
YP,Q whose intersection with X (after possibly reindexing) has any of the following
three forms:

(a) (b) (c)

If X ⊂ (P1)n satisfies the (�n)-property, then (for example) in particular the be-
havior of type (a), (b), or (c) does not occur.

Corollary 3.11. Let X ⊂ (P1)n be a finite set and assume that X is ACM. Then
X satisfies the (�n)-property.

Proof. We will view X as lying in P
2n−1. We first note that it is enough to prove

that X contains no subset of type (i) in Definition 3.6. Indeed, the fact that X does
not contain a subset of the form (ii) follows from (i) by liaison. To see this, consider
a complete intersection containing X, of the form (

∏
A1,i,

∏
A2,i, . . . ,

∏
An,i). It

links X to a union of (n − 1)-planes X ′ (still viewed in P
2n−1), and X contains

a subset of the form (i) if and only if X ′ contains one of the form (ii). But by
standard facts in liaison theory (cf. [14]), X is ACM if and only if X ′ is ACM, so
we are done.

Thus it remains only to prove that if X is ACM, then it does not contain a subset
of the form given in (i). Suppose to the contrary that such a subset does occur in
X. Then we can selectively remove level sets with respect to different projections,
until we remain only with the non-degenerate set {P,Q} in a suitable copy of (P1)s

for some s ≤ n. By a repeated application of Theorem 3.2, we obtain the assertion
that {P,Q} is ACM in (P1)s. But this is clearly impossible since the ideals of P
and of Q do not share any linear forms, so viewed as subschemes of P2s−1, P and
Q are disjoint, a contradiction. �

Proposition 3.12. Let X ⊂ (P 1)n be a finite set. Choose any of the n projections;
without loss of generality assume that it is π1. Let Y1 = X1 be any level set (after
possibly re-indexing) with respect to this projection and let Y2 = X2 ∪ · · · ∪ Xr be
the union of the remaining level sets, with r ≥ 3. Then X is ACM if and only if
the following conditions hold.

(a) Both Y1 and Y2 are ACM.
(b) IY1

+IY2
is the saturated ideal of a dimension (n−2) union of linear spaces.

(c) The scheme defined by IY1
+ IY2

is ACM of dimension (n− 2).

Proof. In both directions we will use the exact sequence

(3.1) 0 → IY1
∩ IY2

→ IY1
⊕ IY2

→ IY1
+ IY2

→ 0.

Observe that IX = IY1
∩IY2

. Note that two components of X, which are all (n−1)-
planes in P

2n−1, meet in dimension (n− 2) if and only if (n− 1) of their n defining
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multihomogeneous hyperplanes coincide. They meet in lower dimension if and only
if fewer than (n− 1) of their defining multihomogeneous hyperplanes coincide.

Assume first that (a), (b), and (c) hold. Then the ACM property for X comes
immediately from a consideration of cohomology of the long exact sequence coming
from the sheafification of (3.1).

Now assume thatX is ACM. Part (a) is Theorem 3.2. Part (b) is immediate from
the cohomology sequence, since X is ACM, so its first cohomology is zero. Again
considering the long exact sequence in cohomology coming from the sheafification
of (3.1), the fact that X is ACM and both Y1 and Y2 are ACM of dimension (n−1)
immediately gives that the (n−2)-dimensional scheme defined by IY1

+IY2
is ACM,

giving (c). �

Remark 3.13. Let X ⊂ P
1 ×P

1 ×P
1 be a finite set (a priori not necessarily ACM).

Choose any of the 3 projections; without loss of generality assume it is π1. Let
X1, . . . , Xr be the level sets with respect to this projection. If X has the (�3)-
property (so in particularX does not contain any set in configuration (a) in Remark
3.10), then, for each j, Xj is ACM thanks to Corollary 2.9 and Remark 2.8.

Our next goal is to show that X ⊆ (P 1)n is ACM if and only if it has the
(�n)-property. We first make a small modification of the notation introduced at the
beginning of this section. Given u ∈ N

n, we denote by Pu the point whose ideal is
generated by

(A1u1
, A2,u2

, . . . , An,un
).

Define d(v, w) := |{i | vi �= wi}|.

Lemma 3.14. Let X ⊂ (P1)n be a finite set with the (�s)-property, for some
2 ≤ s ≤ n. Moreover, suppose that v, w ∈ N

n are such that d(v, w) = r ≤ s and
Pv, Pw ∈ X. Then there exist u0, . . . ur ∈ N

n such that

• u0 = v, ur = w;
• Pui

∈ X for i = 1, . . . , r;
• d(ui, ui−1) = 1 for i = 1, . . . , r.

Proof. Note that the (�s)-property implies the (�i)-property for i ≤ s by definition.
We proceed by induction on r. If r = 1 the result is trivial, and for r = 2 the
result follows immediately from the (�2)-property. Now take v, w ∈ N

n such that
d(v, w) = r > 2 and Pv, Pw ∈ X. Since X has the (�s)-property, there exists
Pu ∈ X such that uj ∈ {vj , wj}, for each component of u. Then apply the inductive
hypothesis on the vectors v, u and u,w. �

Lemma 3.15. Let X ⊂ (P1)n be a finite set with the (�s)-property. Moreover,
suppose that v, w ∈ N

n are such that d(v, w) = r ≤ s, v1 �= w1, and Pv, Pw ∈ X.
Then there exist a, b ∈ N

n such that

• Pa, Pb ∈ X,
• a1 �= b1,
• d(a, b) = 1,
• ai, bi ∈ {vi, wi} for i = 1, . . . , n.

Proof. It follows from Lemma 3.14. �

Theorem 3.16. Let X ⊂ (P1)n be a finite set. Then X has the (�n)-property if
and only if X is ACM.
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Proof. If X is ACM, then it was shown in Corollary 3.11 that X satisfies the (�n)-
property, so we only have to prove the converse. We proceed by simultaneous
induction on n and on t, the number of level sets with respect to some projection
(say π1). We have already shown the case n = 2, so we can assume n ≥ 3.

If t is equal to 1, the result follows from the inductive hypothesis on n. Let
t > 1 and X = X1 ∪ X2 ∪ · · · ∪ Xt. Let Y1 = X1 be any level set (after possibly
re-indexing) with respect to this projection and let Y2 = X2∪ · · · ∪Xt be the union
of the remaining level sets. Given v ∈ N

n−1, we denote by Lv the line in (P1)n

through P(1,v) whose ideal is generated by (A2v1 , A3,v3 , . . . , An,vn−1
) for some Ai,j .

We assume A1,1 ∈ Re1
is the linear form defining the hyperplane containing

Y1. We denote by Ŷ1 the set of lines Lv passing through a point of Y1, i.e., Ŷ1 =

π−1
1 (π1(X1)). (Viewed in P

2n−1, Ŷ1 is a union of codimension n− 1 linear spaces.)
By induction on n and on t, we know that Y1 and Y2 are ACM. In particular,

this means that Ŷ1 is also ACM. Hence we have an equality of saturated ideals
IY1

= (A1,1) + IŶ1
. Then it follows from the exact sequence

0 → IY1
∩ IY2

→ IY1
⊕ IY2

→ (A1,1) + IŶ1
+ IY2

→ 0

that it is enough to show that IŶ1
+ IY2

is an ACM ideal (clearly of height n) and

A1,1 is a regular form in R/(IŶ1
+ IY2

). We proceed by steps.

(σ1) We show that Ŷ1 ∩ Y2 is an ACM set of points.
By the inductive hypothesis on t, it suffices to show that it has the (�n)-

property. More precisely, we prove that Ŷ1∩Y2 has the (�s)-property for every
s such that 2 ≤ s ≤ n.

• Ŷ1 ∩ Y2 contains no subset of type (i). Let v, w ∈ N
n be such that

d(v, w) = s and Pv, Pw ∈ Ŷ1 ∩ Y2. Note that both points are also in X
but not in Y1. However, by construction, P(1,v2,...,vn), P(1,w2,...,wn) ∈ Y1

(so, in particular, in X).

Assume, by contradiction, that Pv and Pw define a subset of Ŷ1 ∩ Y2 of
type (i), i.e., that no other point in the smallest complete intersection

containing Pv, Pw belongs to Ŷ1 ∩ Y2. Since X has the (�n)-property,
by Lemma 3.14 there exist u0, . . . , us, as in the statement of the lemma,
“joining” Pv to Pw.

By our assumption, in particular Pus−1
is not in Ŷ1 ∩ Y2, but it is in

X. Notice that the “path” from Pv to Pw is obtained by changing one
coordinate at a time from v to w in the shortest possible way. Since
neither v nor w has a 1 as first coordinate, us−1 is not of the form
(1, z2, . . . , zn). Then by applying Lemma 3.15 to the points P(1,v2,...,vn)

and Pus−1
, we get a contradiction by forcing a point of Ŷ1 ∩ Y2 to lie in

the complete intersection.
• Ŷ1 ∩ Y2 contains no subset of type (ii). Indeed, if it did, then this subset
is contained in X, contradicting the (�n)-property of X.

(σ2) We make a technical observation concerning the “outlier” points.
We denote by Y ′

1 the set of points P(1,v) ∈ Y1 (where now v ∈ N
n−1) such that

the line Lv has empty intersection with Y2, and we denote by Y ′
2 := Y2 \ (Ŷ1 ∩ Y2).

Let F ∈ IŶ1∩Y2
and assume that F is a product of linear forms of type Ai,j . Taking
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the ideal of the empty set to be R, we claim that

F ∈ (IY ′
2
) ∪ (IY ′

1
).

We assume that both Y ′
1 and Y ′

2 are non-empty; otherwise the statement is triv-
ial. Assume by contradiction that F /∈ (IY ′

2
) ∪ (IY ′

1
). Then there exist P :=

P(1,u) ∈ Y ′
1 and Q := P(2,v) ∈ Y ′

2 such that F /∈ (A1,1, A2,u1
, . . . , An,un−1

) and
F /∈ (A1,2, A2,v1 , . . . , An,vn−1

). Now, P(1,u) ∈ Y ′
1 implies P(2,u) /∈ Y2; moreover,

since P(2,v) ∈ Y ′
2 we have P(1,v) /∈ Y1. But X has the (�n)-property, so by Lemma

3.15 there exist w ∈ N
n−1 such that P(1,w), P(2,w) ∈ X. Thus P(2,w) ∈ Ŷ1 ∩ Y2.

Since, for any index i, wi ∈ {ui, vi} and F ∈ (A1,2, A2,w1
, . . . , An,wn−1

) is a prod-
uct of linear forms Ai,j we get either F ∈ IP or F ∈ IQ, which contradicts the
assumption.

(σ3) We show that IŶ1∩Y2
⊆ IŶ1

+ IY2
.

From (σ1) we know that Ŷ1 ∩ Y2 is ACM, so IŶ1∩Y2
is minimally generated by

products of linear forms of type Ai,j (by Corollary 3.4). Let F ∈ IŶ1∩Y2
be such a

generator. From the minimality of F we note that F /∈ (A1,1). From (σ2) we have
F ∈ IY ′

1
∪ IY ′

2
.

Assume first that F ∈ IY ′
2
. Then trivially F ∈ IY2

⊆ IŶ1
+ IY2

.

Assume now that F /∈ IY ′
2
; in particular, there exists a point, say P(2,u) ∈ Y ′

2 ,
such that F /∈ (A1,2, A2,u1

, . . . , An,un−1
). We collect the relevant facts:

(f1) P(1,u) /∈ Y1 by definition of Y ′
2 ;

(f2) F ∈ IY ′
1
by (σ2);

(f3) F ∈ IŶ1∩Y2
, F /∈ (A1,2, A2,u1

, . . . , An,un−1
), and F /∈ (A1,1).

We want to show that F ∈ IŶ1
. Choose any point P := P(1,v) ∈ Y1. We consider

two cases.

• If P = P(1,v) ∈ Y ′
1 , then from (f2) and (f3) we get F ∈ (A1,1, A2,v1 , . . .,

An,vn−1
) so F ∈ (A2,v1 , . . . , An,vn−1

) since F /∈ (A1,1) and F is a product
of linear forms of type Ai,j .

• Assume P = P(1,v) ∈ Y1 \ Y ′
1 .

- We first use the (�n)-property of X. We have P(1,v), P(2,u) ∈ X, but
P(1,u) /∈ X by definition of Y ′

2 . It follows by Lemma 3.15 applied to the

points P(1,v) and P(2,u) of X that there is some point P(2,z) ∈ Ŷ1 ∩ Y2

with zh ∈ {uh, vh} (here we have used P(1,u) /∈ X). Importantly, since
P /∈ Y ′

1 , at least one of the coordinates zh must be vh.
- Now we have: F vanishes at P(2,z), F does not vanish at P(2,u), and
the components of z are all from v or u. Therefore, since u �= z and F
is a product of linear forms of the form Ai,j , at least one linear factor
of F comes from v. Therefore F ∈ IŶ1

as desired.

This concludes the proof of (σ3).
To complete the proof of our theorem, note that in R we always have

IŶ1∩Y2
⊇

√
IŶ1

+ IY2
⊇ IŶ1

+ IY2
.

Thus, IŶ1
+ IY2

is the ideal of an ACM set of reduced points in (P1)n, as desired.

Moreover, this implies that A1,1 is a regular form in R/(IŶ1
+ IY2

) since no point

of Ŷ1 ∩ Y2 belongs to the hyperplane defined by A1,1. �
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