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HASSE PRINCIPLE VIOLATIONS FOR ATKIN-LEHNER

TWISTS OF SHIMURA CURVES

PETE L. CLARK AND JAMES STANKEWICZ

(Communicated by Romyar T. Sharifi)

Abstract. Let D > 546 be the discriminant of an indefinite rational quater-
nion algebra. We show that there are infinitely many imaginary quadratic fields
l/Q such that the twist of the Shimura curve XD by the main Atkin-Lehner
involution wD and l/Q violates the Hasse Principle over Q. More precisely, the
number of squarefree d with |d| ≤ X such that the quadratic twist of (XD , wD)

by Q(
√
d) violates the Hasse Principle is � X/ logαD X and � X/ logβD X

for explicitly given 0 < βD < αD < 1 such that αD − βD → 0 as D → ∞.

1. Introduction

1.1. The Main Theorem. First we fix some notation and terminology. Through-
out, we will let � and �ε denote the classical Vinogradov notation. For N ∈ Z+,
let ω(N) be the number of distinct prime factors of N , and let hN be the class
number of the imaginary quadratic field Q(

√
−N). For a number field k, we denote

by Ak the adele ring of k.
Let l/k be a quadratic field extension, let X/k be a curve, and let ι/k be an

involution of X, both defined over Spec(k). If Y/k is also a curve, we say X ∼=l Y
if there is an isomorphism of base changed curves Xl

∼= Yl. Equivalently, Y is a
quadratic twist of X. We denote by T (X, ι, l/k) the quadratic twist of X by ι and
the quadratic extension l/k. We view X/k itself as the “trivial quadratic twist” of
X/k corresponding to the “trivial quadratic extension k/k”. We denote by X/ι the
quotient under the action of the group {1, ι}.

LetD > 1 be a squarefree integer which is a product of an even number of primes.
Let B/Q be the (unique, up to isomorphism) nonsplit indefinite quaternion algebra
with reduced discriminant D. Let XD

/Q be the associated Shimura curve, and let

wD be the main Atkin-Lehner involution of XD
/Q (see, e.g., [Cl03, §0.3.1]).

We can now state our main result.

Main Theorem. Suppose that the genus of XD/wD is at least 2.1 Then:
a) Infinitely many quadratic twists of (XD, wD) violate the Hasse Principle.
More precisely:
• Let D = D

gcd(D,2) .

• Let eD = ω(D) + 2.
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• Let HD = {squarefree d ∈ Z | T (XD, wD,Q(
√
d)/Q) violates the Hasse Prin-

ciple}, and for X ≥ 1, let HD(X) = #HD ∩ [−X,X]. Then:

b) We have HD(X) � X

log1− 2−eD
(X)

.

c) We have HD(X) = O

⎛
⎝ X

log1− 2−eD − (2hD)−1
(X)

⎞
⎠ = O

(
X

log5/8(X)

)
.

1.2. Background and related work. It is a fundamental problem to find va-
rieties2 V defined over a number field k which violate the Hasse Principle – i.e.,
V (k) = ∅, while for every completion kv of k we have V (kv) 	= ∅ (equivalently,
V (Ak) 	= ∅). It is also desirable to understand when these violations are explained
by the Brauer-Manin obstruction, as is conjectured to hold whenever V is a curve
[Po06, Conjecture 5.1]. There is a large literature on Hasse Principle violations for
curves V/k. Most examples are sporadic in nature: they apply to one curve at a
time. A result of Poonen [Po10] gives an algorithm which takes as input a number
field and outputs a curve V/k which violates the Hasse Principle.

Recently Bhargava, Gross, and Wang have shown that when genus g ≥ 1 hyper-
elliptic curves over Q are ordered by height, a positive proportion violate the Hasse
Principle and this violation is explained by Brauer-Manin [BGW, Thm. 1.1].

Past work of the first author [Cl08, Thm. 2] and [Cl, Thm. 1] gives two versions
of a Twist Anti-Hasse Principle (TAHP). Each gives hypotheses for a curve
over a number field X/k endowed with a k-rational involution ι : X → X to have
infinitely many quadratic field extensions l/k such that T (X, ι, l/k) violates the
Hasse Principle. One of the hypotheses of TAHP is that (X/ι)(k) is finite, so ι
cannot be a hyperelliptic involution, though the curve X may still be hyperelliptic.
TAHP was used to show a refinement of Poonen’s result: for every number field k
and every g ≥ 2 there is a bielliptic3 curve V/k of genus g which violates the Hasse
Principle [Cl, Main Theorem 2].

TAHP also applies to certain families of modular curves. In [Cl08, Thm. 1]
it was shown that for all squarefree N > 163, there are infinitely many primes
p ≡ 1 (mod 4) such that T (X0(N), wN ,Q(

√
p)/Q) violates the Hasse Principle. In

fact this application came first, and TAHP arose by abstracting the properties of
(X0(N), wN ) that were used in the proof. Note also that this gives a sequence of
Hasse Principle violations in which the gonality tends to infinity. This work, along
with the work of this paper, therefore adds to a growing body of literature relating
the gonality of algebraic curves to their arithmetic.

Atkin-Lehner twists of modular curves arise naturally in terms of moduli spaces
of elliptic Q-curves.4 Let N ∈ Z+ be squarefree. Ellenberg called for a study of
local and global points on T (X0(N), wN ,Q(

√
d)/Q) in [El04] and asked in partic-

ular [El04, Problem A] when these curves have adelic points. Thus [Cl08, Thm. 1]
addresses many cases of Ellenberg’s Problem A. A more penetrating and systematic
analysis was given by Ozman [Oz12]. Ozman only considers twists by quadratic
fields l such that no prime ramifies in both l and Q(

√
−N): let us call these co-

prime twists. For any such coprime twist and each prime number p, Ozman

2All curves and varieties will be assumed to be smooth, projective, and geometrically integral.
3Every curve of genus 2 is hyperelliptic and no bielliptic curve of genus g ≥ 4 is hyperelliptic.
4Technically, the moduli space in question is the quotient of X0(N) by a group of Atkin-Lehner

involutions. The connection between the two will appear in §2.
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gives necessary and sufficient conditions for T (X0(N), wN ,Q(
√
d)/Q)(Qp) 	= ∅.

Combining her analysis with TAHP, she obtained the following result.

Theorem 1 (Ozman [Oz12, Thm. 5.4]). Let N > 131 be a prime that is 1 mod 4.

Let G be the ideal class group of Q(
√
−N), and let α = #{g2|g∈G}+1

2#G . There

is a positive constant CN then such that the number of coprime twists
T (X0(N), wN ,Q(

√
d)/Q) with |d| ≤ X violating the Hasse Principle is

CN
X

log1−α(X)
+O

(
X

log2−α(X)

)
.

The family of classical modular curves X0(N)/Q is naturally viewed as the D = 1

case of the family of Shimura curves XD
0 (N)/Q. A systematic analysis of local

points on Atkin-Lehner twists of these curves was given by the second author: for
any Atkin-Lehner involution wm of XD

0 (N) and any quadratic field Q(
√
d)/Q with

discriminant prime to 2DN (coprime twists) and all prime numbers p, [St14]

gives necessary and sufficient conditions for T (XD
0 (N), wm,Q(

√
d)/Q)(Qp) 	= ∅.

The Main Theorem of the present work is thus roughly an analogue of Theorem
1 for the pair (XD, wD). Let us call attention to some differences between the
results and some new difficulties arising in the Shimura curve case.

• We get local results for all D > 1 and global results for all but finitely many
D.

• Our Main Theorem concerns all quadratic twists, not just coprime twists.
• In the versions of TAHP of [Cl08], [Cl], one of the hypotheses on (X, ι)/k is

that X(Ak) 	= ∅. However, for all D > 1 we have XD(R) = ∅.
• In the case of (X0(N), wN ) the local conditions for a coprime twist by l to

have adelic points require every prime divisor of the discriminant of l to lie in a
certain Chebotarev set. For such sets, the asymptotic count is a result of Serre
[Se76, Thm. 2.8]. However, when D > 1 even before twisting, XD need not have
p-adic points at primes p � D, and the conditions for this are given as a finite sum
coming from the Eichler-Selberg trace formula. So we cannot just apply [Se76, Thm.
2.8]. For each D and coprime d, we can determine with finite calculation whether

T (XD, wD,Q(
√
d)/Q)(AQ) 	= ∅, but this does not allow us to handle all d’s at

once.
Let us say a bit about how these difficulties will be overcome. First, we give in

§2 a third version of TAHP, Theorem 3, which weakens the hypothesis X(Ak) 	= ∅
to the existence of one quadratic extension l0/k such that T (X, ι, l0/k)(Ak) 	= ∅.
To apply Theorem 3 to (XD, wD), we must find quadratic twists with adelic points.
By TAHP, the existence of one such twist establishes part a). In §3 we produce an
explicit family of such twists, based on a set SD of primes defined by congruence
conditions as in [St14]. For d ∈ ηD, all its prime factors must lie in SD, but
furthermore d must satisfy its own congruence conditions, parity conditions, and
positivity conditions. It is nonetheless possible to modify Serre’s methods to give
asymptotics for ηD. We do so in §4. The full set of discriminants which give Hasse
Principle violations is not quite so explicit as to be given by congruence conditions,
but the unmodified method of Serre still works to give an upper bound. It turns
out that the coprimality condition does not affect the asymptotics.5

5Similar considerations show that in Theorem 1, the word “coprime” can be omitted, with the
effect of changing only the constant CN .
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Because of the above difficulties, the upper and lower bounds on HD(X) obtained
in the Main Theorem have different exponents in the logarithm: the discrepancy is
1

2hD
. Since the class number of an imaginary quadratic field tends to infinity with

the absolute value of the discriminant [Co89, §7.D], the discrepancy goes to 0 as D
increases.

Example 2. Let � be an odd prime, and let D = 2�. For all ε > 0, there is
L = L(ε) such that for all � > L we have

X/ log7/8(X) � H2�(X) �ε X/ log7/8−ε(X).

1.3. Structure of the paper. In §2 we prove Theorem 3 and recall results on
Shimura curves needed in its application. We give the proof of part a) of the Main
Theorem in §3. In §4 we state and prove a moderately sharpened version of parts
b) and c) of the Main Theorem. In §5 we discuss relations between our results
and Hasse Principle violations over quadratic extensions, both in general and with
particular attention to XD

/Q.

2. Preliminaries

2.1. Another Twist Anti-Hasse Principle.

Theorem 3 (Twist Anti-Hasse Principle, v. III). Let k be a number field. Let
X/k be a smooth, projective, geometrically integral curve, and let ι : X → X be a
k-rational involution. We suppose

(i) We have {P ∈ X(k) | ι(P ) = P} = ∅.
(ii) We have {P ∈ X(k) | ι(P ) = P} 	= ∅.
(iii) We have T (X, ι, l0/k)(Ak) 	= ∅ for some quadratic extension l0/k.
(iv) The set (X/ι)(k) is finite.

Then
a) The twisted curve T (X, ι, l/k)/k has no k-rational points for all but finitely

many quadratic extensions l/k.
b) There are infinitely many quadratic extensions l/k such that the twisted curve

T (X, ι, l/k) violates the Hasse Principle over k.
c) When k = Q, as B → ∞, the number of squarefree integers d with |d| ≤ B

such that T (X, ι,Q(
√
d)/Q) violates the Hasse Principle is � B

logB .

Proof. Let l/k be a quadratic extension, and put Y = T (X, ι, l/k). Then ι defines
a k-rational involution on Y : indeed, Y/l

∼= X/l, and if σ is the nontrivial field
automorphism of l/k, then σ acts on Y (l) = X(l) by σ∗P = ι(σ(P )), so for all
P ∈ Y (A) and for all k-algebras A we have

σ∗ι(σ∗)−1 = ι(σισ−1)ι−1 = ιιι−1 = ι.

The curve Y/ι is canonically isomorphic to X/ι. Thus for each quadratic extension
l/k – including the trivial quadratic extension k/k – there is a map

ψl : T (X, ι, l/k)(k) → (X/ι)(k).

We have

(1) (X/ι)(k) =
⋃
l/k

ψl(T (X, ι, l/k))(l).
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Indeed, if P ∈ (X/ι)(k) and q : X → X/ι is the quotient map, then q∗(P ) =
[Q1] + [Q2] is an effective k-rational divisor of degree 2. If Q1 = Q2, then Q1 is a
k-rational ι-fixed point. In this case Q1 is also a k-rational point of T (X, ι, l/k) for
all quadratic extensions l/k. Otherwise, Q1 	= Q2 = ι(Q1), and the Galois action
on {Q1, Q2} determines a unique quadratic extension l/k (possibly the trivial one)
such that Q1, Q2 ∈ T (X, ι, l/k). This shows (1) and also shows that under our
hypothesis (i) the union in (1) is disjoint.

a) For this part we need only assume hypotheses (i) and (iv). Let (X/ι)(k) =
{P1, . . . , Pn}. By hypothesis (i), each Pi is either of the form ψk(Q) for Q ∈ X(k)
or ψ�i(Q) for a unique quadratic extension li/k. Thus there are at most n quadratic
extensions l/k such that T (X, ι, l/k)(k) 	= ∅.

b) If we replace (iii) by the hypothesis (iii′) X(Ak) 	= ∅, then we get (a slightly
simplified statement of) [Cl, Thm. 1]. Suppose now that X(Ak) = ∅ but for
some nontrivial quadratic extension l0/k we have T (X, ι, l0/k)(Ak) 	= ∅. Put
Y = T (X, ι, l0/k). The canonical bijection X(k) → Y (k) induces bijections on the
sets of ι-fixed points and of k-rational ι-fixed points, so conditions (i) and (ii) hold
for Y . By our assumption, hypothesis (iii′) holds for Y . And as above we have
a canonical isomorphism (X/ι) → (Y/ι). So we may apply [Cl, Thm. 1] to Y in
place of X, getting the conclusion that infinitely many quadratic twists of (Y, ι) –
equivalently, of (X, ι) – violate the Hasse Principle over k.

c) Similarly, if k = Q and we replace (iii) by (iii′)X(AQ) 	= ∅, then we may apply
[Cl08, Thm. 2] to get that the set of prime numbers p such that T (X, ι,Q(

√
p)/Q)

violates the Hasse Principle has positive density, and thus that the number of
quadratic twists by squarefree d with |d| ≤ B is � B

logB , the number of primes up

to B. This conclusion applies to some quadratic twist Y = T (X, ι,Q(
√
d0)/Q) and

thus it also applies (with a different value of the suppressed constant) to X. �

2.2. Results on Shimura curves.

Theorem 4. If XD
/Q is the Shimura curve associated to an indefinite rational

quaternion algebra of reduced discriminant D and wD is the main Atkin-Lehner
involution, then the following hold:

a) (Shimura [Sh75]) We have XD(R) = ∅.
b) (Clark [Cl03, Main Theorem 2]) We have (XD/wD)(AQ) 	= ∅.

Corollary 5. Let d ∈ Q× \ Q×2, and let Yd = T (XD, wD,Q(
√
d)/Q). Then

Yd(R) = ∅ ⇐⇒ d > 0.

Proof. If d > 0, then Yd
∼=R XD, so Yd(R) = ∅ by Theorem 4a). By Theorem 4b),

there is P ∈ (XD/wD)(R). Let q : XD → XD/wD be the quotient map, defined
over R. Because XD(R) = ∅, the fiber of q consists of a pair of C-conjugate
C-valued points, say Q and Q = ι(Q). Thus Q = ι(Q), so Q ∈ Yd(R). �

Recall that for d ∈ Z<0, there is an order O of discriminant d in a quadratic field
iff d ≡ 0, 1 (mod 4). If d ≡ 2, 3 (mod 4) we put h′(d) = 0. If d ≡ 0, 1 (mod 4) we
define h′(d) = #PicO, the class number of the quadratic order O of discriminant
d.

Lemma 6. Let D > 1 be the discriminant of an indefinite quaternion algebra B/Q.

a) The set {P ∈ XD(Q) | wD(P ) = P} is empty.
b) We have #{P ∈ XD(Q) | wD(P ) = P} = h′(−D) + h′(−4D) > 0.
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c) The genus of XD is

(2) gD := 1 +
ϕ(D)

12
−

∏
p|D

(
1−

(
−4
p

))
4

−
∏

p|D

(
1−

(
−3
p

))
3

.

d) The genus of XD/wD is

(3) 1 +
ϕ(D)

24
−

∏
p|D

(
1−

(
−4
p

))
8

−
∏

p|D

(
1−

(
−3
p

))
6

− h′(−D) + h′(−4D)

4
.

Proof. a) This is immediate from Theorem 4a). b), c), d). See, e.g., [Cl03, §0.3.1].
�

Lemma 7.
a) If D ∈ {6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 62, 69, 74, 86, 87, 94,

95, 111, 119, 134, 146, 159, 194, 206}, then XD/wD
∼=Q P1.

b) If D ∈ {57, 58, 65, 77, 82, 106, 118, 122, 129, 143, 166, 210, 215, 314, 330, 390,
510, 546}, then XD/wD is an elliptic curve of positive rank.

c) For all other D – in particular, for all D > 546 – the set (XD/wD)(Q) is
finite.

Proof. Using (3), one sees that XD/wD has genus 0 iff D is one of the discriminants
listed in part a) and that XD/wD has genus 1 iff D is one of the discriminants listed
in part b). Thus for all other D, XD/wD has genus at least 2 and (XD/wD)(Q)
is finite by Faltings’ Theorem, establishing part c). By Theorem 4b) the curve
(XD/wD)/Q has points everywhere locally, so when it has genus 0 it is isomorphic

to P1, establishing part a). The case in which XD/wD has genus 1 is handled by
work of Rotger. In every case he shows that there is a class number one imaginary
quadratic field K and a point corresponding to an abelian surface isogenous to the
product of two elliptic curves with CM by ZK (a ZK-CM point) on XD. This
induces a Q-rational point on XD/wD, so XD/wD is an elliptic curve. Moreover,
Rotger identifies XD/wD with a modular elliptic curve in Cremona’s tables – see
[Ro02, Table III]. All of these elliptic curves have rank one.6 This establishes part
a). �

3. Proof of the Main Theorem, part a)

Let D be the discriminant of a nonsplit indefinite rational quaternion algebra.
Assume moreover that D does not appear in Lemma 7 a) or b); in particular, this
holds for all D > 546. We will prove the Main Theorem by verifying that the pair
(XD, wD) satisfies the hypotheses of Theorem 3: then by Theorem 3c), the number
of quadratic twists by d with d ≤ |X| which violate the Hasse Principle is � X

logX .

Parts a) and b) of Lemma 6 show that conditions (i) and (ii) hold, and part c)
of Lemma 7 shows that condition (iv) holds. For d ∈ Q×/Q×2, put

Yd = T (XD, wD,Q(
√
d)/Q).

By Corollary 5, Yd(R) 	= ∅ ⇐⇒ d < 0. Henceforth we assume that d < 0.

Recall that gD is the genus of XD, and put D =

{
D 2 � D,
D
2 2 | D.

6This is not a coincidence. By Atkin-Lehner theory and the Jacquet-Langlands correspondence,
every elliptic curve which is a Q-isogeny factor of the Jacobian of XD has odd analytic rank.
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For n ∈ Z+, let ω(n) be the number of distinct prime divisors of n. Put

(4) eD = ω(D) + 2.

Let SD be the set of prime numbers � satisfying:
(a) � ≡ 3 (mod 8) and

(b) for all primes q | D we have
(

−�
q

)
= −1.

Let ηD be the set of all negative integers d such that:
(c) −d =

∏2r−1
i=1 �i is the product of an odd number of distinct primes �i ∈ SD

and

(d) for all primes p ∈ (2, 4g2] such that p � D, we have
(

d
p

)
= −1.

The set ηD is infinite: indeed, by the Chinese Remainder Theorem and Dirichlet’s
Theorem it contains infinitely many elements d = −� with � ∈ SD. Moreover:

(e) For d ∈ ηD we have d ≡ 5 (mod 8) and thus 2 is inert in Q(
√
d).

(f) For � ∈ SD we have
(−D

�

)
= −1. To see this, first suppose 2 � D, so

D =
∏2a

i=1 qi with q1, . . . , q2a distinct odd primes. Then

(5)

(
−D

�

)
=

(
−1

�

) 2a∏
i=1

(qi
�

)
= −

2a∏
i=1

(
−�

qi

)
= −

2a∏
i=1

−1 = −1.

Now suppose 2 | D, so D = 2
∏2a−1

i=1 qi with q1, . . . , q2a−1 distinct odd primes. Then(
−D

�

)
=

(
−1

�

)(
2

�

) 2a−1∏
i=1

(qi
�

)
= (−1)(−1)

2a−1∏
i=1

(
−�

qi

)
= (−1)2a−1 = −1.

We claim that for all d ∈ ηD we have Yd(AQ) 	= ∅. Indeed:
• As above, since d < 0 we have Yd(R) 	= ∅.
• By [St14, Thm. 4.1.3] and [St14, Thm. 4.1.5], we have Yd(Qp) 	= ∅ for all

p | d.
• Since 2 is inert in Q(

√
d), we have Yd(Q2) 	= ∅ by either [St14, Thm. 5.1] in

the case where 2 | D or [St14, Cor 3.17] when 2 � D.

• If p | D, then p is inert in Q(
√
d), so by [St14, Cor. 5.2] we have Yd(Qp) 	= ∅.

• If p � Dd and p > 4g2, then by [St14, Thm. 3.1] we have Yd(Qp) 	= ∅.

• If p � D and p ∈ (2, 4g2], then p is inert in Q(
√
d), so by [St14, Cor. 3.17] we

have Yd(Qp) 	= ∅. Note that by (d), if p < 4g2, then p � d.

4. Proof of the Main Theorem, parts b) and c)

4.1. Restating the theorem. Let the set of “adelic discriminants” be

AD = {squarefree d ∈ Z | T (XD, wD,Q(
√
d)/Q)(AQ) 	= ∅}.

For X ≥ 1, put

SD(X) = SD ∩ [1, X],

ηD(X) = #ηD ∩ [−X,−1],

AD(X) = #AD ∩ [−X,X] = #AD ∩ [−X,−1].

For an imaginary quadratic discriminant Δ, let HΔ(X) be the Hilbert class poly-
nomial [Co89, p. 285].
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Theorem 8. Fix D > 1 an indefinite quaternionic discriminant. Then
a) Suppose D /∈ E := {6, 10, 14, 15, 21, 22, 33, 34, 38, 46, 58, 82, 94}. Then there is

a positive constant cD such that as X → ∞ we have

(6) ηD(X) = cD
X

log(1− 2−eD)X
+O

(
X

log(2− 2−eD)X

)
.

b) Let hD be the class number of the field Q(
√
−D). As X → ∞ we have

(7) AD(X) = O

(
X

log(1− 2−eD − (2hD)−1)X

)
= O

(
X

log5/8(X)

)
.

Suppose XD/wD has genus at least 2. Then D /∈ E by Lemma 7. Moreover,
only finitely many quadratic twists of (XD, wD) have Q-points, so

AD(X) = HD(X) +O(1).

Since ηD ⊂ AD, this gives

HD(X) ≥ ηD(X) +O(1),

and thus (6) implies part b) of the Main Theorem. Since HD ⊂ AD, (7) implies
part c) of the Main Theorem.

Thus Theorem 8 is a moderately sharpened form of parts b) and c) of the Main
Theorem. The remainder of the section is devoted to its proof.

4.2. A preliminary lemma.

Lemma 9. If D 	∈ E , then for all prime numbers p | D, we have p < 4g2D.

Proof. It is an easy consequence of Lemma 6c) that

4g2D ≥ 1

36
(12 + ϕ(D)− 7 · 2ω(D))2.

So to get p < 4g2D it will suffice to show that

(8) ∀p | D, 6
√
p < 12 + ϕ(D)− 7 · 2ω(D).

Case 1. Suppose ω(D) = 2, so D = pq for prime numbers p < q. For all q > 66,

12 + ϕ(D)− 7 · 2ω(D) = (p− 1)(q − 1)− 16 ≥ q − 17 > 6
√
q > 6

√
p,

so (8) holds. Using the genus formula we test all discriminants D = pq with q ≤ 66;
the ones for which q ≥ 4g2D are precisely the set E .
Case 2. Suppose ω(D) ≥ 4. Put β(D) =

∏
p|D

p−1
2 .

Let us first suppose that β(D) > 49. Then, since y−1
2 ≥ y

4 for all y ≥ 2, we have

β(D)− 7 ≥ 6
√
β(D) ≥ 6

√∏
p|D

p

4

and thus for all p | D we have

12 + ϕ(D)− 7 · 2ω(D) > ϕ(D)− 7 · 2ω(D) ≥ 6
√
D ≥ 6

√
p.

If ω(D) ≥ 4 and β(D) ≤ 49, then D = p1p2p3p4 for primes p1 < p2 < p3 < p4 <
101. Using the genus formula we find that p4 < 4g2D in all cases. �

Thus for D /∈ E , ηD is the set of squarefree negative d ∈ Z with an odd number
of prime divisors all in SD such that all primes less than 4g2D are inert in Q(

√
d).
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4.3. Proof of Theorem 8a). Suppose D /∈ E . Let I be the product of the primes
less than 4g2D that do not divide 2D. Let {ui} ⊂ {1, . . . , I} be the subset of integers

such that
(ui

�

)
= −1 for all � | I. Let {vj} ⊂ {1, . . . , 8D} be the subset of integers

such that vj ≡ 3 mod 8 and for all q | D odd,

(
vj
q

)
= −1. The size of {vj} is

ϕ(8D)

2eD
. Let μ be the Möbius function, let bn be the multiplicative function such

that for any power of a prime p,

bpm =

{
1, p ≡ vj mod 8D for some j,

0 else.

We let

an = bn

(
1

ϕ(I)

∑
χ

∑
i

χ(−ui)χ(n)

)(
μ2(n)− μ(n)

2

)
,

where χ runs over the mod I Dirichlet characters.
Here an = 1 if and only if −n ≡ ui mod I for some i, n (and thus −n) is square-

free with an odd number of prime factors, and each prime dividing n is congruent
to some vj . That is, an is the indicator function for −ηD.

Consider the function f(s) =
∑

n ann
−s, holomorphic on �(s) > 1. Note that

the an are not necessarily multiplicative. We however reduce to this case as we
write the Dirichlet series fk,χ(s) =

∑
n≥0 bnμ

k(n)χ(n)n−s, again converging in the

half-plane �(s) > 1. We therefore have

f(s) =
1

2ϕ(I)

∑
χ

((∑
i

χ(−ui)

)
(f2,χ(s)− f1,χ(s))

)
.

We begin by showing that with the exception of (k, χ) = (2,1), these are in fact
holomorphic in the region �(s) ≥ 1.

Consider

log(fk,χ(s)) =
∑
p

log(
∑
m≥0

bpmμk(pm)χ(pm)p−ms)

=
∑
p

log(1 + bp(−1)kχ(p)p−s)

= (−1)k
∑
p

bpχ(p)

ps
+ βk,χ(s),

where βk,χ(s) is holomorphic on �(s) > 1/2.
Now use the fact that

bp =
1

ϕ(8D)

∑
ψ mod 8D

∑
j

ψ(vj)ψ(p).

Therefore

log(fk,χ(s)) = (−1)k
1

ϕ(8D)

∑
ψ

∑
j

ψ(vj) log(L(s, χψ)) + ρk,χ(s),

where ρk,χ is holomorphic for �(s) > 1/2.



2848 PETE L. CLARK AND JAMES STANKEWICZ

It follows that zero-free regions for L-functions of Dirichlet characters give zero-
free regions for the fj,χ and thus holomorphic regions for f . In particular, if ε is a
Dirichlet character and δε = 1 for ε = 1 (the trivial character) and zero otherwise,
then there are positive numbers Aε, Bε such that log(L(s, ε))− δε log(1/(s− 1)) is

holomorphic on �(s) ≥ 1−Bε/ log
Aε(2 + |�(s)|) [Se76, Prop. 1.7].

Now we note that since (I, 8D) = 1, χψ = 1 if and only if χ = 1 and ψ = 1.
Therefore by exponentiating, we find a holomorphic, nonzero function gk,χ on the
same region in C such that

fk,χ(s) =

(
1

s− 1

)δχ(−1)k/2eD

gk,χ(s).

Thus there is a function g holomorphic on the intersection of the Aε, Bε regions

such that f(s) =

(
1

s− 1

)2−eD

g(s). Finally, we may apply the method of Serre

and Watson [Se76, Thm. 2.8] to get our asymptotic for
∑

n≤X an = #ηD(X).

4.4. Proof of Theorem 8b). We define a set S ′
D of primes, as follows:

• If D 	≡ 3 (mod 4), then � ∈ S ′
D iff

(−D
�

)
= 1 and H−4D(X) has a root modulo

�.
• If D ≡ 3 (mod 4), then � ∈ S ′

D iff
(−D

�

)
= 1 and at least one of H−D(X) and

H−4D(X) has a root modulo �.
By (5) the sets SD and S ′

D are disjoint. Moreover, by [St14, Thm. 4.1], if
d ∈ AD, then for all primes p | d we have

p ∈ CD := SD ∪ S ′
D ∪ {prime divisors of 2D}.

Step 1. We show that S ′
D is a Chebotarev set of density 1

2hD
.

For any imaginary quadratic discriminant Δ < 0, the field

KΔ = Q(
√
−Δ)[X]/(HΔ(X))

is the ring class field of discriminant Δ. This field is Galois over Q of degree twice
the class number of the imaginary quadratic order of discriminant Δ.

• Suppose D 	≡ 3 (mod 4). Then up to a finite set, S ′
D is the set of primes which

split completely in K−4D, which in this case is the Hilbert class field of Q(
√
−D).

Thus S ′
D is Chebotarev of density 1

2hD
.

• Suppose D ≡ 3 (mod 4). Then K−D is the Hilbert class field of Q(
√
−D).

The ring class field K−4D contains K−D, so the set of primes splitting completely
in K−D or in K−4D is the same as the set of primes splitting completely in K−D.
Thus again S ′

D is Chebotarev of density 1
2hD

.

Step 2. Since SD is a Chebotarev set of density 1
2eD defining a set of conjugacy

classes for KΔ/Q, and since S ′
D is a disjoint Chebotarev set of primes defined in

terms of KΔ, and only finitely many primes divide 2D, it follows that CD is a
Chebotarev set7 of density

δD =
1

2eD
+

1

2hD
.

7If there were different implied Galois extensions for SD and S′
D, CD would have the same

density. On the other hand it might only be regular in the sense of Delange because the Frobenii
of the primes might not be closed under conjugation in the Galois group of the compositum. In
any case our results here would be unchanged [Se76, Thm 2.4].
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Let A′
D be the set of n ∈ Z+ with all prime divisors lying in CD, and for X ≥ 1,

put A′
D(X) = A′

D ∩ [1, X]. By [Se76, Thm. 2.8] we have that as X → ∞,

A
′
D(X) = O

(
X

log1−δD X

)
.

Since −AD ⊂ A′
D, we get

AD(X) = O

(
X

log1−δD X

)
.

Step 3. By the genus theory of binary quadratic forms [Co89, Prop. 3.11], hD is

even. Since eD = ω(D) + 2 ≥ 3, we get δD ≤ 3
8 , so AD(X) = O

(
X

log5/8 X

)
.

5. Final remarks

Suppose we want to find Hasse Principle violations for XD over a number field
k. Since XD(R) = ∅, such a k cannot have a real place, and thus the case of an
imaginary quadratic field is in a certain sense minimal. Here is such a result.

Theorem 10 (Clark [Cl09, Thm. 1]). If D > 546, then there are infinitely many
quadratic fields l/Q such that XD

/l violates the Hasse Principle.

The global input of Theorem 10 is a result of Harris-Silverman [HS91, Cor. 3]: if
X/k is a curve, then X has infinitely many quadratic points iff X admits a degree 2

k-morphism to P1 or to an elliptic curve of positive rank.8 In [Ro02], Rotger shows
that the Shimura curves XD with infinitely many quadratic points are precisely
those in which XD/wD is P1 or an elliptic curve, i.e., the values of D recorded in
parts a) and b) of Lemma 7. Thus under the hypotheses of the Main Theorem, for
all but finitely many quadratic fields l such that T (XD, wD, l/Q) violate the Hasse
Principle over Q, also XD

/l violates the Hasse Principle: we recover Theorem 10.

Assuming the hypotheses both of Harris-Silverman and of Theorem 3, X(k) = ∅
implies that there are infinitely many quadratic extensions l/k such thatX/l violates
the Hasse Principle. However, this was already known. Consider the following.

Theorem 11 (Clark [Cl09, Thm. 7]). . Let X/k be a curve over a number field.
Assume

(i) We have X(k) = ∅.
(ii) There is no degree 2 morphism from X to P1 or to an elliptic curve E/k

with positive rank.
(iii) For every place v, the curve X/Kv

over the completion Kv of K at v has a
closed point of degree at most 2.

Then there are infinitely many quadratic extensions l/k such that X/l

violates the Hasse Principle.

As in [Cl09], for a curve X over a field k, we denote by m(X) the least degree
of a closed point on X. For a curve X defined over a number field k, we put

mloc(X) = lcmm(X/Kv
),

8Harris-Silverman state their result under the hypothesis that X admits no degree 2 morphism
to P1 or to a curve of genus 1. Their argument immediately gives the stronger result, as has been
noted by several authors, e.g., [Ro02, Thm. 8]. Note that the result relies on an extraordinarily
deep theorem of Faltings classifying k-rational points on subvarieties of abelian varieties [Fa94].
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the lcm ranging over all places ofK (m(X/Kv
) = 1 for all but finitely many v). Con-

dition (iii) in Theorem 11 is mloc(X) ≤ 2. For a curve equipped with an involution
defined over a number field (X, ι)/k, consider the following local hypotheses:

(L1) T (X, ι, l/k)(Ak) 	= ∅ for some quadratic extension l/k (we allow l = k).
(L2) (X/ι)(Ak) 	= ∅.
(L3) mloc(X) ≤ 2.
Clearly (L1) =⇒ (L2) =⇒ (L3). Whereas Theorem 11 uses condition (L3)

to get Hasse Principle violations over quadratic extensions l/k, the Main Theorem
uses condition (L1) to get Hasse Principle violations over k.

To prove Theorem 10 it suffices to establish that mloc(X
D) ≤ 2 (and thus clearly

mloc(X
D) = 2 since XD(R) = ∅). This is [Cl09, Thm. 8a]. We want to emphasize

that the local analysis from [St14] needed to show that XD satisfies (L1) lies con-
siderably deeper. Thus it is our perspective that the Main Theorem, which gives
Hasse Principle violations over Q, is a deeper result than Theorem 10, which gives
Hasse Principle violations over quadratic fields.

It is natural to ask whether (L1), (L2), and (L3) may in fact be equivalent.

Example 12. Lemma 7a) gives X55/w55
∼= P1. Now consider the Atkin-Lehner

involution w5 on X55. A result of Ogg implies that since
(
11
5

)
= 1, we have

(X55/w5)(R) = ∅. (See [Cl03, Thm. 57 and Cor. 42].) Since (X55, w55)/Q satisfies

(L2), the curve X55/Q satisfies (L3). So (X55, w5)/Q satisfies (L3) but not (L2).

Whether (L2) implies (L1) we leave as an open question. But we observe: if
(X/ι)(k) 	= ∅, then (as in the proof of Theorem 3) some quadratic twist of (X, ι)
has a k-rational point, so condition (L1) holds. So if (X, ι) satisfies (L2) but not
(L1), then X/ι violates the Hasse Principle over k.

There are no known values of D in which XD/wD violates the Hasse Principle
over Q. When there is a class number one imaginary quadratic field K such that
every prime p dividing D is inert in K, then there is a CM point on (XD/wD)(Q),
and these conditions apply for many small values of D. However, for a set of
D’s of relative density one there are no CM points on (XD/wD)(Q), and the folk
wisdom is that we ought to have (XD/wD)(Q) = ∅ for “most” such D (perhaps
all but finitely many), and thus it seems likely that XD/wD violates the Hasse
Principle over Q for a density 1 set of D’s. This is a close analogue of the problem
of determining all Q-points on X0(N)/wN . Both problems are wide open.
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