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COTOTAL ENUMERATION DEGREES AND THEIR
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Abstract. A set A ⊆ ω is cototal under enumeration reducibility if A ≤e

A, that is, if the complement of A is total. We show that the e-degrees of
cototal sets characterize the e-degrees of maximal anti-chain complements, the
e-degrees of enumeration-pointed trees on 2<ω, and the e-degrees of languages
of minimal subshifts on 2ω .

As a consequence, we obtain a characterization of the Turing degree spec-
tra of nontrivial minimal subshifts: they are the enumeration cones of cototal
sets. From the perspective of the Turing degrees, this provides a complete un-

derstanding of the computational power of minimal subshifts. We also obtain
an application to computable structure theory, showing that the enumeration
cones of cototal sets characterize those structure spectra which are Turing-
upward closures of Fσ sets of reals.

1. Introduction

Questions concerning the effective or algorithmic properties of classical mathe-
matical objects have had a significant impact on the development of modern math-
ematics. In the study of Diophantine sets, we have Matiyasevich’s resolution of
Hilbert’s tenth problem; or on the topic of word problems for groups, the semi-
nal work of Dehn in the early development of geometric group theory. A central
goal of applied computability theory is to mathematically formalize this algorith-
mic perspective by precisely quantifying the computational content of classes of
mathematical objects and relations.

The most widely studied measure of such computational content is that given
by Turing reducibility, and one approach to quantifying the complexity of a class
of objects is to calculate the degree spectra of the class, that is, the collection of
Turing degrees obtained by the members of the class. Consider for example the
characterization of the degrees of the block relations of computable linear order-
ings as precisely the Σ0

3 degrees (see [9]), or the Novikov-Boone characterization
of the degrees of word problems for finitely presented groups as the computably
enumerable degrees (see [3]).

However, applications often must employ reducibilities other than Turing reduc-
tion. An early indication that one must consider other reducibilities comes from
group theory. A result of Macintyre shows that for finitely generated groups G
and H, that if G embeds as a subgroup of every algebraically closed extension of
H, then the word problem for G is Turing reducible to the word problem for H
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[16]. Ziegler showed that the converse fails, but that the result becomes an equiva-
lence if a stronger computability-theoretic reducibility, namely Ziegler reducibility,
is substituted for Turing reducibility [27]. Because an algebraically closed group
is determined by the finitely generated groups that embed in it, the computability
theoretic structure not only provides a complete understanding of the algebraic one,
but is in fact implicit within the algebraic structure (see also [2] and [11]).

Ziegler’s reducibility (which he called ∗-reducibility) was formulated as a
strengthening of enumeration reducibility, a reducibility important in its own right
and the primary reducibility we will use in this paper. Enumeration reducibil-
ity, along with its associated degree structure, measures the relative computational
difficulty in producing enumerations of sets of natural numbers.

Enumeration reducibility also revealed its significance early on in the study
of structure spectra, that is, degree spectra of isomorphism classes of structures.
Richter used enumeration reducibility to give sufficient conditions on a first-order
theory to ensure it has countable models whose structure spectra has no least el-
ement, so that the Turing degrees alone are not sufficient to capture the effective
content of the structure considered up to isomorphism [21, 22].

Enumeration reducibility has also been important in applications to computable
analysis. Miller, answering a question of Pour-El and Lempp, showed that the
Turing degrees are similarly deficient for quantifying the complexity of continuous
real-valued functions, introducing the continuous degrees, a subclass of the enumer-
ation degrees which are able to capture the computational content of continuous
functions [17]. Kihara and Pauly have extended this connection to associate degree
structures to arbitrary quasi-Polish spaces, obtaining the enumeration degrees as
the degree structure associated to the universal quasi-Polish space O(N) [15]. These
connections have proven particularly fruitful, resulting in a solution to the general
n’th level Borel isomorphism problem.

In this paper, using a particular subclass of the enumeration degrees: the cototal
enumeration degrees, we succeed in identifying several degree spectra which have
been of particular interest in the fields of effective structure theory and symbolic
dynamics. In Section 4, we see that the cototal enumeration degrees can be used
to characterize which enumeration cones are obtainable as Turing upward closures
of Fσ sets of reals, a question stemming from a result of Montalbán on structure
spectra. Then in Section 5, we consider an example from symbolic dynamics, that
of subshifts, and show that the cototal enumeration degrees provide a complete
characterization of the Turing degree spectra of their building-blocks: the minimal
subshifts.

The computational power of subshifts, and in particular of minimal subshifts,
has generated interest for several years. From the perspective of computability the-
ory, see Durand, Levin, and Shen [8], Cenzer, Dashti, and King [4], Cenzer, Dashti,
Toska, and Wyman [5,6], as well as Simpson [24], Jeandel and Vanier [14], Hochman
and Vanier [12], and Jeandel [13]. In computer science, the study of the computa-
tional power of simple dynamical systems, especially subshifts, comprises an active
body of recent research (see [7]). Minimal subshifts are also important in studying
individual infinite sequences, because measures of sequence complexity that are im-
portant in characterizing the algebraic combinatorics of infinite sequences can be
studied on the subshifts they generate (the well-studied Thue-Morse sequence, for
example, generates a minimal subshift) [20].
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We consider the results of Section 5 to constitute an extension of the connection
between the enumeration degrees and applications of effective mathematics–already
rich in application to group theory and analysis–now to the field of symbolic dynam-
ics. Although these results mark the first use of the cototal enumeration degrees to
identify a degree spectrum of independent interest, observations of Jeandel indicate
intimate connections between cototality and both simple groups and maximal ideals
of rings [13], so we anticipate further interest. Also, in the point-degree spectrum
language of Kihara and Pauly, cototality results from topological tameness of the
underlying represented spaces, so we believe a better understanding of the cototal
degrees will be impactful with regard to those applications as well.

In addition to our applications, some of our results should be useful in pursuing a
greater understanding of the cototal enumeration degrees themselves. For example,
Theorem 3.2 provides a simple characterization of the cototal enumeration degrees
as those e-degrees which contain complements of maximal anti-chains on ω<ω, and
Theorem 4.5 as the enumeration degrees which contain e-pointed trees. This sec-
ond characterization is particularly useful because of the rich intro-enumerability
properties of e-pointed trees. For example, Miller and Soskova have recently used
Theorem 4.5 to prove that the cototal enumeration degrees are dense [18]. In the
theory of the structure of the enumeration degrees, cototality corresponds to a
combinatorial property of good approximation that has been essential in establish-
ing structural properties of the enumeration degrees, so we anticipate that further
study of the cototal degrees will be important in understanding the structure of the
enumeration degrees, and in turn the c.e.-degrees and Turing degrees.

2. Cototal sets and degrees

Enumeration reducibility, introduced by Friedberg and Rogers in 1959, captures
the relative difficulty of producing enumerations of sets of natural numbers. Alter-
natively, it can be thought of as a notion of computation between sets that uses
only the positive portion of their set membership information.

An enumeration functional Γ is a computably enumerable (c.e.) set of pairs 〈n, F 〉
with each n ∈ ω and F the canonical code of a finite subset of ω. We think of Γ as
reading the positive membership information ofX, and, for 〈n, F 〉 ∈ Γ, enumerating
n upon seeing F ⊆ X. GivenX ⊆ ω, we define Γ(X) = {n : ∃F (〈n, F 〉 ∈ Γ and F ⊆
X)}.

For sets A,B ⊆ ω, we say that A ≤e B if there exists an enumeration functional
Γ with Γ(B) = A. Equivalently, A ≤e B if there is a single Turing functional which,
given any enumeration of B, outputs an enumeration of A. The relation ≤e defines
a pre-order on 2ω, the partial order it induces is called the enumeration degrees, or
e-degrees, denoted De.

Another way to characterize enumeration reducibility was given by Selman [23].
Given a set X, let E(X) denote the collection of all Turing degrees computing
enumerations of X, called the enumeration cone of X. Then Selman showed:

Theorem 2.1 (Selman [23]). A ≤e B if and only if E(B) ⊆ E(A).

A set X is total if its positive information already suffices to determine its neg-
ative information, or precisely: if X ≤e X. We call an enumeration degree total
if it is the e-degree of a total set. The Turing degrees (which we denote by DT )
embed in the enumeration degrees via the map induced set-wise by X 	→ X ⊕X.
The image of this embedding is the total e-degrees.
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The name “total” is evocative of the following fact: given a total function f , total
in the sense of having full domain, the set graph(f) = {〈n, f(n)〉 : n ∈ ω} is total
under enumeration reducibility. In fact, every total set is enumeration-equivalent
to the graph of a total function, for example, its characteristic function.

A closely related notion is that of cototality. A set A is cototal if A ≤e A, that is,
if the complement of A is total as a set, and we call an enumeration degree cototal
if it is the e-degree of a cototal set.

For example, the complements of graphs of total functions are cototal as sets.
The e-degrees of such sets are called graph cototal. The class of graph cototal
degrees has been studied by Solon in [25] and [26]. Several other natural classes of
cototal sets were brought to attention by Jeandel in [13], including examples from
symbolic dynamics and algebra.

The cototal degrees were studied recently by Andrews et al. in [1]. In addition
to showing that the cototal enumeration degrees are a proper subclass of the enu-
meration degrees (that not every enumeration degree is cototal), they also separate
the class of cototal degrees from the class of graph cototal degrees. That is: not
every cototal set is enumeration equivalent to a complement of the graph of a total
function. It is natural then to look for classes of objects that do capture cototality
in the enumeration degrees. Andrews et al. show that the complements of maxi-
mally independent sets in ω<ω (with ω<ω considered as an undirected graph) form
one such class.

In Section 3 we identify another simple class of objects characterizing cototality,
showing that the cototal degrees are the degrees of complements of maximal anti-
chains on ω<ω. In Section 4, we show that the e-degrees of enumeration pointed
trees are the same as those of the maximal anti-chain complements, providing yet
another class of objects whose e-degrees are the cototal degrees. Although we use
this section as a stepping stone to approach the class considered in Section 5, e-
pointed trees are interesting in their own right and provide us with applications to
computable structure theory.

Section 5 focuses on a particular example of a class of cototal objects identified
by Jeandel in [13], namely, the languages of minimal subshifts. Jeandel and Vanier
in [14] prove that the Turing degree spectra of a nontrivial minimal subshift is
the enumeration cone of its language. We show that the enumeration degrees of
languages of minimal subshifts are the same as the enumeration degrees of enumer-
ation pointed trees, providing a characterization of the Turing degree spectra of
nontrivial minimal subshifts as precisely the enumeration cones of cototal sets.

3. Maximal anti-chain complements

Theorem 3.1. If A is a maximal anti-chain on ω<ω, then A is cototal.

Proof. To determine if a string σ ∈ ω<ω is in A, we wait for some element compa-
rable but not equal to σ to enter A. Since A is an anti-chain, we only enumerate
elements of A in this way. And by maximality, if σ ∈ A, then something comparable
but not equal to σ must be in A, so our procedure enumerates all of A. �

Note that every total set is enumeration-equivalent to a maximal anti-chain.
Given a total set A, consider C given by {n : n ∈ A} ∪ {n�k . . . : n ∈ A, k ∈ ω}.
Then A ≡e C. However, it may be that A �≡e C, i.e., when A is not total itself.
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Nonetheless, the degrees of cototal sets are, in fact, exactly the degrees of the
complements of maximal anti-chains:

Theorem 3.2. If A is cototal, then A ≡e C for some C a maximal anti-chain on
ω<ω.

Contrast this result with the case for function graphs: every total set A is
enumeration-equivalent to the graph of a total function, for example, the graph
of its characteristic function χA, but not every cototal degree contains a set of the
form graph(f) [1].

Proof of Theorem 3.2. Let A ≤e A via the enumeration operator Γ. Fix a com-
putable listing of Γ to work with. We construct a subset C of ω<ω as follows:

First, put λ ∈ C. For the first layer of C as a subset of ω<ω, we enumerate A.
That is, n ∈ C ⇐⇒ n ∈ A.

For each node α ∈ ω<ω \ {λ}, we attach some finite set, which we call the claim
of α. We think of α as claiming this finite set is a subset of A. A node is filled in,
that is, enumerated into C, when we witness its claim to be false. For the first-level
nodes α = n, we set their claims to {n}. So for nodes α = n, α ∈ C ⇐⇒ α ∈ A,
that is, if and only if α is wrong about its claim.

Layer by layer, we attach a claim to each node α as follows: each node α of length
|α| = k looks at all the k − 1 nodes below it (apart from λ), and their claims, and
chooses one element from each claim to attempt to prove wrong. For each chosen
element n, α picks axioms 〈n, F 〉 from Γ. We choose claims in such a way that
directly above each node, we attach all possible claims from all possible choices of
axioms from Γ that could prove the claims below them wrong.

To do this asignment computably we assume, without loss, that Γ has the fol-
lowing property: for all n ∈ ω, ∃F such that 〈n, F 〉 ∈ Γ. To achieve this we can,
for example, add the axioms 〈n, {a}〉 to Γ for some fixed a ∈ A.

We define the claim of α to be the union of the F ’s from those axioms chosen.
A node α is put into C when our enumeration of A proves its claim wrong. That
is, when some element in the claim of α is enumerated into A.

So C is an enumeration below A via the construction, and also A is an enumer-
ation below C because A can be read out explicitly in the first layer of C.

Claim. C is a maximal anti-chain.

We visualize the nodes of ω<ω as open circles, which are filled in as they are
enumerated into C.

If some α ∈ C, then its claim is never proven wrong. But its claim was chosen
such that, if it were never proven wrong, all the nodes below α must be filled in,
enumerated into C. Moreover, all nodes above α were chosen such that, if they
are in C, then the nodes below them must all be in C. But α is not in C, so by
contrapositive no node above it is in C.

Now suppose C were not maximal as an anti-chain. That is, suppose we could
add some node α to C. Then under our construction, the node α is filled in, and
also all nodes below it are filled in. But then α and all of its ancestors are wrong
about their claims. So there is some choice of axioms from Γ proving these claims
wrong. So there is some descendent of α, say α�n whose claim is the union of
those axioms proving the ancestor’s claims wrong. But then the claim of α�n is
never proven wrong, so α�n is in C. So we cannot add α to C and still obtain an
anti-chain. �
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4. Enumeration-pointed trees

Definition 4.1. An e-pointed tree is a tree T ⊆ 2<ω with no dead-ends, such that
X ≥e T for all X ∈ [T ].

These objects were encountered in work of Antonio Montalbán in computable
structure theory:

Theorem 4.2 (Montalbán [19]). The Turing upward closure of an Fσ set of reals
in ωω cannot be the degree spectra of a structure unless it is an enumeration cone.
In fact, for X ⊆ DT , the following are equivalent:

(1) X is the degree spectra of a structure and the Turing upward closure of an
Fσ set of reals in ωω.

(2) X is the enumeration cone of an e-pointed tree.

Recall that the enumeration cone of a set A ⊆ ω is the collection E(A) of all
Turing degrees computing enumerations of A. In the case that A has total enu-
meration degree, E(A) coincides with the Turing cone of A: the upward closure of
d(A) in the Turing degrees. Montalbán notes that there are structure spectra as
in Theorem 4.2 which are not Turing cones. However, it was not known precisely
which enumeration cones were possible, for example, whether every enumeration
cone is realized as the Turing upward closure of an Fσ set of reals. We provide an
answer by showing that the enumeration degrees of e-pointed trees are exactly the
cototal degrees. In particular, not every enumeration cone is realized as a structure
spectra as in Theorem 4.2.

We first show that e-pointed trees appear in every cototal degree. In fact, every
cototal degree contains an e-pointed tree of a particular form.

Definition 4.3. A uniformly e-pointed tree is a tree T ⊆ 2<ω with no dead-ends for
which there exists an enumeration functional W so that W (X) = T for all X ∈ [T ].

Uniformly e-pointed trees have a useful intro-enumerability property:

Theorem 4.4. If T is a uniformly e-pointed tree, then for each n, there exists an
m so that T � n ⊆ W|σ|(σ) for all σ ∈ T with |σ| ≥ m.

When working with a uniformly e-pointed tree T and functional W , we denote
the function taking n to the first such m by s(n) = m.

Proof of Theorem 4.4. Since every path through T enumerates T � n, the collection
of basic clopen sets {[σ] : σ ∈ T and W|σ|(σ) ⊇ T � n} ∪ {[σ] : σ �∈ T} covers 2ω.
By compactness of 2ω, finitely many [σ] suffice, so by some finite level every path
in T has enumerated T � n. �
Theorem 4.5. If A is cototal, then A ≡e T for some uniformly e-pointed tree T .

Proof. Fix C a maximal anti-chain on ω<ω with C ≡e A. Each nonzero level of
2<ω will be associated to a pair of comparable, unequal strings in ω<ω.

Put λ in T . If level n is associated with (σ, τ ), then every node on level n of T
branches left if σ ∈ C and right if τ ∈ C.

Since C is an anti-chain, at most one of σ, τ belong to C, so T has no dead-ends.
By construction, C ≥e T .

To see that T ≥e C, we enumerate τ when we branch left at the level associated
to (τ, σ) and enumerate σ when we branch right. But we have more: we claim that
by the same functional, each path in T uniformly enumerates C.
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Let σ ∈ C. Then by maximality of C, there must be some element τ comparable
to σ with τ ∈ C. Then the level of 2<ω associated to (τ, σ) can only branch to the
right in T , so whichever path we take in T , we must enumerate σ.

Therefore, we have one functional W ′ witnessing X ≥e C for each X ∈ [T ]
uniformly. Composing this with the reduction C ≥e T , we obtain a functional W
witnessing that T is a uniformly e-pointed tree. �

It is not hard to see, by an application of compactness of 2ω, that uniformly e-
pointed trees are cototal. It is not as easy to see that e-pointed trees themselves are
all of cototal degree. To prove this, we first pass through a superclass of uniformly
e-pointed trees.

Definition 4.6. A uniformly e-pointed tree with dead-ends is a tree T ⊆ 2<ω,
possibly with dead-ends, for which there exists an enumeration functional W so
that W (X) = T for all X ∈ [T ].

In particular, a uniformly e-pointed tree is a uniformly e-pointed tree with dead-
ends.

Theorem 4.7. If T is a uniformly e-pointed tree with dead ends, then T is cototal.

Proof. Let W be the enumeration functional witnessing T has the e-pointed prop-
erty uniformly.

Let n ∈ T and consider the following cover of 2ω by clopen sets:

{[σ] : σ �∈ T} ∪ {[σ] : W (σ) � n}.
Since 2ω is compact, finitely many σ suffice to cover the space. But then after
enumerating finitely many σ ∈ T , for any n ∈ T we witness at some finite stage
that every path remaining enumerates n, so we can safely enumerate n into T . This
procedure is uniform, so T ≥e T . �
Lemma 4.8. If T is a (nonuniformly) e-pointed tree, then there exists some uni-
formly e-pointed tree T ′ with dead-ends such that T ≥e T

′ and T ′ ≥e T .

Proof. Given T , we attempt to build a sequence of subsets Ti diagonalizing against
enumeration functinoals Wi as follows:

T0 = T .
To define Tn+1, consider the enumeration functional Wn.
If there exists σ ∈ Tn with [σ]∩[Tn] �= ∅ andWn(σ) �⊆ T , then set Tn+1 = Tn∩[[σ]].

Otherwise, assuming Wn does not enumerate T uniformly on [Tn], there must be
some path X ∈ [Tn] so that Wn(X) �� τn for some τn ∈ T . Then define Tn+1 by
removing any node σ ∈ Tn for which Wn,|σ|(σ) � τn.

If this procedure continues indefinitely, we have nested sets Ti with [Ti] all
nonempty. A nested sequence of compact nonempty sets has nonempty intersection,
so we obtain a path X ∈ T on which no Wn enumerates T .

So this procedure must stop at some finite stage, that is, after intersecting T
with some finitely many [[σk]] and removing all nodes σ such that Wn,|σ|(σ) � τk
for finitely many k, τk, we have that Wn enumerates T uniformly on [Tn+1].

Let T ′ = Tn+1, W
′ = Wn. Notice that since we intersect with finitely many

[[σk]] and remove only nodes σ such that Wk,|σ|(σ) � τk for finitely many k, τk,
we have that T ≥e T ′: as we enumerate T we allow only those nodes lying above
or below the finitely many σk, and before enumerating a node σ check whether
Wk,|σ|(σ) � τk for the finitely many k, τk.
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Claim. T ′ ≥e T .

Again by a similar compactness argument as in Theorem 4.7, for n ∈ T we have
that

{[σ] : σ �∈ T ′} ∪ {[σ] : W ′(σ) � n}
is an open cover of 2ω. By compactness, in enumerating T ′, by some finite stage
we will have enumerated enough of T ′ to see, checking finitely many other σ, that
all remaining paths enumerate n. �

Theorem 4.9. If T is an e-pointed tree, then T has cototal degree.

Proof. Let X = T ⊕ T ′, with T ′ as in Lemma 4.8. Clearly X ≥e T , and since
T ≥e T ′, we see T ≥e X. So X ≡e T . And since T ′ ≥e T ≥e T ′, we see that
X ≥e X, so X is cototal. �

As a corollary:

Corollary 4.9.1. The following are equivalent of an e-degree e:
1. e contains a uniformly e-pointed tree.
2. e contains an e-pointed tree.
3. e contains a uniformly e-pointed tree with dead-ends.
4. e is cototal.

We obtain a corollary to Montalbán’s Theorem 4.2:

Corollary 4.9.2. A degree spectrum is the Turing upward closure of an Fσ set of
reals in ωω if and only if it is the enumeration cone of a cototal set. In fact, for
X ⊆ DT the following are equivalent:

(1) X is the degree spectrum of a structure and the Turing upward closure of
an Fσ set of reals.

(2) X is the enumeration cone of a cototal set.

In particular, not every enumeration cone may be simultaneously obtained both
as the degree spectrum of a structure and as the Turing upward closure of an Fσ

set of reals.

5. Minimal subshifts

In [13], Emmanuel Jeandel gave several examples of classes of algebraic and
combinatorial objects exhibiting cototality. We will consider one such class, the
languages of minimal subshifts. More on minimal subshifts can be found in [12].
The shift operator on 2ω is the map taking a real α ∈ 2ω to the unique β ∈ 2ω such
that α = n�β for some n ∈ 2, that is, the operator which erases the first bit of a
real. In functional notation, it is the operator α(n) 	→ α(n+ 1).

Definition 5.1. A subshift is a closed, shift-invariant subspace of 2ω.

The trivial example of 2ω itself is called the full binary shift. Binary subshifts
are thought of as describing the evolution of a symbolic dynamical system taking
states in {0, 1}. More generally, subshifts on nω can be defined for any finite set
of n states, with elements of the subshift describing a possible sequence of states
taken over some evolution of the system.
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Definition 5.2. A subshift X is minimal if it satisfies one of the following equiv-
alent conditions:

1. X contains no proper subshifts.
2. X is the shift-invariant closure of any of its points.
3. Every point of X contains the same subwords.

Definition 5.3. The language of a subshift X, denoted L(X), is the collection

of all subwords appearing in any of its points. The set L(X) is called the set of
forbidden words.

The closure condition guarantees that a subshift is characterized by its language,
or equivalently by its collection of forbidden words. Conversely, designating any
collection of words as forbidden determines a unique subshift consisting of all infinite
strings which avoid the designated forbidden words (i.e., which do not contain any
forbidden word as a subword).

Definition 5.4. The Turing degree spectrum of a subshift X is the collection of
Turing degrees of its points.

Definition 5.5. A subshift is trivial (or periodic) if it is the shift-invariant closure
of a point of the form X = w∞ for some finite word w ∈ 2<ω.

The language of a subshift is particularly relevant to us because of the following
theorem:

Theorem 5.6 (Jeandel, Vanier [14]). If X is a minimal subshift which is not trivial,
the Turing degree spectrum of X is the enumeration cone E(L(X)).

Note by Theorem 2.1, the set E(L(X)) of Turing degrees which compute enu-
merations of L(X) is characterized by the enumeration degree of L(X). So un-
derstanding the possible Turing degree spectra of minimal subshifts X reduces to
understanding what enumeration degrees lie at the base of these enumeration cones
E(L(X)). The cototal degrees enter the picture here:

Theorem 5.7 (Jeandel [13]). If X is a minimal subshift, then L(X) is cototal.

Degreewise then, an enumeration degree must be cototal to be the enumeration
degree of the language of a minimal subshift. We show that this condition is
sufficient. That is: each cototal degree contains the language of a minimal subshift.

Our construction is similar to the main construction in [12], in that we build a
minimal subshift X as a nested intersection of subshifts Xn generated by languages
Ln, with each Ln+1 built up from concatenations of words in Ln. In [12], minimality
is ensured by requiring that each word in Ln+1 contains all of Ln as subwords. Our
main insight is that it is enough that for each n there exists an m > n so each word
in Lm contains all of Ln as subwords. This relaxed condition allows us to exploit
the intro-enumerability property of e-pointed trees given in Theorem 4.4.

Theorem 5.8. If A is cototal, then A ≡e L(X) for some X a minimal subshift on
2ω.

Proof. Given A cototal, let T ∈ dege(A) be a uniformly e-pointed tree with func-
tional W .

For each string σ ∈ 2<ω, the set W|σ|(σ) defines a subtree of 2≤|σ| given by the

downward closure of 2≤|σ| ∩W|σ|(σ), which we will denote by W σ. Note that W σ
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are increasing in σ, i.e., σ � τ ⇒ W σ ⊇ W τ , and that without loss of generality
the W σ are closed downward, i.e., τ ∈ W σ ⇒ W τ ⊆ W σ. We define levels Lσ

i

inductively in i and σ.
For each σ, define Lσ

0 = {0, 1}. Then Lσ
n+1 consists of words of the form

AAAB(AB)kAA(CDE...Z)B,

where {A,B, ..., Z} =
⋃

τ∈Wσ Lτ
n with A,B, . . . , Z distinct, and k, thought of as an

element of 2<ω, is both in W σ and has length n+ 1.
We let

Ln =
⋃

σ∈T

Lσ
n

and define Xn to be the subshift generated by concatenations of the words in Ln.
Let X =

⋂
n<ω Xn. This ends the construction. We now verify this X satisfies our

conditions:

Claim. X is a subshift.

Each word in Ln+1 is made up of concatenations of words in Ln, so we have that
Xn+1 ⊆ Xn. Hence X, being a nested intersection of closed, shift-invariant subsets
of 2ω, is itself closed and shift-invariant.

Notice that since W σ ⊆ 2≤|σ|, and words are put in Lσ
m only to code for nodes

in W σ of length m, we have Lσ
m = ∅ for m > |σ|. Hence we can also write:

Ln =
⋃

σ∈T,|σ|≥n

Lσ
n.

Claim. T ≥e L(X).

By the construction, we have that T ≥e

⋃
Ln. Then T enumerates the collection

of all subwords of
⋃
Ln, which we denote by L. We claim that L = L(X).

First, L(X) ⊆ L: suppose w is a subword of some point in X. Pick n large
enough so that the length of w is less than any word in Ln. Then since w appears
in Xn it appears in some concatenation of words in Ln, and by choice of n, w
must then appear in a concatenation of at most two words in Ln, say AB. Let
m = s(n), where s(n) is the function from Theorem 4.4. Any word in Lm we know
is taken from some Lσ

m with |σ| ≥ m. But since |σ| ≥ m, by choice of m we have
W σ ⊇ T � n, so that

⋃
τ∈Wσ Lτ

n ⊇ Ln. In particular,
⋃

τ∈Wσ Lτ
n contains A and B,

so for example w appears in the word AAAB(AB)kAA(CDE...Z)B in Lm.
Secondly, L ⊆ L(X): given a subword w of some word in Lσ

n for |σ| ≥ n, let
m = s(|σ|). Then every word in Lm contains w since σ ∈ W τ for every τ ∈ T with
|τ | ≥ m. Hence w appears in every point of Xm, so certainly in X.

Claim. L(X) ≥e T :

To see that L(X) ≥e T , we decode layers Ln inductively. Recall that L(X) = L.
We describe one step in the decoding: given an enumeration of L, we know

already that L0 = {0, 1} so we can identify words in L1 by looking for subwords of
the form 0001(01)k00()1 and 1110(10)k11()0 in the words enumerated in L. Then
we know to output the corresponding k into our enumeration of T , and moreover
we eventually will know all the words in L1, so we can continue decoding L2 in the
same way.

That is, we proceed by induction. Our hypothesis is that by inductively searching
for subwords of the appropriate form we will eventually enumerate all k at level n



COTOTAL ENUMERATION DEGREES 3551

of T and will have listed all of Ln. Then since words in Ln+1 consist of words of the
form AAAB(AB)kAA(CDE...Z)B, for some elements {A,B, ..., Z} ⊆ Ln, we can
search for subwords of this form and thereby list all of Ln+1, and since all k ∈ T
at level n+ 1 are enumerated into a word of this form in Ln+1, we will enumerate
all of T up to level n+ 1.

In this procedure, we must also see that we only enumerate elements that are
actually in T and words that have actually been put in Ln. This also we verify
by induction: since L(X) = L, any w of the appropriate form that we do find
is a subword of some concatenation of words in Lj . Let j be smallest such: i.e.,
w does not appear strictly within any of the words A,B,C, . . . , Z in Lj . Then
to have seen w and accepted it as in Lj , we must have seen a subword made up
of these letters and of the form AAAB(AB)kAA(CDE...Z)B. In particular, we
found w while searching for subwords of concatenations of Lj that begin with a
word in Lj repeated three times. But there is no way in Lj to concatenate words
of the correct form to obtain any new word of this form: the only way to even
obtain a new subword of the form AAA is to concatenate a word ending in A, say
PPPA(PA)k(QR..Z)A with a word starting in A, say AAAV (AV )j(WX..Z)V but
then the only new sequence of three As is followed by another A, not some distinct
letter B, so it is not of the correct form either.

Claim. X is minimal.

Suppose p appears in some point of X. Then p appears in some word w ∈ Ln

so in some w ∈ Lσ
n for some σ ∈ T .

Let m = s(|σ|). Then for |τ | ≥ m, since W τ ⊇ T � |σ| � σ, we know w appears
in Lτ

n+1. So taking k ≥ max(m,n+ 1) we see that w appears in every word in Lk.
So all the points in X, being points in Xk, contain p.

Since p was arbitrary, all points of X contain the same subwords. �
Theorem 5.6 makes our result of particular interest, as it allows us to find exam-

ples of degree spectra of minimal subshifts using known examples of cototal sets.
We close with one such application:

Definition 5.9. The co-spectrum of a minimal subshift X is the collection of all
lower-bounds of the degree spectra of X.

Gutteridge shows that there is a quasi-minimal cototal degree q [10], that is, a
cototal degree q which is nonzero, and bounds no nonzero total e-degree. Taking
X a minimal subshift with dege(L(X)) = q, we obtain the following:

Theorem 5.10. There exists a minimal subshift with no computable points, but
whose co-spectrum is {0}.
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[20] Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni, Abelian complexity of minimal sub-

shifts, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 79–95, DOI 10.1112/jlms/jdq063. MR2763945
[21] Linda Jean Chiarulli Richter, Degrees of unsolvability of models, ProQuest LLC, Ann Arbor,

MI, 1977. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR2627391
[22] Linda Jean Richter, Degrees of structures, J. Symbolic Logic 46 (1981), no. 4, 723–731, DOI

10.2307/2273222. MR641486
[23] Alan L. Selman, Arithmetical reducibilities. I, Z. Math. Logik Grundlagen Math. 17 (1971),

335–350. MR0304150
[24] Stephen G. Simpson, Medvedev degrees of two-dimensional subshifts of finite type, Ergodic

Theory Dynam. Systems 34 (2014), no. 2, 679–688, DOI 10.1017/etds.2012.152. MR3233710
[25] B. Ya. Solon, Total and co-total enumeration degrees (Russian), Izv. Vyssh. Uchebn. Zaved.

Mat. 9 (2005), 60–68; English transl., Russian Math. (Iz. VUZ) 49 (2005), no. 9, 56–64 (2006).
MR2209448

[26] Boris Ya. Solon, Co-total enumeration degrees, Proceedings of the Second Conference on
Computability in Europe: Logical Approaches to Computational Barriers (Berlin, Heidel-
berg), CiE’06, Springer-Verlag, 2006, pp. 538–545.

[27] Martin Ziegler, Algebraisch abgeschlossene Gruppen (German, with English summary), Word
problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), Stud. Logic Foundations
Math., vol. 95, North-Holland, Amsterdam-New York, 1980, pp. 449–576. MR579957

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive,

Madison, Wisconsin 53706

Email address: mccarthy@math.wisc.edu

http://www.ams.org/mathscinet-getitem?mr=2678118
http://www.ams.org/mathscinet-getitem?mr=2928233
http://www.ams.org/mathscinet-getitem?mr=2286858
http://www.ams.org/mathscinet-getitem?mr=2414467
http://www.ams.org/mathscinet-getitem?mr=0286655
http://www.ams.org/mathscinet-getitem?mr=2621884
http://www.ams.org/mathscinet-getitem?mr=960689
http://www.ams.org/mathscinet-getitem?mr=0335255
http://www.ams.org/mathscinet-getitem?mr=2058189
http://www.ams.org/mathscinet-getitem?mr=2763945
http://www.ams.org/mathscinet-getitem?mr=2627391
http://www.ams.org/mathscinet-getitem?mr=641486
http://www.ams.org/mathscinet-getitem?mr=0304150
http://www.ams.org/mathscinet-getitem?mr=3233710
http://www.ams.org/mathscinet-getitem?mr=2209448
http://www.ams.org/mathscinet-getitem?mr=579957

	1. Introduction
	2. Cototal sets and degrees
	3. Maximal anti-chain complements
	4. Enumeration-pointed trees
	5. Minimal subshifts
	References

