MULTIPARAMETER QUANTUM SCHUR DUALITY OF TYPE B

HUANCHEN BAO, WEIQIANG WANG, AND HIDEYA WATANABE

(Communicated by Kailash Misra)

Abstract

We establish a Schur-type duality between a coideal subalgebra of the quantum group of type A and the Hecke algebra of type B with two parameters. We identify the \imath-canonical basis on the tensor product of the natural representation with Lusztig's canonical basis of the type B Hecke algebra with unequal parameters associated to a weight function.

1. Introduction

1.1. Jimbo (J86]) established a quantum Schur duality between the quantum group \mathbf{U} of type A and the Hecke algebra $\mathcal{H}_{A_{m-1}}$, which asserts that their actions on the tensor product $\mathbb{V}^{\otimes m}$ of the natural representation \mathbb{V} of \mathbf{U} commute and form double centralizers. To facilitate further discussions, we take the base field to be $\mathbb{Q}(p, q)$ for two parameters p, q instead of $\mathbb{Q}(q)$.

Let \mathcal{H}_{m} be the Hecke algebra of type B_{m} with two parameters p, q, which contains $\mathcal{H}_{A_{m-1}}$ as a subalgebra and admits one extra generator H_{0}; see (2.6) for the definition. The Hecke algebra \mathcal{H}_{m} acts naturally on $\mathbb{V}^{\otimes m}$ as well, where H_{0} acts on the first tensor factor only. On the other hand, there is a notion of quantum symmetric pair, $\left(\mathbf{U}, \mathbf{U}^{2}\right)$, where \mathbf{U}^{\imath} is a coideal subalgebra of \mathbf{U}. The algebra \mathbf{U}^{\imath} allows for some freedom of choices of parameters; see Letzter Le99 (also see BK15). We make a particular choice of the parameters for \mathbf{U}^{2} in this paper depending on p and q. The coideal subalgebra \mathbf{U}^{\imath} acts on $\mathbb{V}^{\otimes m}$ naturally.

Our first main result (\imath-Schur duality) asserts that the actions of \mathbf{U}^{\imath} and \mathcal{H}_{m} on $\mathbb{V}^{\otimes m}$ commute and form double centralizers. This double centralizer theorem was established by the first two authors in [BW13] in the specialization when $p=q$, and then by the first author in B16 in the specialization when $p=1$ and q is generic. The multiparameter $\left(\mathbf{U}^{2}, \mathcal{H}_{m}\right)$-duality in this paper is a natural generalization and synthesis of these earlier cases.
1.2. Let us return to the setting of the type A Schur-Jimbo duality for a moment. The space $\mathbb{V}^{\otimes m}$ admits a (parabolic) Kazhdan-Lusztig basis via its identification as a direct sum of permutation modules for the Hecke algebra $\mathcal{H}_{A_{m-1}}$. By the work of Lusztig L94, there exists a canonical basis on the tensor product U-module $\mathbb{V}^{\otimes m}$. It is well known that the canonical basis and the Kazhdan-Lusztig basis on \mathbb{V}^{\otimes} m coincide (cf. Frenkel-Khovanov-Kirillov [FKK98]).

[^0]Let $\mathrm{L}: W_{B_{m}} \rightarrow \mathbb{Z}$ be a weight function on the Weyl group of type B; cf. [L03]. Via a homomorphism $v^{\mathrm{L}}: \mathbb{Q}(p, q) \rightarrow \mathbb{Q}(v)$ with an indeterminate v, we consider the specializations $\mathcal{H}_{m}^{\mathrm{L}}, \mathbf{U}_{\mathrm{L}}, \mathbf{U}_{\mathrm{L}}^{2}$ and $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ over $\mathbb{Q}(v)$. The multiparameter $\left(\mathbf{U}^{\imath}, \mathcal{H}_{m}\right)$ duality leads to the $\left(\mathbf{U}_{\mathrm{L}}^{2}, \mathcal{H}_{m}^{\mathrm{L}}\right)$-duality on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ under such a specialization.

Lusztig [03] constructed a distinguished bar invariant basis of $\mathcal{H}_{m}^{\mathrm{L}}$ (called an Lbasis in this paper), which specializes to the Kazhdan-Lusztig (KL) basis (KL79) when L is the length function ℓ of a Weyl group. It is straightforward to adapt Lusztig's construction to the parabolic setting; cf. Deo87. Thus $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ admits an L-basis through its identification as a direct sum of permutation modules over $\mathcal{H}_{m}^{\mathrm{L}}$.

An \imath-canonical basis on a tensor product \mathbf{U}-module (for example, $\mathbb{V}^{\otimes m}$) when $p=q$ was constructed in [BW13], which is invariant with respect to a new bar involution introduced therein. Moreover, the \imath-canonical basis on $\mathbb{V}^{\otimes m}$ when $p=q$ (which corresponds to the case when $\mathrm{L}=\ell$) is identified with the type B KL-basis. An easy modification of the construction in BW13 leads to an \imath-canonical basis on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$, for any weight function L . Note that the \imath-canonical basis on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ depends on L , since the algebra $\mathbf{U}_{\mathrm{L}}^{2}$ depends on L . We refer to [BW16] for a general theory of \imath-canonical bases for quantum symmetric pairs with parameters.

The second main result of this paper is that the \imath-canonical basis on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ coincides with the L-basis on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$, for any weight function L. For another distinguished choice of L (which corresponds to taking $p=1$), the L-basis (which is also the \imath canonical basis) is the KL-basis of type D; see B16.
1.3. The constructions and proofs in this paper are mostly adapted from BW13], some of which have been known to us for some time. Nevertheless, the new setting does require various new nontrivial 2-parameter formulas, and thus we present explicitly the precise details which are new in our setting. The detailed constructions in this paper (where \mathbf{U} is the quantum group for $\mathfrak{s l}_{k}$) depend much on the parity of k, so we treat the two cases separately. In sections 2and 3, we treat the case when $k=2 r+2$ is even. We establish in section 2 the $\left(\mathbf{U}^{2}, \mathcal{H}_{m}\right)$-duality on $\mathbb{V}^{\otimes m}$. In section 3 we study the \imath-canonical basis on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ associated to a weight function L and show that it coincides with the L-basis. In section 4 we present the analogous constructions when $k=2 r+1$ is odd.

2. The \imath-Schur duality with two parameters

In this section, we establish a Schur-type duality between a coideal subalgebra \mathbf{U}^{v} of the quantum group for $\mathfrak{s l}_{2 r+2}$ and the Hecke algebra of type B in two parameters.

2.1. The quantum symmetric pair ($\mathbf{U}, \mathbf{U}^{\imath}$). Let $r \geq 0$ be an integer. We set

$$
\mathbb{I}=\{-r,-r+1, \ldots, r\}, \quad \mathbb{I}^{2}=\{1, \ldots, r\} .
$$

Let $\Pi=\left\{\left.\alpha_{i}=\varepsilon_{i-\frac{1}{2}}-\varepsilon_{i+\frac{1}{2}} \right\rvert\, i \in \mathbb{I}\right\}$ be the simple system of type $A_{2 r+1}$, and Φ the associated root system. Denote the weight lattice by

$$
\Lambda=\sum_{i \in \mathbb{I}}\left(\mathbb{Z} \varepsilon_{i-\frac{1}{2}}+\mathbb{Z} \varepsilon_{i+\frac{1}{2}}\right)
$$

Let p and q be indeterminates. Let $\mathbf{U}_{q}\left(\mathfrak{s l}_{2 r+2}\right)$ denote the quantum group of type $A_{2 r+1}$ over $\mathbb{Q}(q)$ with the standard generators E_{i}, F_{i} and $K_{i}^{ \pm 1}$ for $i \in \mathbb{I}$ (see, e.g., BW13, §1.2] for a precise definition). Let

$$
\mathbf{U}=\mathbf{U}_{q}\left(\mathfrak{s l}_{2 r+2}\right) \otimes_{\mathbb{Q}(q)} \mathbb{Q}(p, q) .
$$

We denote by ψ the bar involution on \mathbf{U} (more conventionally denoted by ${ }^{-}$), that is, a \mathbb{Q}-algebra involution of \mathbf{U} such that

$$
\begin{equation*}
\psi(q)=q^{-1}, \quad \psi(p)=p^{-1}, \quad \psi\left(E_{i}\right)=E_{i}, \quad \psi\left(F_{i}\right)=F_{i}, \quad \psi\left(K_{i}\right)=K_{i}^{-1} . \tag{2.1}
\end{equation*}
$$

We shall use the comultiplication $\Delta: \mathbf{U} \rightarrow \mathbf{U} \otimes \mathbf{U}$ as follows:

$$
\begin{equation*}
\Delta\left(E_{i}\right)=1 \otimes E_{i}+E_{i} \otimes K_{i}^{-1}, \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i} \otimes F_{i}, \Delta\left(K_{i}\right)=K_{i} \otimes K_{i} . \tag{2.2}
\end{equation*}
$$

We review the quantum symmetric pair $\left(\mathbf{U}, \mathbf{U}^{\imath}\right)$ over $\mathbb{Q}(p, q)$ Le99] with the following Satake diagram:

$$
A_{2 r+1}:
$$

Let \mathbf{U}^{\imath} be the $\mathbb{Q}(p, q)$-subalgebra of \mathbf{U} generated by (for $i \in\{1, \ldots, r\}$)

$$
\begin{align*}
k_{i} & =K_{i} K_{-i}^{-1}, \quad t=E_{0}+q F_{0} K_{0}^{-1}+\frac{p-p^{-1}}{q-q^{-1}} K_{0}^{-1}, \tag{2.3}\\
e_{i} & =E_{i}+F_{-i} K_{i}^{-1}, \quad f_{i}=E_{-i}+K_{-i}^{-1} F_{i} .
\end{align*}
$$

Note that \mathbf{U}^{\imath} is a right coideal subalgebra of \mathbf{U}; that is, we have $\Delta\left(\mathbf{U}^{\imath}\right) \subset \mathbf{U}^{\imath} \otimes \mathbf{U}$.
The algebra \mathbf{U}^{i} has a presentation as an algebra over $\mathbb{Q}(p, q)$ generated by e_{i}, $f_{i}, k_{i}^{ \pm 1}(i \in\{1, \ldots, r\})$, and t, subject to the following relations for $i, j \in\{1, \ldots, r\}$ (see [BW13,BK15]):

$$
\begin{aligned}
k_{i} k_{i}^{-1} & =k_{i}^{-1} k_{i}=1, \quad k_{i} k_{j}=k_{j} k_{i}, & & \\
k_{i} e_{j} k_{i}^{-1} & =q^{\left(\alpha_{i}-\alpha_{-i}, \alpha_{j}\right)} e_{j}, & & \\
k_{i} f_{j} k_{i}^{-1} & =q^{-\left(\alpha_{i}-\alpha_{-i}, \alpha_{j}\right)} f_{j}, \quad k_{i} t k_{i}^{-1}=t, & & \\
e_{i} f_{j}-f_{j} e_{i} & =\delta_{i, j} \frac{k_{i}-k_{i}^{-1}}{q-q^{-1}}, & & \text { if }|i-j|>1, \\
e_{i} e_{j} & =e_{j} e_{i}, \quad f_{i} f_{j}=f_{j} f_{i}, & & \text { if } i>1, \\
e_{i} t & =t e_{i}, \quad f_{i} t=t f_{i}, & & \\
e_{i}^{2} e_{j}+e_{j} e_{i}^{2} & =\left(q+q^{-1}\right) e_{i} e_{j} e_{i}, \quad f_{i}^{2} f_{j}+f_{j} f_{i}^{2}=\left(q+q^{-1}\right) f_{i} f_{j} f_{i}, & & \text { if }|i-j|=1, \\
e_{1}^{2} t+t e_{1}^{2} & =\left(q+q^{-1}\right) e_{1} t e_{1}, \quad f_{1}^{2} t+t f_{1}^{2}=\left(q+q^{-1}\right) f_{1} t f_{1}, & & \\
t^{2} e_{1}+e_{1} t^{2} & =\left(q+q^{-1}\right) t e_{1} t+e_{1}, & & \\
t^{2} f_{1}+f_{1} t^{2} & =\left(q+q^{-1}\right) t f_{1} t+f_{1} . & &
\end{aligned}
$$

The next lemma follows by inspection using the above presentation of \mathbf{U}^{2}.
Lemma 2.1. There exists a unique \mathbb{Q}-algebra bar involution ψ_{\imath} on \mathbf{U}^{\imath} such that $p \mapsto p^{-1}, q \mapsto q^{-1}, k_{i} \mapsto k_{i}^{-1}, e_{i} \mapsto e_{i}, f_{i} \mapsto f_{i}$, and $t \mapsto t$, for $i \in \mathbb{I}^{2}$.

Remark 2.2. The presentation of the algebra \mathbf{U}^{\imath} here is the same as the algebra in almost the same notation in BW13, §2.1]. The parameter $\kappa \in \mathbb{Q}(p, q)$ in the embedding (see (2.3)), $t=E_{0}+q F_{0} K_{0}^{-1}+\kappa K_{0}^{-1}$, is irrelevant to the presentation of the algebra \mathbf{U}^{i}. This phenomenon was first observed in Le99.

Let $\widehat{\mathbf{U}}$ be the completion of the $\mathbb{Q}(p, q)$-vector space \mathbf{U} with respect to the following descending sequence of subspaces $\mathbf{U}^{+} \mathbf{U}^{0}\left(\sum_{\mathrm{ht}(\mu) \geq N} \mathbf{U}_{\mu}^{-}\right)$, for $N \geq 1$. Then we have the obvious embedding of \mathbf{U} into $\widehat{\mathbf{U}}$. We let $\widehat{\mathbf{U}}^{-}$be the closure of \mathbf{U}^{-}in $\widehat{\mathbf{U}}$, and so $\widehat{\mathbf{U}}^{-} \subseteq \widehat{\mathbf{U}}$. By continuity the $\mathbb{Q}(p, q)$-algebra structure on \mathbf{U} extends to a $\mathbb{Q}(p, q)$-algebra structure on $\widehat{\mathbf{U}}$. The bar involution ψ on \mathbf{U} extends by continuity to an anti-linear (i.e., $p \mapsto p^{-1}, q \mapsto q^{-1}$) involution on $\widehat{\mathbf{U}}$, also denoted by ψ. Denote by \mathbb{N} the set of nonnegative integers.

Proposition 2.3 (BW13, Theorem 2.10]). There is a unique family of elements $\Upsilon_{\mu} \in \mathbf{U}_{-\mu}^{-}$for $\mu \in \mathbb{N} \Pi$ such that $\Upsilon_{0}=1$, and $\Upsilon=\sum_{\mu} \Upsilon_{\mu} \in \widehat{\mathbf{U}}^{-}$intertwines the bar involution ψ on \mathbf{U} and the bar involution ψ_{\imath} on \mathbf{U}^{2}; that is, Υ satisfies the following identity:

$$
\psi_{\imath}(u) \cdot \Upsilon=\Upsilon \cdot \psi(u), \quad \text { for all } u \in \mathbf{U}^{\imath}
$$

Note that [BW13, Theorem 2.10] was proved in the setting of $p=q$ in (2.3), but the same proof works here. We shall call Υ the intertwiner.

Consider a $\mathbb{Q}(q)$-valued function ζ on Λ (which is independent of the parameter $p)$, such that for all $\mu \in \Lambda, i \in \mathbb{I}^{2}$, we have

$$
\begin{align*}
\zeta\left(\mu+\alpha_{0}\right) & =-q \zeta(\mu) \\
\zeta\left(\mu+\alpha_{i}\right) & =-q^{\left(\alpha_{i}-\alpha_{-i}, \mu+\alpha_{i}\right)} \zeta(\mu) \tag{2.4}\\
\zeta\left(\mu+\alpha_{-i}\right) & =-q^{\left(\alpha_{-i}, \mu+\alpha_{-i}\right)-\left(\alpha_{i}, \mu\right)} \zeta(\mu)
\end{align*}
$$

Such ζ clearly exists. For any weight \mathbf{U}-module M, we define a $\mathbb{Q}(p, q)$-linear map on M associated with ζ as follows:

$$
\begin{gather*}
\widetilde{\zeta}: M \longrightarrow M, \\
\widetilde{\zeta}(m)=\zeta(\mu) m, \quad \text { for all } m \in M_{\mu} . \tag{2.5}
\end{gather*}
$$

Let w_{0} denote the longest element of the Weyl group $W_{A_{2 r+1}}$ of type $A_{2 r+1}$ and $T_{w_{0}}$ the associated braid group element. The following proposition is a 2-parameter variant of [BW13, Theorem 2.18], with the same proof.

Proposition 2.4. For any finite-dimensional U-module M, the composition map

$$
\mathcal{T}:=\Upsilon \circ \widetilde{\zeta} \circ T_{w_{0}}: M \longrightarrow M
$$

is a \mathbf{U}^{2}-module isomorphism.
2.2. Hecke algebra of type \mathbf{B} with two parameters. We often write $q_{i}=q$ for $1 \leq i \leq m-1$ and $q_{0}=p$. Let \mathcal{H}_{m} be the Hecke algebra of type B_{m} with two parameters over $\mathbb{Q}(p, q)$ generated by $H_{0}, H_{1}, \ldots, H_{m-1}$ and subject to the following relations:

$$
\begin{align*}
\left(H_{i}-q_{i}^{-1}\right)\left(H_{i}+q_{i}\right) & =0, \quad \text { for } i \geq 0, \\
H_{i} H_{i+1} H_{i} & =H_{i+1} H_{i} H_{i+1}, \quad \text { for } i \geq 1, \tag{2.6}\\
H_{0} H_{1} H_{0} H_{1}=H_{1} H_{0} H_{1} H_{0}, \quad H_{i} H_{j} & =H_{j} H_{i}, \quad \text { for }|i-j|>1 .
\end{align*}
$$

Let $W_{B_{m}}$ be the Weyl group of type B_{m} with simple reflections $s_{0}, s_{1}, \ldots, s_{m-1}$. For each $w \in W_{B_{m}}$ with a reduced expression $w=s_{i_{1}} \cdots s_{i_{r}}$, the products $H_{w}=$ $H_{i_{1}} \cdots H_{i_{r}}$ and $q_{w}=q_{i_{1}} \cdots q_{i_{r}}$ are independent of the choice of the reduced expressions.
2.3. The $\left(\mathbf{U}^{\imath}, \mathcal{H}_{m}\right)$-duality. Let $I=\mathbb{I} \pm \frac{1}{2}$. Let $\mathbb{V}=\bigoplus_{a \in I} \mathbb{Q}(p, q) u_{a}$ be the natural representation of \mathbf{U}. The \mathbf{U}-module structure of \mathbb{V} can be visualized as follows:

We denote by $\mathbb{V}^{\otimes m}$ the m-th tensor product of \mathbb{V}, which is naturally a \mathbf{U}-module via iterated comultiplication. Hence $\mathbb{V}^{\otimes m}$ is a \mathbf{U}^{\imath}-module by restriction.

For any $f=(f(1), \ldots, f(m)) \in I^{m}$, we define

$$
\begin{equation*}
M_{f}=u_{f(1)} \otimes \cdots \otimes u_{f(m)} \tag{2.7}
\end{equation*}
$$

The Weyl group $W_{B_{m}}$ acts on I^{m} on the right in the obvious way: for $j \geq 1$ and $i \in I$,

$$
\begin{aligned}
& \left(f \cdot s_{j}\right)(i)= \begin{cases}f(j+1) & \text { if } i=j \\
f(j) & \text { if } i=j+1, \\
f(i) & \text { otherwise }\end{cases} \\
& \left(f \cdot s_{0}\right)(i)= \begin{cases}-f(1) & \text { if } i=1, \\
f(i) & \text { otherwise }\end{cases}
\end{aligned}
$$

The Hecke algebra \mathcal{H}_{m} acts naturally on $\mathbb{V}^{\otimes m}$ on the right as follows:

$$
\begin{align*}
& M_{f} \cdot H_{i}= \begin{cases}q^{-1} M_{f}, & \text { if } f(i)=f(i+1) ; \\
M_{f \cdot s_{i}}, & \text { if } f(i)<f(i+1) ; \\
M_{f \cdot s_{i}}+\left(q^{-1}-q\right) M_{f}, & \text { if } f(i)>f(i+1) ;\end{cases} \tag{2.8}\\
& M_{f} \cdot H_{0}= \begin{cases}M_{f \cdot s_{0}}, & \text { if } f(1)>0 ; \\
M_{f \cdot s_{0}}+\left(p^{-1}-p\right) M_{f}, & \text { if } f(1)<0 .\end{cases}
\end{align*}
$$

We shall depict the actions of \mathbf{U}^{\imath} and \mathcal{H}_{m} on $\mathbb{V}^{\otimes m}$ as

$$
\begin{equation*}
\mathbf{U}^{\imath} \stackrel{\Phi}{\curvearrowright} \mathbb{V}^{\otimes m} \stackrel{\Psi}{\curvearrowleft} \mathcal{H}_{m} . \tag{2.9}
\end{equation*}
$$

Now we fix ζ in (2.4) by setting $\zeta\left(\epsilon_{-r-\frac{1}{2}}\right)=1$. Then, we have

$$
\zeta\left(\epsilon_{-i-\frac{1}{2}}\right)=(-q)^{-r+i}, \quad \forall i \in\{r, r-1, \ldots,-r-1\}
$$

Lemma 2.5. The actions of H_{0} and \mathcal{T}^{-1} on \mathbb{V} coincide.
Proof. Let

$$
\begin{aligned}
\mathbb{V}^{+} & =\bigoplus_{j \in\{0, \ldots, r\}} \mathbb{Q}(p, q)\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right) \\
\mathbb{V}^{-} & =\bigoplus_{j \in\{0, \ldots, r\}} \mathbb{Q}(p, q)\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right)
\end{aligned}
$$

By direct calculations, we have (for $i \in \mathbb{I}^{2}, j \in\{0, \ldots, r\}$)

$$
\begin{aligned}
t \cdot\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right) & =\frac{p q^{\delta_{j, 0}}-p^{-1} q^{-\delta_{j, 0}}}{q-q^{-1}}\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right), \\
f_{i} \cdot\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right) & =\delta_{i, j+1} \cdot\left(u_{-(j+1)-\frac{1}{2}}+p u_{(j+1)+\frac{1}{2}}\right), \\
e_{i} \cdot\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right) & =\delta_{i, j} \cdot\left(u_{-(j-1)-\frac{1}{2}}+p u_{(j-1)+\frac{1}{2}}\right), \\
t \cdot\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right) & =\frac{p q^{-\delta_{j, 0}}-p^{-1} q^{\delta_{j, 0}}}{q-q^{-1}}\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right), \\
f_{i} \cdot\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right) & =\delta_{i, j+1} \cdot\left(u_{-(j+1)-\frac{1}{2}}-p^{-1} u_{(j+1)+\frac{1}{2}}\right), \\
e_{i} \cdot\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right) & =\delta_{i, j} \cdot\left(u_{-(j-1)-\frac{1}{2}}-p^{-1} u_{(j-1)+\frac{1}{2}}\right) .
\end{aligned}
$$

Hence, we have $\mathbb{V}=\mathbb{V}^{+} \oplus \mathbb{V}^{-}$as a \mathbf{U}^{\imath}-module.
Since we have $T_{w_{0}}\left(u_{j+\frac{1}{2}}\right)=(-q)^{r-j} u_{-j-\frac{1}{2}}$, we obtain $\widetilde{\zeta} \circ T_{w_{0}}\left(u_{j+\frac{1}{2}}\right)=u_{-j-\frac{1}{2}}$. On the other hand, one computes the first terms of Υ as $\Upsilon_{\alpha_{0}}=\left(p-p^{-1}\right) F_{\alpha_{0}}$, which is the only term with nontrivial action for weight reasons. Hence, we have that $\mathcal{T}\left(u_{-\frac{1}{2}}\right)=u_{\frac{1}{2}}, \mathcal{T}\left(u_{\frac{1}{2}}\right)=u_{-\frac{1}{2}}-\left(p^{-1}-p\right) u_{\frac{1}{2}}$, which implies the actions of \mathcal{T}^{-1} on \mathbb{V}^{+} and \mathbb{V}^{-}are given by scalar multiplication by p^{-1} and $-p$, respectively. The lemma is proved.

Now, we state our first main theorem.
Theorem 2.6 (\imath-Schur duality). The actions of \mathbf{U}^{\imath} and \mathcal{H}_{m} on $\mathbb{V}^{\otimes m}$ (2.9) commute and form double centralizers; that is,

$$
\Phi\left(\mathbf{U}^{2}\right)=\operatorname{End}_{\mathcal{H}_{m}}\left(\mathbb{V}^{\otimes m}\right), \quad \operatorname{End}_{\mathbf{U}^{2}}\left(\mathbb{V}^{\otimes m}\right)^{\mathrm{op}}=\Psi\left(\mathcal{H}_{m}\right)
$$

Proof. Recall that \mathbf{U}^{\imath} acts as a subalgebra of \mathbf{U} on $\mathbb{V}^{\otimes m}$ and the Hecke algebra $\mathcal{H}_{A_{m-1}}$ is a subalgebra of \mathcal{H}_{m} generated by H_{i}, for $1 \leq i \leq m-1$. Hence it follows from the q-Schur duality of type $\mathrm{A}\left([J 86)\right.$ that the action of H_{i}, for $1 \leq i \leq m-1$, commutes with the action of \mathbf{U}, and hence of \mathbf{U}^{2}. Note that H_{0} acts only on the first factor of $\mathbb{V}^{\otimes m}$. On the other hand, the commutativity of the actions of H_{0} and \mathbf{U}^{\imath} follows by Proposition [2.4, Lemma [2.5, and the fact that the \mathbf{U}^{2} is a right coideal subalgebra of \mathbf{U}.

The double centralizer property is the multiparameter version of BW13, Theorem 5.4], and it follows by a deformation argument in the same way as in BW13, Theorem 5.4].

3. The L-bases and \imath-Canonical bases

3.1. Quantum symmetrizers. The type B Hecke algebra \mathcal{H}_{m} (2.6) has a unique \mathbb{Q}-algebra bar involution ${ }^{-}: \mathcal{H}_{m} \rightarrow \mathcal{H}_{m}$ such that

$$
\bar{q}_{i}=q_{i}^{-1}, \quad \overline{H_{w}}=H_{w^{-1}}^{-1}, \quad \text { for } i \geq 0, w \in W_{B_{m}} .
$$

For any subset $J \subseteq\{0,1, \ldots, m-1\}$, let W_{J} be the parabolic subgroup of W generated by $\left\{s_{j} \mid j \in J\right\}$. Let \mathcal{H}_{J} be the $\mathbb{Q}(p, q)$-subalgebra of \mathcal{H}_{m} generated by $\left\{H_{j} \mid j \in J\right\}$, and ${ }^{J} W$ be the set of minimal length coset representatives for $W_{J} \backslash W$. We define a quantum symmetrizer for the algebra \mathcal{H}_{J} :

$$
\begin{equation*}
\eta_{J}=q_{w_{J}} \sum_{x \in W_{J}} q_{x}^{-1} H_{x} \in \mathcal{H}_{J}, \tag{3.1}
\end{equation*}
$$

where w_{J} denotes the longest element of W_{J}.

Lemma 3.1. Let $J \subseteq\{0,1, \ldots, m-1\}$. Then, the following hold:
(1) $\eta_{J} H_{j}=q_{j}^{-1} \eta_{J}$, for all $j \in J$.
(2) For $w \in{ }^{J} W$ and $j \in J$, we have

$$
\left(\eta_{J} H_{w}\right) \cdot H_{j}= \begin{cases}q_{j}^{-1} \eta_{J} H_{w} & \text { if } w s_{j} \notin{ }^{J} W \\ \eta_{J} H_{w s_{j}} & \text { if } w s_{j} \in{ }^{J} W \text { and } w<w s_{j} \\ \eta_{J} H_{w s_{j}}+\left(q_{j}^{-1}-q_{j}\right) \eta_{J} H_{w} & \text { if } w s_{j} \in{ }^{J} W \text { and } w s_{j}<w\end{cases}
$$

(3) $\overline{\eta_{J}}=\eta_{J}$.

Proof. Part (1) is proved by a direct calculation, and (2) follows from (1). Part (3) can be (essentially) found in LL03, §12].
3.2. The L-bases. Recall [L03, §3.1] that a map $\mathrm{L}: W_{B_{m}} \longrightarrow \mathbb{Z}$ is called a weight function if it satisfies

$$
\mathrm{L}(y w)=\mathrm{L}(y)+\mathrm{L}(w)
$$

for all $y, w \in W_{B_{m}}$ such that $\ell(y w)=\ell(y)+\ell(w)$. (Such a weight function is determined by values $\mathrm{L}\left(s_{0}\right)$ and $\mathrm{L}\left(s_{1}\right)$.)

We fix a weight function L . If $m=1$, we adopt the convention that $\mathrm{L}\left(s_{1}\right)=1$. Let v be an indeterminate. We consider a \mathbb{Q}-algebra homomorphism

$$
v^{\mathrm{L}}: \mathbb{Q}(p, q) \longrightarrow \mathbb{Q}(v), \quad p \mapsto v^{\mathrm{L}\left(s_{0}\right)}, q \mapsto v^{\mathrm{L}\left(s_{1}\right)} .
$$

We shall regard $\mathbb{Q}(v)$ as a $\mathbb{Q}(p, q)$-module via the \mathbb{Q}-algebra homomorphism v^{L}. By a base change, we introduce the following algebras/spaces over $\mathbb{Q}(v)$:

$$
\begin{equation*}
\mathcal{H}_{m}^{\mathrm{L}}=\mathcal{H}_{m} \otimes_{\mathbb{Q}(p, q)} \mathbb{Q}(v), \quad \mathbf{U}_{\mathrm{L}}^{\imath}=\mathbf{U}^{\imath} \otimes_{\mathbb{Q}(p, q)} \mathbb{Q}(v), \quad \mathbb{V}_{\mathrm{L}}=\mathbb{V} \otimes_{\mathbb{Q}(p, q)} \mathbb{Q}(v) \tag{3.2}
\end{equation*}
$$

We shall use the old notation of the generators of \mathcal{H}_{m} for generators of $\mathcal{H}_{m}^{\mathrm{L}}$ (and similarly for $\mathbf{U}_{\mathrm{L}}^{2}$ and \mathbb{V}_{L}). The bar involution on \mathcal{H}_{m} (as well as on \mathbf{U}^{\imath} and \mathbb{V}) induces a bar involution on $\mathcal{H}_{m}^{\mathrm{L}}$ (as well as on $\mathbf{U}_{\mathrm{L}}^{\imath}$ and \mathbb{V}_{L}) such that $\bar{v}=v^{-1}$.

The following is a straightforward variant of Lusztig [L03, Theorem 5.2] (who treats the regular representation, i.e., the $J=\emptyset$ case).

Proposition 3.2 (L03, Deo87). Let $J \subseteq\{0,1, \ldots, m-1\}$. Then, for each $w \in$ ${ }^{J} W$, there exists a unique element $C_{w}^{J} \in \eta_{J} \mathcal{H}_{m}^{L}$ such that
(1) $\overline{C_{w}^{J}}=C_{w}^{J}$,
(2) $C_{w}^{J} \in \eta_{J}\left(H_{w}+\sum_{y \in J W, y<w} v \mathbb{Z}[v] H_{y}\right)$.

Moreover, the elements $\left\{C_{w}^{J} \mid w \in{ }^{J} W\right\}$ form a $\mathbb{Q}(v)$-basis of $\eta_{J} \mathcal{H}_{m}^{L}$ (called the L-basis).

Proof. Thanks to Lemma 3.1, the proof is the same as for the usual KL-setting Deo87, Propositions 3.1, 3.2].
Remark 3.3. We write $C_{w}^{J}=C_{w}^{\mathrm{L}, J}$ to emphasize the dependence on the weight function L. By replacing H_{0} and $H_{i}(i \geq 1)$ by $e_{0} H_{0}$ and $e_{1} H_{i}$, respectively, where $e_{0}, e_{1} \in\{1,-1\}$, one obtains an isomorphism $\mathcal{H}_{m}^{\mathrm{L}} \cong \mathcal{H}_{m}^{\mathrm{L}^{\prime}}$, where L^{\prime} is the weight function determined by $\mathrm{L}^{\prime}\left(s_{0}\right)=e_{0} \mathrm{~L}\left(s_{0}\right)$ and $\mathrm{L}^{\prime}\left(s_{1}\right)=e_{1} \mathrm{~L}\left(s_{1}\right)$. Moreover, one checks that the isomorphism is compatible with bar involutions, and it sends the L-basis to the L'-basis up to sign, that is, $C_{w}^{\mathrm{L}, J} \mapsto(-1)^{\ell(w)} C_{w}^{\mathrm{L}^{\prime}, J}$. This observation is valid in the general setting of L03]. Therefore we may assume that a weight function is nonnegative integer valued if needed.
3.3. The \imath-canonical bases. It is well known that there exists a bar-involution ψ on the tensor product of several simple finite-dimensional \mathbf{U}_{L}-modules, such as $\mathbb{V}_{\mathrm{L}}^{\otimes m}$, using the quasi- R-matrix Θ ([L94, Chap. 4]). Following [BW13, Proposition 3.10] we can define another anti-linear (i.e., $v \mapsto v^{-1}$) involution on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ as (recall the definition of Υ in Proposition (2.3)

$$
\begin{equation*}
\psi_{\imath}=\Upsilon \circ \psi \tag{3.3}
\end{equation*}
$$

By construction, ψ_{\imath} is well defined on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ and fixes all M_{f} such that $0<f(1) \leq$ $f(2) \leq \cdots \leq f(m)$.

Remark 3.4. We use the same notation ψ (as in L94) for both the anti-linear involution on \mathbf{U} (as well as the specialization \mathbf{U}_{L}) and the anti-linear involution on the \mathbf{U}-module $\mathbb{V}^{\otimes m}$ (as well as the \mathbf{U}_{L}-module $\mathbb{V}_{\mathrm{L}}^{\otimes m}$), since they are compatible. Similarly we use the same notation ψ_{\imath} in a multiple of settings.

To develop a theory of \imath-canonical basis, besides the new bar involution ψ_{\imath}, we also need to establish the integrality of the intertwiner Υ. The following is an L-variant of [BW13, Theorem 4.18].

Proposition 3.5. Let $\mathcal{A}=\mathbb{Z}\left[v, v^{-1}\right]$ and ${ }_{\mathcal{A}} \mathbf{U}$ be the \mathcal{A}-form of \mathbf{U}. Then, we have $\Upsilon_{\mu} \in{ }_{\mathcal{A}} \mathbf{U}$ for any $\mu \in \mathbb{N}[\mathbb{I}]$.
Proof. Following the strategy of the proof of [BW13, Theorem 4.18], the proof of the integrality of Υ is reduced to verifying that the intertwiner is integral for the case $\mathbb{I}=\{0\}$ (which is the counterpart of BW13, Lemma 4.6]).

We write $\Upsilon_{c}=\Upsilon_{c \alpha_{0}}=\gamma_{c} E^{(c)}$ for $c \geq 0$. Note that $\gamma_{0}=1$ by definition. The same computation as [BW13, Lemma 4.6] shows that

$$
\begin{aligned}
\gamma_{c+1} & =-\left(v^{\mathrm{L}\left(s_{1}\right)}-v^{-\mathrm{L}\left(s_{1}\right)}\right) v^{-c \mathrm{~L}\left(s_{1}\right)}\left(v^{\mathrm{L}\left(s_{1}\right)}[c]_{v^{L\left(s_{1}\right)}} \gamma_{c-1}+\frac{v^{\mathrm{L}\left(s_{0}\right)}-v^{-\mathrm{L}\left(s_{0}\right)}}{v^{\mathrm{L}\left(s_{1}\right)}-v^{\mathrm{L}\left(s_{1}\right)}} \gamma_{c}\right) \\
& =-\left(v^{\mathrm{L}\left(s_{1}\right)}-v^{-\mathrm{L}\left(s_{1}\right)}\right) v^{-c \mathrm{~L}\left(s_{1}\right)} v^{\mathrm{L}\left(s_{1}\right)}\left[c c_{\left.v^{\mathrm{L}\left(s_{1}\right)}\right)} \gamma_{c-1}-v^{-c \mathrm{~L}\left(s_{1}\right)}\left(v^{\mathrm{L}\left(s_{0}\right)}-v^{-\mathrm{L}\left(s_{0}\right)}\right) \gamma_{c},\right.
\end{aligned}
$$

where

$$
[c]_{v^{\mathrm{L}\left(s_{1}\right)}}=\frac{v^{c \mathrm{~L}\left(s_{1}\right)}-v^{-\mathrm{cL}\left(s_{1}\right)}}{v^{\mathrm{L}\left(s_{1}\right)}-v^{-\mathrm{L}\left(s_{1}\right)}} \in \mathbb{Z}\left[v, v^{-1}\right] .
$$

Hence the proposition follows by induction on c.
Following [BW13, Theorem 4.26] (or [BW16] for more general quantum symmetric pairs with parameters), we obtain the \imath-canonical bases on finite-dimensional simple U-modules and their tensor products. Let us just formulate a special case which we need later in our general weight function L setting.

For $f \in I^{m}$, define a weight $\mathrm{wt}(f)=\sum_{1 \leq i \leq m} \varepsilon_{f(i)} \in \Lambda$. Let θ be the involution of the weight lattice Λ such that

$$
\theta\left(\varepsilon_{i-\frac{1}{2}}\right)=-\varepsilon_{-i+\frac{1}{2}}, \quad \text { for all } i \in \mathbb{I} .
$$

We say two weights $\lambda, \mu \in \Lambda$ have identical \imath-weight (and denote $\lambda \equiv_{\imath} \mu$) if $\lambda-\mu$ is fixed by θ. Define a partial ordering \preceq on the set I^{m} as follows (cf. BW13, proof of Theorem 5.8]): for $g, f \in I^{m}$, we let

$$
\begin{equation*}
g \preceq f \quad \Leftrightarrow \quad \operatorname{wt}(g) \equiv_{\imath} \mathrm{wt}(f) \text { and } \operatorname{wt}(f)-\mathrm{wt}(g) \in \mathbb{N} \Pi . \tag{3.4}
\end{equation*}
$$

We say $g \prec f$ if $g \preceq f$ and $g \neq f$.

Proposition 3.6. The \mathbf{U}_{L}^{2}-module $\mathbb{V}_{L}^{\otimes m}$ admits a unique basis $\left\{b_{f}^{2} \mid f \in I^{m}\right\}$ such that b_{f}^{2} is ψ_{\imath}-invariant and $b_{f}^{2} \in M_{f}+\sum_{g \prec f} v \mathbb{Z}[v] M_{g}$.

Proof. This is a straightforward L-generalization of BW13], and we outline the proof for the convenience of the reader. By Proposition [3.5, Υ and hence also the bar involution ψ_{\imath} (3.3) preserve the integral form of $\mathbb{V}_{\mathrm{L}}^{\otimes m}$, i.e., the $\mathbb{Z}\left[v, v^{-1}\right]$-span of $\left\{M_{f} \mid f \in I^{m}\right\}$. The existence of a ψ_{\imath}-invariant basis $\left\{b_{f}^{i} \mid f \in I^{m}\right\}$ in the $\mathbb{Z}[v]$-span of Lusztig's canonical basis on $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ follows by applying [L94, Lemma 24.2.1] (as we showed in [BW13, Theorem 4.25] in a general based U-module setting). The partial order as stated in the proposition follows from arguments in BW13, proof of Theorem 5.8].

Definition 3.7. We call the basis $\left\{b_{f}^{2} \mid f \in I^{m}\right\}$ constructed in Proposition 3.6 the \imath-canonical basis of $\mathbb{V}_{\mathrm{L}}^{\otimes m}$.

Remark 3.8. For each $f \in I^{m}, b_{f}^{l}$ is the unique element in $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ which is ψ_{\imath}-invariant such that $b_{f}^{\imath} \in M_{f}+\sum_{g} v \mathbb{Z}[v] M_{g}$ (without the partial ordering condition on g).
3.4. The \imath-canonical bases and L-bases. The double centralizer property in Theorem 2.6 specializes to the following double centralizing actions:

$$
\mathbf{U}_{\mathrm{L}}^{2} \stackrel{\Phi}{\curvearrowright} \mathbb{V}_{\mathrm{L}}^{\otimes m} \stackrel{\Psi}{\curvearrowleft} \mathcal{H}_{m}^{\mathrm{L}} .
$$

The following is an L-variant of [BW13, Theorem 5.8] (where $\mathrm{L}\left(s_{0}\right)=\mathrm{L}\left(s_{1}\right)=1$). The original proof, which uses Lemma 2.5, works here.
Proposition 3.9. The anti-linear bar involution $\psi_{\imath}: \mathbb{V}_{L}^{\otimes m} \rightarrow \mathbb{V}_{L}^{\otimes m}$ is compatible with both the bar involution of $\mathcal{H}_{B_{m}}^{L}$ and the bar involution of \mathbf{U}_{L}^{2}; that is, for all $u \in \mathbb{V}_{L}^{\otimes m}, h \in \mathcal{H}_{m}$, and $x \in \mathbf{U}_{L}^{\imath}$, we have $\psi_{\imath}(x u h)=\psi_{\imath}(x) \psi_{\imath}(u) \bar{h}$.

Let

$$
\begin{equation*}
I_{+}^{m}:=\left\{f \in I^{m} \mid 0 \leq f(1) \leq f(2) \leq \cdots \leq f(m)\right\} . \tag{3.5}
\end{equation*}
$$

Then, as a right $\mathcal{H}_{m}^{\mathrm{L}}$-module, $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ is decomposed as

$$
\begin{align*}
& \mathbb{V}_{\mathrm{L}}^{\otimes m}=\bigoplus_{f \in I_{+}^{m}}\left(\bigoplus_{w \in{ }^{J(f)} W_{B m}} \mathbb{Q}(v) M_{f \cdot w}\right), \tag{3.6}\\
& \omega_{f}: \bigoplus_{w \in \in^{J(f)} W_{B_{m}}} \mathbb{Q}(v) M_{f \cdot w} \xrightarrow{\simeq} \eta_{J(f)} \mathcal{H}_{m}^{\mathrm{L}}, \quad M_{f} \mapsto \eta_{J(f)},
\end{align*}
$$

where

$$
J(f)=\left\{j \mid 0 \leq j \leq m-1, f \cdot s_{j}=f\right\} .
$$

It follows by Lemma 3.1 and the Hecke algebra action (2.8) that

$$
\begin{equation*}
\omega_{f}\left(M_{f \cdot w}\right)=\eta_{J(f)} H_{w}, \quad \text { for } f \in I_{+}^{m}, w \in \in^{J(f)} W_{B_{m}} . \tag{3.7}
\end{equation*}
$$

By Lemma 3.1(3) each $\eta_{J(f)} \mathcal{H}_{m}^{\mathrm{L}}$ is preserved by the involution ${ }^{-}$. Thanks to Proposition (3.2 and the identification (3.6), the space $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ admits an L-basis

$$
\left\{c_{f \cdot w}:=\omega_{f}^{-1}\left(C_{w}^{J(f)}\right) \mid f \in I_{+}^{m}, w \in{ }^{J(f)} W_{B_{m}}\right\} .
$$

We have the following main theorem of this section.
Theorem 3.10. The \imath-canonical basis and the L-basis on $\mathbb{V}_{L}^{\otimes m}$ coincide.

Proof. By Proposition 3.2 and (3.7), we have $c_{f \cdot w} \in M_{f \cdot w}+\sum_{\sigma \epsilon^{J(f)} W_{B_{m}}} v \mathbb{Z}[v] M_{f \cdot \sigma}$, for $f \in I_{+}^{m}, w \in{ }^{J(f)} W_{B_{m}}$. By Proposition $3.9 b_{f \cdot w}^{\tau}$ is ψ_{\imath}-invariant. By the existence of the \imath-canonical basis in Proposition 3.6 and the uniqueness in Remark 3.8, we must have $c_{f \cdot w}=b_{f \cdot w}^{2}$. The theorem is proved.

Example 3.11. The \imath-canonical basis on \mathbb{V}_{L} is given as follows: for $i \in I$ and $i>0$,

$$
\begin{array}{ll}
u_{i}, \quad u_{i \cdot s_{0}}, & \text { if } \mathrm{L}\left(s_{0}\right)=0 \\
u_{i}, \quad u_{i \cdot s_{0}}+v^{\mathrm{L}\left(s_{0}\right)} u_{i}, & \text { if } \mathrm{L}\left(s_{0}\right)>0 \\
u_{i}, \quad u_{i \cdot s_{0}}-v^{-\mathrm{L}\left(s_{0}\right)} u_{i}, & \text { if } \mathrm{L}\left(s_{0}\right)<0
\end{array}
$$

The above \imath-canonical basis on \mathbb{V} coincides with Lusztig's example for the L-basis in L03, §5.5].

4. The \jmath-Schur duality with two parameters

In this section, we establish the duality between a coideal subalgebra \mathbf{U}^{3} of the quantum group for $\mathfrak{s l}_{2 r+1}$ and the Hecke algebra of type B. This section is parallel to sections 2] and we shall omit many redundant details to avoid much repetition. We sometimes use the same notation in similar circumstances, as both cases are special cases for $\mathfrak{s l}_{k}$, with $k=2 r+1$ here (and $k=2 r+2$ in sections (2)3).
4.1. The quantum symmetric pair $\left(\mathbf{U}, \mathbf{U}^{\jmath}\right)$. Let r be a positive integer. We set

$$
\begin{equation*}
\mathbb{I}=\left\{-r+\frac{1}{2},-r+\frac{3}{2}, \ldots, r-\frac{1}{2}\right\}, \quad \mathbb{I}^{\jmath}=\left\{\frac{1}{2}, \frac{3}{2}, \ldots, r-\frac{1}{2}\right\} . \tag{4.1}
\end{equation*}
$$

Let $\Pi=\left\{\left.\alpha_{i}=\varepsilon_{i-\frac{1}{2}}-\varepsilon_{i+\frac{1}{2}} \right\rvert\, i \in \mathbb{I}\right\}$ be the simple system of type $A_{2 r}$, and Φ the associated root system. Denote the weight lattice by

$$
\Lambda=\bigoplus_{i=-r}^{r} \mathbb{Z} \varepsilon_{i} .
$$

Let

$$
\mathbf{U}=\mathbf{U}_{q}\left(\mathfrak{s l}_{2 r+1}\right) \otimes_{\mathbb{Q}(q)} \mathbb{Q}(p, q)
$$

be the quantum group of type $A_{2 r}$ over $\mathbb{Q}(p, q)$ with the standard generators E_{i}, F_{i} and $K_{i}^{ \pm 1}$ for $i \in \mathbb{I}$. We denote by $\psi: \mathbf{U} \rightarrow \mathbf{U}$ and $\Delta: \mathbf{U} \rightarrow \mathbf{U} \otimes \mathbf{U}$ the bar involution and comultiplication on \mathbf{U} given by the same formulas as in (2.1) and (2.2).

Let $\left(\mathbf{U}, \mathbf{U}^{J}\right)$ be the quantum symmetric pair (cf. Le99]) over $\mathbb{Q}(p, q)$ with the following Satake diagram:
$A_{2 r}$:

The $\mathbb{Q}(p, q)$-algebra \mathbf{U}^{\jmath} is the $\mathbb{Q}(p, q)$-subalgebra of \mathbf{U} generated by (for $i \in \mathbb{I}^{\jmath}$)

$$
\begin{array}{cl}
k_{i}=K_{i} K_{-i}^{-1}, & e_{i}=E_{i}+F_{-i} K_{i}^{-1}\left(i \neq \frac{1}{2}\right), \quad f_{i}=E_{-i}+K_{-i}^{-1} F_{i}\left(i \neq \frac{1}{2}\right), \tag{4.2}\\
& e_{\frac{1}{2}}=E_{\frac{1}{2}}+p^{-1} F_{-\frac{1}{2}} K_{\frac{1}{2}}^{-1}, \quad f_{\frac{1}{2}}=E_{-\frac{1}{2}}+p K_{-\frac{1}{2}}^{-1} F_{\frac{1}{2}} .
\end{array}
$$

The $\mathbb{Q}(p, q)$-algebra \mathbf{U}^{3} has the following presentation: it is generated by e_{i}, f_{i}, $k_{i}^{ \pm 1}\left(\right.$ for $\left.i \in \mathbb{I}^{\jmath}\right)$, subject to the following relations (for $\left.i, j \in \mathbb{I}^{\jmath}\right)$:

$$
\begin{array}{rlrl}
k_{i} k_{i}^{-1} & =k_{i}^{-1} k_{i}=1, \quad k_{i} k_{j}=k_{j} k_{i}, & \\
k_{i} e_{j} k_{i}^{-1} & =q^{\left(\alpha_{i}-\alpha_{-i}, \alpha_{j}\right)} e_{j}, \quad k_{i} f_{j} k_{i}^{-1}=q^{-\left(\alpha_{i}-\alpha_{-i}, \alpha_{j}\right)} f_{j}, \\
e_{i} f_{j}-f_{j} e_{i} & =\delta_{i, j} \frac{k_{i}-k_{i}^{-1}}{q-q^{-1}}, & & \\
e_{i} e_{j} & =e_{j} e_{i}, \quad f_{i} f_{j}=f_{j} f_{i} & & \text { if }|i-j|>1, \\
e_{i}^{2} e_{j}+e_{j} e_{i}^{2} & =\left(q+q^{-1}\right) e_{i} e_{j} e_{i}, \quad f_{i}^{2} f_{j}+f_{j} f_{i}^{2}=\left(q+q^{-1}\right) f_{i} f_{j} f_{i} & & \text { if }|i-j|=1, \\
e_{\frac{1}{2}}^{2} f_{\frac{1}{2}}+f_{\frac{1}{2}} e_{\frac{1}{2}}^{2} & =\left(q+q^{-1}\right)\left(e_{\frac{1}{2}} f_{\frac{1}{2}} e_{\frac{1}{2}}-e_{\frac{1}{2}}\left(p q k_{\frac{1}{2}}+p^{-1} q^{-1} k_{\frac{1}{2}}^{-1}\right)\right), & \\
f_{\frac{1}{2}}^{2} e_{\frac{1}{2}}+e_{\frac{1}{2}} f_{\frac{1}{2}}^{2} & =\left(q+q^{-1}\right)\left(f_{\frac{1}{2}} e_{\frac{1}{2}} f_{\frac{1}{2}}-\left(p q k_{\frac{1}{2}}+p^{-1} q^{-1} k_{\frac{1}{2}}^{-1}\right) f_{\frac{1}{2}}\right) . &
\end{array}
$$

In contrast to the \mathbf{U}^{\imath} case, the presentation of \mathbf{U}^{\jmath} depends on the parameter p.
The following counterpart of Lemma 2.1 follows from the above presentation.
Lemma 4.1. There exists a unique \mathbb{Q}-algebra bar involution ψ_{J} on the algebra \mathbf{U}^{3} such that $p \mapsto p^{-1}, q \mapsto q^{-1}, k_{i} \mapsto k_{i}^{-1}, e_{i} \mapsto e_{i}$, and $f_{i} \mapsto f_{i}$, for $i \in \mathbb{I}^{J}$.

Just as Proposition 2.3 for \mathbf{U}^{2}, we have the intertwiner $\Upsilon \in \widehat{\mathbf{U}}$ between the involution ψ on \mathbf{U} and the involution ψ_{\jmath} on \mathbf{U}^{3} such that

$$
\psi_{\jmath}(u) \cdot \Upsilon=\Upsilon \cdot \psi(u), \quad \forall u \in \mathbf{U}^{\jmath}
$$

This is a straightforward multiparameter variant of BW13, Theorem 6.4] (cf. BK15, BW16).

Consider a $\mathbb{Q}(p, q)$-valued function ζ on Λ such that $\left(\forall \mu \in \Lambda, i \in\left\{\frac{1}{2}, \ldots, r-\frac{1}{2}\right\}\right)$

$$
\begin{align*}
\zeta\left(\mu+\alpha_{i}\right) & =-q^{\left(\alpha_{i}-\alpha_{-i}, \mu+\alpha_{i}\right)} \zeta(\mu) \\
\zeta\left(\mu+\alpha_{-i}\right) & =-q^{\left(\alpha_{-i}, \mu+\alpha_{-i}\right)-\left(\alpha_{i}, \mu\right)} \zeta(\mu) \\
\zeta\left(\mu+\alpha_{\frac{1}{2}}\right) & =-p q^{\left(\alpha_{\frac{1}{2}}-\alpha_{-\frac{1}{2}}, \mu+\alpha_{\frac{1}{2}}\right)-1} \zeta(\mu), \tag{4.3}\\
\zeta\left(\mu+\alpha_{-\frac{1}{2}}\right) & =-p^{-1} q^{\left(\alpha_{-\frac{1}{2}}, \mu+\alpha_{-\frac{1}{2}}\right)-\left(\alpha_{\frac{1}{2}}, \mu\right)+1} \zeta(\mu)
\end{align*}
$$

Such ζ clearly exists. For any weight \mathbf{U}-module M, we obtain a $\mathbb{Q}(p, q)$-linear map $\widetilde{\zeta}: M \rightarrow M$ as in (2.5). Let w_{0} be the longest element of the Weyl group $W_{A_{2 r}}$ and $T_{w_{0}}$ the associated braid group element. The following multiparameter variant of [BW13, Theorem 6.6] holds by the same proof.

Proposition 4.2. For any finite-dimensional U-module M, the composition map $\mathcal{T}:=\Upsilon \circ \widetilde{\zeta} \circ T_{w_{0}}: M \longrightarrow M$ is a \mathbf{U}^{\jmath}-module isomorphism.
4.2. The $\left(\mathbf{U}^{J}, \mathcal{H}_{m}\right)$-duality. Let $I=\mathbb{I} \pm \frac{1}{2}$. Let $\mathbb{V}=\bigoplus_{a \in I} \mathbb{Q}(p, q) u_{a}$ be the natural representation of \mathbf{U}. The \mathbf{U}-module structure of \mathbb{V} can be visualized as follows:

We regard the \mathbf{U}-module $\mathbb{V}^{\otimes m}$ as a \mathbf{U}^{3}-module by restriction.

Recall from (2.7) the element $M_{f} \in \mathbb{V}^{\otimes m}$, for any $f \in I^{m}$ (except that I here is understood as in (4.1)). The Weyl group $W_{B_{m}}$ acts on I^{m} in the obvious way. The Hecke algebra \mathcal{H}_{m} acts on $\mathbb{V}^{\otimes m}$ as follows:

$$
\begin{align*}
& M_{f} \cdot H_{i}= \begin{cases}q^{-1} M_{f}, & \text { if } f(i)=f(i+1) \\
M_{f \cdot s_{i}}, & \text { if } f(i)<f(i+1) \\
M_{f \cdot s_{i}}+\left(q^{-1}-q\right) M_{f}, & \text { if } f(i)>f(i+1)\end{cases} \\
& M_{f} \cdot H_{0}= \begin{cases}p^{-1} M_{f}, & \text { if } f(1)=0 \\
M_{f \cdot s_{0}}, & \text { if } f(1)>0 \\
M_{f \cdot s_{0}}+\left(p^{-1}-p\right) M_{f}, & \text { if } f(1)<0\end{cases} \tag{4.4}
\end{align*}
$$

Summarizing, we shall depict the actions of \mathbf{U}^{3} and \mathcal{H}_{m} on $\mathbb{V}^{\otimes m}$ as

$$
\begin{equation*}
\mathbf{U}^{\jmath} \stackrel{\Phi}{\curvearrowright} \mathbb{V}^{\otimes m} \stackrel{\Psi}{\curvearrowleft} \mathcal{H}_{m} . \tag{4.5}
\end{equation*}
$$

We fix ζ in (4.3) such that $\zeta\left(\epsilon_{-r}\right)=1$. Then, we have

$$
\zeta\left(\epsilon_{-i}\right)=\left\{\begin{array}{l}
(-q)^{-r+i} \quad \text { if } i \neq 0 \\
(-q)^{r} p \quad \text { if } i=0
\end{array}\right.
$$

for all $i \in\{-r,-r+1, \ldots, r\}$.
Lemma 4.3. The actions of H_{0} and \mathfrak{T}^{-1} on \mathbb{V} coincide.
Proof. We define

$$
\begin{aligned}
& \mathbb{V}^{+}=\bigoplus_{j \in \mathbb{I}^{j}} \mathbb{Q}(p, q)\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right) \bigoplus \mathbb{Q}(p, q) u_{0} \\
& \mathbb{V}^{-}=\bigoplus_{j \in \mathbb{I}^{j}} \mathbb{Q}(p, q)\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right)
\end{aligned}
$$

By direct calculations, we have, for $j \in \mathbb{I}^{\jmath}$,

$$
\begin{aligned}
f_{\alpha_{\frac{1}{2}}} \cdot u_{0} & =u_{-1}+p u_{1} \\
f_{i} \cdot\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right) & =\delta_{i, j+1} \cdot\left(u_{-(j+1)-\frac{1}{2}}+p u_{(j+1)+\frac{1}{2}}\right), \\
e_{i} \cdot\left(u_{-j-\frac{1}{2}}+p u_{j+\frac{1}{2}}\right) & =\delta_{i, j} \cdot\left(p^{-\delta_{\frac{1}{2}, i}} u_{-(j-1)-\frac{1}{2}}+p u_{(j-1)+\frac{1}{2}}\right) \\
f_{i} \cdot\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right) & =\delta_{i, j+1} \cdot\left(u_{-(j+1)-\frac{1}{2}}-p^{-1} u_{(j+1)+\frac{1}{2}}\right) \\
e_{i} \cdot\left(u_{-j-\frac{1}{2}}-p^{-1} u_{j+\frac{1}{2}}\right) & =\delta_{i, j} \cdot\left(p^{-\delta_{\frac{1}{2}, i}} u_{-(j-1)-\frac{1}{2}}-p^{-1} u_{(j-1)+\frac{1}{2}}\right)
\end{aligned}
$$

Hence, $\mathbb{V}=\mathbb{V}^{+} \oplus \mathbb{V}^{-}$as a \mathbf{U}^{3}-module. Furthermore, H_{0} acts as the scalar multiplication by p^{-1} (resp., $-p$) on \mathbb{V}^{+}(resp., \mathbb{V}^{-}).

Since we have $T_{w_{0}}\left(u_{j}\right)=(-q)^{r-j} \cdot u_{-j}$, we obtain

$$
\widetilde{\zeta} \circ T_{w_{0}}\left(u_{j}\right)= \begin{cases}u_{-j} & \text { if } j \neq 0 \\ p \cdot u_{0} & \text { if } j=0\end{cases}
$$

On the other hand, one computes the first term of Υ as

$$
\Upsilon_{\alpha_{\frac{1}{2}}+\alpha_{-\frac{1}{2}}}=\left(p-p^{-1}\right) F_{\alpha_{\frac{1}{2}}} F_{\alpha_{-\frac{1}{2}}}
$$

Hence, we have $\mathcal{T}\left(u_{0}\right)=p u_{0}, \mathcal{T}\left(u_{1}\right)=u_{-1}-\left(p^{-1}-p\right) u_{1}$, and $\mathcal{T}\left(u_{-1}\right)=u_{1}$, which imply that the action of \mathcal{T}^{-1} on \mathbb{V}^{+}and \mathbb{V}^{-}are given by scalar multiplication by p^{-1} and $-p$, respectively. The lemma follows.

Now with the help of Lemma 4.3 we obtain the following counterpart of Theorem 2.6 by the same argument.

Theorem 4.4 (\jmath-Schur duality). The actions of \mathbf{U}^{\jmath} and \mathcal{H}_{m} on $\mathbb{V}^{\otimes m}$ (4.5) commute and form double centralizers; that is,

$$
\Phi\left(\mathbf{U}^{\jmath}\right)=\operatorname{End}_{\mathcal{H}_{m}}\left(\mathbb{V}^{\otimes m}\right), \quad \operatorname{End}_{\mathbf{U}^{\jmath}}\left(\mathbb{V}^{\otimes m}\right)^{\mathrm{op}}=\Psi\left(\mathcal{H}_{m}\right)
$$

4.3. The \jmath-canonical basis and L-basis. All the results in Sections 3.3-3.4 admit natural counterparts in the setting of \mathbf{U}^{3}. The proofs are similar or easier in the \mathbf{U}^{3} setting (e.g., the integrality of the intertwiner Υ is completely the same as in (BW13). So we shall be brief.

Given a weight function $\mathrm{L}: W_{B_{m}} \rightarrow \mathbb{Z}$, by a base change we have a $\mathbb{Q}(v)$-algebra

$$
\mathbf{U}_{\mathbf{L}}^{\jmath}=\mathbf{U}^{\jmath} \otimes_{\mathbb{Q}(p, q)} \mathbb{Q}(v) .
$$

Recall that the \mathbf{U}_{L}-module $\mathbb{V}^{\otimes m}$ admits a bar involution ψ using the quasi- R-matrix Θ ([L94, Chap. 4]). We define another anti-linear bar involution on the $\mathbf{U}_{\mathrm{L}}^{3}$-module $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ as

$$
\psi_{\jmath}=\Upsilon \circ \psi .
$$

Entirely similarly to BW13, we can establish the \jmath-canonical bases on finite-dimensional simple U-modules and their tensor products. In particular $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ admits a \jmath-canonical basis (similar to Proposition (3.6). As in Proposition 3.9 we have compatible bar maps in the following sense: for all $u \in \mathbb{V}_{\mathrm{L}}^{\otimes m}, h \in \mathcal{H}_{m}^{\mathrm{L}}$, and $x \in \mathbf{U}_{\mathrm{L}}^{\jmath}$, we have

$$
\psi_{\jmath}(x u h)=\psi_{\jmath}(x) \psi_{\jmath}(u) \bar{h} .
$$

We still define I_{+}^{m} as in (3.5) and the decomposition of $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ as a right $\mathcal{H}_{m^{-}}^{\mathrm{L}}$ module as in (3.6). Then $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ admits a bar involution and an L-basis (inherited from $\left.\mathcal{H}_{m}^{\mathrm{L}}\right)$. Keep in mind again that I_{+}^{m} and $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ are slightly different from those in section 3.4 because I here is understood as in (4.1). We have the following counterpart of Theorem 3.10.

Theorem 4.5. The 〕-canonical basis of $\mathbb{V}_{\mathrm{L}}^{\otimes m}$ is identical to the L-basis of $\mathbb{V}_{\mathrm{L}}^{\otimes m}$.
Example 4.6. We have the following \jmath-canonical basis for \mathbb{V}_{L} (for $1 \leq i \leq r$):

$$
\begin{aligned}
& u_{0}, \quad u_{i}, \quad u_{i \cdot s_{0}}, \quad \text { for } \mathrm{L}\left(s_{0}\right)=0 ; \\
& u_{0}, \quad u_{i}, \quad u_{i \cdot s_{0}}+v^{\mathrm{L}\left(s_{0}\right)} u_{i}, \quad \text { for } \mathrm{L}\left(s_{0}\right)>0 ; \\
& u_{0}, \quad u_{i}, \quad u_{i \cdot s_{0}}-v^{-\mathrm{L}\left(s_{0}\right)} u_{i} \quad \text { for } \mathrm{L}\left(s_{0}\right)<0 .
\end{aligned}
$$

Again this example coincides with Lusztig's example in [L03, §5.5].

Acknowledgements

The first author was partially supported by an AMS-Simons Travel Grant, and he thanks the Max Planck Institute for Mathematics for support which facilitated this collaboration. The second author was partially supported by the NSF grant DMS-1405131, and he thanks George Lusztig for helpful discussions on [L03].

References

[BK15] M. Balagović and S. Kolb, Universal K-matrix for quantum symmetric pairs, J. Reine Angew. Math. (to appear), DOI 10.1515/crelle-2016-0012, arXiv:1507.06276v2.
[B16] H. Bao, Kazhdan-Lusztig theory of super type D and quantum symmetric pairs, Represent. Theory 21 (2017), 247-276.
[BW13] H. Bao and W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, to appear in Asterisque, arXiv:1310.0103v2.
[BW16] H. Bao and W. Wang, Canonical bases arising from quantum symmetric pairs, arXiv:1610.09271.
[Deo87] Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483-506, DOI 10.1016/0021-8693(87)90232-8. MR916182
[FKK98] I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov Jr., Kazhdan-Lusztig polynomials and canonical basis, Transform. Groups 3 (1998), no. 4, 321-336, DOI 10.1007/BF01234531. MR1657524
[J86] Michio Jimbo, A q-analogue of $U(\mathfrak{g l}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247-252, DOI 10.1007/BF00400222. MR841713
[KL79] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165-184, DOI 10.1007/BF01390031. MR560412
[Le99] Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729-767, DOI 10.1006/jabr.1999.8015. MR1717368
[L94] George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR2759715
[L03] G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442

Department of Mathematics, University of Maryland, College Park, Maryland 20742
E-mail address: huanchen@math.umd.edu
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
E-mail address: ww9c@virginia.edu
Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

E-mail address: watanabe.h.at@m.titech.ac.jp

[^0]: Received by the editors September 6, 2016 and, in revised form, February 27, 2017 and March 17, 2017.

 2010 Mathematics Subject Classification. Primary 17B10.

