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SCALAR CURVATURE BOUND AND COMPACTNESS RESULTS

FOR RICCI HARMONIC SOLITONS

GUOQIANG WU

(Communicated by Guofang Wei)

Abstract. In this paper, we study the gradient Ricci harmonic soliton. For
noncompact gradient shrinking Ricci harmonic solitons, we prove that the
scalar curvature has at most quadratic decay. Given some curvature condi-
tions, we prove that these shrinking solitons must be compact. In two dimen-
sions, we can get similar results with weaker assumptions.

1. Introduction

Ricci flow was introduced by Hamilton in [9]. It has played an important role in
the proof of the Poincaré Conjecture [14], [15], [16] and the sphere theorem [1] and
has been widely used in the study of geometric and topological problems.

Ricci harmonic flow is defined as follows:{
∂
∂tg = −2Ric+ 2dφ⊗ dφ,
∂
∂tφ = Δφ,

(1.1)

where φ : (M, g) → R is a smooth function. Ricci harmonic flow was introduced in
[10], where the author proved short time existence and long time existence if φ is a
smooth function from M to R. Later, in [13], the author considered φ as a smooth
map from (M, g) to (N, h) and proved some fundamental results for flow equations
(1.1). The flow equations (1.1) come from static Einstein vacuum equations arising
in the general relativity, and also arise as dimensional reductions of Ricci flow in
higher dimensions.

The gradient shrinking Ricci soliton is the blow-up limit of a Type I solution
of Ricci flow, and it plays an important role in the singularity analysis; see [2],
[5]. Similar results hold for Ricci harmonic flow; see [7]. First we give the precise
definition of a gradient Ricci harmonic soliton.

Definition 1.1. Assume that (Mn, g) is a smooth Riemannian manifold and let
φ : M → R be a smooth function. If there is a smooth function f : M → R and a
constant λ such that{

Ric− dφ⊗ dφ+∇2f + λg = 0,
Δφ = 〈∇f,∇φ〉,(1.2)

then (M, g, φ, f) is called a gradient Ricci harmonic soliton and f the potential
function. The soliton is called shrinking, steady or expanding when λ < 0,= 0, > 0,
respectively.
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For simplicity, we introduce a “Riemannian curvature” for Ricci harmonic soli-
tons, which is denoted as Sm. In local coordinates,

Sijkl := Rijkl −
1

2
(φiφjgkl + φjφkgil);

then Sik = gjlRijkl = Rik − φiφk, i.e. Sic = Ric − dφ ⊗ dφ. We use S to denote
the trace of Sic, i.e. S = R − |∇φ|2. During the rest of the paper, for gradient
shrinking Ricci harmonic solitons, we can always assume λ = − 1

2 after rescaling g
by a constant.

Definition 1.2. We say Sec(Sm) ≥ 0 if Sm(u, v, u, v) ≥ 0 for any orthonormal
vectors u and v.

First we get a quadratic lower bound for S following the idea in [3].

Proposition 1.3. Suppose (M, g, φ, f) is a complete noncompact nonflat gradient
shrinking Ricci harmonic soliton. Then there exist r > 0 and a > 0 such that

S ≥ a

f

on M\B(p, r), where p is a critical point of f and a depends only on f .

Remark. The examples of noncompact Kähler Ricci shrinkers by Feldman, Ilmanen
and Knopf [6] show that this result is sharp.

Next we consider the compactness results for gradient shrinking Ricci harmonic
solitons. We borrow the idea from [12], where the authors consider similar problems
for gradient shrinking Ricci solitons.

Theorem 1.4. Suppose (Mn, g, φ, f) is a complete gradient shrinking Ricci har-
monic soliton (1.2). If we assume Sec(Sm) ≥ 0, Sic > 0 and φ is convex, then
(Mn, g) must be compact.

In two dimensions, because sectional curvature can be expressed in terms of
scalar curvature, we can get similar results with weaker assumptions.

Corollary 1.5. Suppose we have a two dimensional complete gradient shrinking
Ricci harmonic soliton. If R ≥ 4|∇φ|2, then (M2, g) is compact.

2. Basic facts about Ricci harmonic solitons

Lemma 2.1. Suppose that (M, g, φ, f) is a complete gradient shrinking Ricci har-
monic soliton. Then

dS = 2Sic(∇f).(2.3)
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Proof. Using Ricci identity and soliton equation (1.2), we get

∇iS = −∇iΔf

= −∇i∇k∇kf

= −(∇k∇i∇kf +Rikkl∇lf)

= ∇k(λgik + Sik) +Ril∇lf

= ∇kSik + Ril∇lf

= ∇k(Rik −∇iφ∇kφ) +Ril∇lf

=
1

2
∇iR−∇k∇iφ∇kφ−∇iφΔφ+Ril∇lf

=
1

2
∇iR− 1

2
∇i|∇φ|2 +Ril∇lf −∇iφ〈∇f,∇φ〉

=
1

2
∇iS + Sil∇lf.

So

∇iS = 2Sil∇lf,

i.e. dS = 2Sic(∇f). �

Lemma 2.2. Under the same assumption as Lemma 2.1, we have

S + |∇f |2 + 2λf = C.

Proof. Using Lemma 2.1, we get

∇i(S + |∇f |2 + 2λf)

= ∇iS + 2∇i∇kf∇kf + 2λ∇if

= 2Sil∇lf + 2∇i∇kf∇kf + 2λ∇if

= 2Sil∇lf + (−2λgik − 2Sik)∇kf + 2λ∇if = 0.

So S + |∇f |2 + 2λf = C. �

Lemma 2.3. Suppose that (M, g, φ, f) is a compact gradient Ricci harmonic soliton
to equation (1.2) and φ is a smooth function from M to R. Then φ is a constant;
i.e. (1.2) reduces to a gradient Ricci soliton.

Proof. Because (M, g) is compact, we can apply the strong maximum principle to
equation Δφ = 〈∇f,∇φ〉, so φ is constant. �

Corollary 2.4. Suppose that (M, g, φ, f) is a compact gradient steady or expanding
Ricci harmonic soliton to equation (1.2). Then f is constant; i.e. (1.2) reduces to

Ric+ λg = 0.

Proof. First we prove the expanding case.
Taking trace over equation (1.2) and using Lemma 2.2, we get{

S + |∇f |2 + f = C,
S +Δf + n

2 = 0.

So

Δf − f = |∇f |2 − C − n

2
.
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Assume f(p) = maxx∈M f(x), f(q) = minx∈M f(x). Then

Δf(p)− f(p) = Δf(q)− f(q),

i.e.

0 ≥ Δf(p)−Δf(q) = f(p)− f(q) ≥ 0,

so f(p) = f(q), i.e. f = const. So (1.2) reduces to{
Ric− dφ⊗ dφ+ 1

2g = 0,
Δφ = 0.

Because M is compact, we know φ must be constant.
In the steady case, similarly taking trace over equation (1.2) and using Lemma

2.2, {
S + |∇f |2 = C,
S +Δf = 0.

So

|∇f |2 −Δf = C.

Multiplying e−f on both sides,

Δe−f = Ce−f ,

it is easy to see that C = 0, so Δe−f = 0, i.e. f = constant. Due to the compactness
of M we know φ is constant. �

3. Elliptic equation of Sic

Ricci harmonic solitons generate the solution of Ricci harmonic flow automat-
ically. In the following, we will focus on the gradient shrinking Ricci harmonic
soliton. Suppose we have the following equation:{

Sic+∇2f − 1
2g = 0,

Δφ = 〈∇f,∇φ〉.(3.4)

Consider the gradient flow generated by ∇f :{
∂F
∂t = −∇f(F ),
F (0) = Id.

(3.5)

Proposition 3.1. When t ∈ (−∞, 0),{
g(t) = (−t)F ∗

log(−t)g,

φ(t) = F ∗
log(−t)φ

satisfies {
∂g(t)
∂t = −2Ric(g(t)) + 2dφ(t)⊗ dφ(t),

∂
∂tφ(t) = Δg(t)φ(t).
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Proof. By soliton equation (3.4) and flow equation (3.5), we get

∂

∂t
g(t) = −F ∗

log(−t)g + t · −1

−t
F ∗
log(−t)(L∇fg)

= −F ∗
log(−t)g + F ∗

log(−t)(g − 2Sic(g))

= −2F ∗
log(−t)(Ric(g)− dφ⊗ dφ)

= −2(Ric(F ∗
log(−t)g)− dF ∗

log(−t)φ⊗ dF ∗
log(−t)φ)

= −2(Ric(g(t))− dφ(t)⊗ φ(t))

and

∂

∂t
φ(t) =

∂

∂t
F ∗
log(−t)φ

=
−1

−t
· (−1)F ∗

log(−t)L∇fφ

=
−1

t
F ∗
log(−t)〈∇f,∇φ〉

=
1

−t
F ∗
log(−t)(Δgφ)

=
1

−t
ΔF∗

log(−t)
gF

∗
log(−t)φ

= Δ(−t)F∗
log(−t)

gF
∗
log(−t)φ = Δg(t)φ(t).

�

In this paper, we need the evolution equation of Sic along the Ricci harmonic
flow (1.1).

Proposition 3.2 ([13]). Let (M, g(t), φ(t)) be a solution to the Ricci harmonic flow
(1.1). Then we have the following evolution equations:

∂

∂t
Sij = ΔSij + 2RikjlSkl − SikRkj −RikSkj + 2Δφ∇i∇jφ,(3.6)

∂

∂t
S = ΔS + 2|Sic|2 + 2|Δφ|2.(3.7)

Proposition 3.3. Suppose (M, g, φ, f) satisfies gradient shrinking Ricci harmonic
soliton equation (3.4). Then

ΔfSij = Sij − 2RikjlSkl − 2Δφ∇i∇jφ+ φiφkSkj + φkφjSik,(3.8)

where ΔfSic = ΔSic−∇∇fSic.

Proof. By the diffeomorphism invariance,

∂

∂t
Sic(g(t))|t=−1

=
∂

∂t
F ∗
log(−t)Sic(g)|t=−1

=
−1

−t
(−1)L∇fSic(g)|t=−1

= L∇fSic(g).
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Choose normal coordinates { ∂
∂x1 , · · · , ∂

∂xn } at point q ∈ M . We have

L∇fSij = (L∇fSic)

(
∂

∂xi
,

∂

∂xj

)
= (∇∇fSic)

(
∂

∂xi
,

∂

∂xj

)
+ Sic

(
∇ ∂

∂xi
∇f,

∂

∂xj

)
+ Sic

(
∂

∂xi
,∇ ∂

∂xj
∇f

)
= (∇∇f

Sic)

(
∂

∂xi
,

∂

∂xj

)
+ Sic

(
1

2

∂

∂xi
− Sic(

∂

∂xi
),

∂

∂xj

)
+Sic

(
∂

∂xi
,
1

2

∂

∂xj
− Sic(

∂

∂xj
)

)
= ∇∇fSij + Sij − 2SikSkj .

On the other hand, by the evolution equation of Ricci tensor along the Ricci har-
monic flow (3.6), we get

∂

∂t
Sij = ΔSij + 2RikjlSkl − SikRkj −RikSkj + 2Δφ∇i∇jφ,

so

ΔfSij = ΔSij − (∇∇fSic)

(
∂

∂xi
,

∂

∂xj

)
= −2RikjlSkl + Sij + SikRkj +RikSkj − 2SikSkj − 2Δφ∇i∇jφ

= Sij − 2RikjlSkl − 2Δφ∇i∇jφ+ φiφkSkj + φkφjSik.

�

4. Main results

4.1. Scalar curvature bound.

Proposition 4.1 (Yang-Shen, [18]). Suppose that (M, g, φ, f) is a complete non-
compact shrinking gradient Ricci harmonic soliton. Then the potential function f
satisfies

1

4
(d(x, p)− C1)

2 ≤ f(x) ≤ 1

4
(d(x, p) + C2)

2,

where p is a critical point of f and C1, C2 are positive constants depending only on
the dimension of the manifold and the geometry of the unit ball B1(p).

Proposition 4.2 (Yang-Shen, [18]). Suppose that (M, g, φ, f) is a complete non-
compact shrinking gradient Ricci harmonic soliton. Then S = R− |∇φ|2 ≥ 0.

Proposition 4.3. Suppose (M, g, φ, f) is a complete noncompact nonflat gradient
shrinking Ricci harmonic soliton. Then there exists r > 0 and a > 0 such that

S ≥ a

f

on M\B(p, r), where p is a critical point of f and a depends on f .
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Proof. Due to the asymptotic behavior of f , we know on M \ B(p, r) where r is
large enough:

Δff
−1 = −Δff · f−2 + 2|∇f |2f−3

= (f − n

2
)f−2 + 2|∇f |2 · f−3

≥ f−1 − n

2
f−2,

Δff
−2 = 2(f − n

2
)f−3 + 6|∇f |2f−4 ≥ 3

2
f−2.

Define u = S− a
f − na

f2 , where a = min∂B(p,r) S. Applying the asymptotic behavior

of f again, we know u is positive on ∂B(p, r) if r is large enough.
On M\B(p, r),

Δfu = ΔfS −Δf

(
a

f

)
−Δf

(
na

f2

)
≤ S − a(f−1 − n

2
f−2)− 3

2
naf−2

= S − a

f
− na

f2
= u.

Next we claim u ≥ 0 on M\B(p, r).
If there exists x0 such that u(x0) < 0, then due to min∂B(p,r) u > 0 and

limx→∞u(x) ≥ 0, there is y0 such that u(y0) = minM\B(p,r) u < 0. So

0 ≤ Δfu(y0) ≤ u(y0) < 0,

a contradiction.
Hence we get u ≥ 0 on M\B(p, r), i.e. S ≥ a

f .

4.2. Compactness of gradient shrinking Ricci harmonic solitons.

Proposition 4.4. Suppose (M, g, φ, f) is a complete gradient shrinking Ricci har-
monic soliton (1.2). If we assume Sec(Sm) ≥ 0, Sic > 0 and φ is convex, then it
must be compact.

Proof. Assume that (M, g, φ, f) is noncompact. From Lemma 2.2, we know that
S + |∇f |2 − f = C, where S is the trace of Sic. By adding a constant to f if
necessary, we can assume that S + |∇f |2 = f . Concerning the potential f , Yang
and Shen [18] proved that

1

4
(d(x, p)− C1)

2 ≤ f(x) ≤ 1

4
(d(x, p) + C2)

2,(4.9)

where C1 and C2 are positive constants depending only on the dimension of the
manifold and the geometry of the unit ball Bp(1).

From (3.8), we know that

(4.10) ΔfSij = Sij − 2RikjlSkl − 2Δφ∇i∇jφ+ φiφkSkj + φkφjSik.

Recall that we have defined the “Riemannian Curvature” Sm for the Ricci harmonic
soliton, which is rewritten as

Sijkl := Rijkl −
1

2
(φiφjgkl + φjφkgil).
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Then Sik = gjlRijkl = Rik − φiφk, i.e. Sic = Ric − dφ ⊗ dφ. Using the above
notation, (4.10) can be rewritten as

ΔfSij = Sij − 2SikjlSkl − 2Δφ∇i∇jφ.(4.11)

Denote λ(x) as the minimal eigenvalue of Sic at x, and suppose v is the eigenvector
corresponding to λ(x). Then

SikjlSklvivj = Sm(v, ek, v, el)Skl.

Diagonalizing Sic so that Skl = λkδkl, it follows from the assumption that

SikjlSklvivj = Sec(Sm)(v, ek)λk ≥ 0.(4.12)

From Δφ∇2φ ≥ 0, (4.11) and (4.12), it follows that λ satisfies the following differ-
ential inequality in the sense of barrier:

Δfλ ≤ λ.

Actually, this means that at any point x, we can find a smooth function ũ such
that ũ ≥ λ on B(x, δ) and Δf ũ(x) ≤ ũ(x), where δ is a small positive constant.

Choose a geodesic ball B(p, r) of radius r large enough, and let

a = min
∂B(p,r)

λ > 0.(4.13)

Similar to the proof of Proposition 4.3, we define

u = λ− a

f
− na

f2
.

From (4.13) and (4.9), it follows that if r is large enough, then u > 0 on ∂B(p, r).
From (4.9) and Proposition 4.2, we get limx→∞u(x) ≥ 0. As in the proof of
Proposition 4.3, we get

Δfu = Δfλ−Δf (
a

f
)−Δf (

na

f2
)

≤ λ− a(f−1 − n

2
f−2)− 3

2
naf−2

= λ− a

f
− na

f2
= u.

We have now proved

Δfu ≤ u

on M\B(p, r) if r is large enough.
Next we prove u ≥ 0 on M\B(p, r). If there is a point y0 ∈ M\B(p, r) such

that u(y0) < 0, then there must exist a point x0 ∈ M\B(p, r) such that u(x0) =
miny∈{M\B(p,r)} u(y).

At x0, suppose v is the eigenvector corresponding to λ(x0). Take parallel trans-
lation along all the unit geodesics starting from x0. Then in a small ball B(x0, δ) we
get a smooth vector field V with V (x0) = v. Define ũ = Sic(V (y), V (y))− a

f − na
f2 .

Then for any y ∈ B(x0, δ), ũ(y) ≥ u(y) and ũ(x0) = u(x0), so

0 ≤ Δf ũ(x0) ≤ ũ(x0) < 0.

This is a contradiction, so u ≥ 0 on M\B(p, r), i.e. Sic ≥ a
f . As in the argument

in [12], we get S ≥ b · log f for some b > 0.
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Next we give another proof of the above asymptotic bound of S assuming that
f has no critical point on M\B(p, r). Choose level set {f = r0} which is contained
in M\B(p, r), and consider the flow line starting from ∂{f = r0},{

∂F
∂s = ∇f

|∇f |2 ,

F (q, r0) = Id, q ∈ ∂{f = r0}.
(4.14)

The advantage of this flow is that it maps one level set of f to another one. Along
this flow,

d

ds
S ◦ F (q, s) = 〈∇S,

∂F

∂s
〉

= 〈∇S,
∇f

|∇f |2 〉

= 2Sic(
∇f

|∇f | ,
∇f

|∇f | )

≥ 2a

f
=

2a

s
,

so

S ◦ F (q, s) ≥ S ◦ F (q, r0) +

∫ s

r0

2a

τ
dτ

= S ◦ F (q, r0) + 2a log
s

r0
.

Hence S ≥ b · log f on M\B(p, r) for some b > 0 if r is large enough.
From the soliton equation (1.2), we get Δf + S = n

2 . Consider the sublevel set
{f ≤ c} of f , integrating over it, we get∫

{f≤c}

n

2
=

∫
{f≤c}

(Δf + S)

=

∫
{f=c}

|∇f |+
∫
{f≤c}

S.

So the average of S over {f ≤ c} is less than n
2 .

On the other hand, choose c0 such that b log c0 > n, when c is large enough:

1

V ol{f ≤ c}

∫
{f≤c}

S

=
V ol{c0 ≤ f ≤ c}

V ol{f ≤ c}

∫
{f≤c} S

V ol{c0 ≤ f ≤ c}

≥ V ol{c0 ≤ f ≤ c}
V ol{f ≤ c}

∫
{c0≤f≤c} S

V ol{c0 ≤ f ≤ c}

≥ V ol{c0 ≤ f ≤ c}
V ol{f ≤ c} b log c0

>
n

2
.

This contradicts the fact that the average of S over {f ≤ c} is less than n
2 . In

the last inequality we use the fact that V ol(M) = ∞, so V ol{c0≤f≤c}
V ol{f≤c} is close to 1

when c is large enough. Actually in [17] the authors proved that any noncompact
gradient shrinking Ricci harmonic soliton has at least linear volume growth. �
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Remark. Actually, in the last step of the above proof, we can use the volume
comparison as Munteanu-Wang [12] did to get a similar contradiction, because we
have Ric ≥ Sic > 0.

In two dimensions, we can get similar results with weaker assumptions.

Corollary 4.5. Suppose we have a two dimensional complete gradient shrinking
Ricci harmonic soliton. If R ≥ 4|∇φ|2, then (M2, g) must be compact.

Proof. By Proposition 4.3, we know that S ≥ a
f on M\B(p, r) for some r > 0 and

a > 0.
If R ≥ 4|∇φ|2, then

Sic = Ric− dφ⊗ dφ

=
1

2
Rg − |∇φ|2

≥ 1

3
(R− |∇φ|2)g =

1

3
Sg ≥ a

3f
g.

Then arguing as in the above proposition we get that (M2, g) is compact. �

Appendix

In this appendix we give another proof of the equation (3.8) without using the
evolution equation of Ricci harmonic flow. Because a Ricci harmonic soliton equa-
tion is “elliptic”, we can give a proof just using Ricci identity:

ΔSij = −∇i∇jΔf −∇iRjl∇lf −∇jRil∇lf −Ril∇j∇lf −Rjl∇i∇lf

+∇∇fRij − 2Rkijl∇k∇lf

= ∇i∇jS +∇∇f (Sij +∇iφ∇jφ) + 2Rkijl(
1

2
gkl − Skl)

−∇i(Sjl +∇jφ∇lφ)∇lf −∇j(Sil +∇iφ∇lφ)∇lf

−(Sil +∇iφ∇lφ)∇j∇lf − (Sjl +∇jφ∇lφ)∇i∇lf

= ∇i∇jS +∇∇fSij +∇∇f (∇iφ∇jφ) +Rij − 2RkijlSkl

−∇iSjl∇lf −∇i(∇jφ∇lφ)∇lf −∇jSil∇lf −∇j(∇iφ∇lφ)∇lf

−(
1

2
gil −∇i∇lf +∇iφ∇lφ)∇j∇lf − (

1

2
gjl −∇j∇lf +∇jφ∇lφ)∇i∇lf

= ∇i∇jS + 2∇i∇lf∇j∇lf −∇i∇jf +∇i∇j∇lf∇lf +∇j∇i∇lf∇lf

+∇∇fSij +∇∇f (∇iφ∇jφ) +Rij − 2RikjlSkl −∇i(∇jφ∇lφ)∇lf

−∇j(∇iφ∇lφ)∇lf −∇iφ∇lφ∇j∇lf −∇jφ∇lφ∇i∇lφ

= −2∇i∇jφΔφ−∇jφ∇i∇lφ∇lf −∇iφ∇j∇lφ∇lf −∇iφ∇lφ(
1

2
gjl − Sjl)

−∇jφ∇lφ(
1

2
gil − Sil) +∇∇f (∇iφ∇jφ) +∇∇fSij +Rij − 2RikjlSkl

= Sij − 2∇i∇jφΔφ+∇∇fSij − 2RikjlSkl +∇iφ∇kφSjk +∇jφ∇kφSik.

So

ΔfSij = ΔSij −∇∇f
Sij

= Sij − 2RikjlSkl − 2∇i∇jφΔφ+∇iφ∇kφSjk +∇jφ∇kφSik.

�
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