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ABSTRACT. This paper provides a new way to understand the equivariant slice
filtration. We give a new, readily checked condition for determining when a
G-spectrum is slice n-connective. In particular, we show that a G-spectrum
is slice greater than or equal to n if and only if for all subgroups H, the H-
geometric fixed points are (n/|H| — 1)-connected. We use this to determine
when smashing with a virtual representation sphere SV induces an equivalence
between various slice categories. Using this, we give an explicit formula for
the slices for an arbitrary Cp-spectrum and show how a very small number of
functors determine all of the slices for Cpn-spectra.

1. INTRODUCTION

The slice filtration in equivariant stable homotopy theory was introduced in the
solution to the Kervaire invariant one problem [4]. This filtration on equivariant
spectra generalizes work of Dugger for C; and is analogous to Voevodsky’s slice
filtration in motivic homotopy (from whence the name) [3], [g].

There is no single slice filtration for a finite group G. Given any sequence of
collections of representation spheres, each of which is included in the next, we have
an associated slice filtration. In particular, in this framework sits both the classical
Postnikov filtration (for which we take for the nth collection all spheres of the form
Sk for k at least n), the classical slice filtration in [4], and the regular slice filtra-
tion introduced by Ullman [7]. Additionally, we have other versions interpolating
between the Postnikov filtration and the classical or regular slice filtrations wherein
we include certain regular representations. These latter filtrations are useful when
analyzing the topological André-Quillen homology of algebras over an arbitrary N,
operad [II, [2]. In this paper, however, we will restrict attention to the regular slice
filtration.

Definition 1.1. Let 7>, be the localizing subcategory of genuine G-spectra gen-
erated by all spectra of the form

Gy Ny Skrn

where pg is the regular representation of H and where k|H| > n.
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We say that a G-spectrum F is slice less than n or slice n-coconnective if
for all H C G and k such that k|H| > n, we have for all r >0

[Skertr EIH =,

We say that a G-spectrum FE is slice greater than or equal to n or slice
n-connective if £ € 7>,

Since we will consider slice categories not only for G but also for subgroups of
G, when there is potential ambiguity, we will include superscripts to indicate the
group as in T§n.

In practice, it is often easier to show that something is slice n-coconnective,
since this is a computation in homotopy groups. To show that something is slice
n-connective, in contrast, we must either explicitly show that it is in the localizing
subcategory or show that all maps from it to something slice n-coconnective are null.
The first goal of this paper is to give a new condition for being slice n-connective
that is similarly computable. The following is proved in Section (21

Theorem A. A G-spectrum E is slice n-connective if and only if for all subgroups
H C G, the geometric fized points ®H (E) are in the localizing subcategory of ordi-
nary spectra generated by ST™/1HIT,

This theorem gives an immediate and readily checkable way to see when smash-
ing with a representation sphere S induces an equivalence between various slice
categories, and this is explored in Section [3l This generalizes the original observa-
tion from [4, Corollary 4.24] that smashing with the regular representation for G
induces an equivalence

EPG CT>n — TZ("'HG\)'

The existence of more general forms of this equivalence is the original motivation
for this work. Barwick asked the authors if there was such a formula, and producing
it for C, led to the more general results here. We can use these equivalences to
simplify the slice tower for cyclic p-groups, showing the following in Section [l

Theorem B. When G = C,» with p > 2, then suspension by various representa-
tions divides the slice connective categories 7>y into 2% equivalence classes.

By studying the order in which these categories appear, we can also make sig-
nificant progress towards determining the structure of slices.

Definition 1.2 ([4, Section 4.2]). Let P"~1(—) denote the nullification functor
which makes 7>, acyclic. Let P>, (E) denote the fiber of the natural map

E— P YE),

and let P*(E) = P" P>, (E) be the nth slice.
The slice tower is the natural tower of functors

e PP () S P =

where the natural transformation P""1(—) — P"(—) arises from the obvious in-
clusionsTs (p41) C T>n-
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The equivalences of the localizing subcategories given by smashing with partic-
ular representation spheres produces equivalences between the slices. The first of
these was used extensively in [4]:

Proposition 1.3 ([, Corollary 4.25]). For any finite G and for any n € Z, we
have a natural equivalence

P::‘Igl\zpc(_) ~ %P6 PP ().

In particular, for a general group G, there are only |G| slice functors which need
to be determined: P!(—) for 0 < m < |G|. Our larger collection of equivalences
simplifies this significantly for G = Cpx. In particular, for G = C),, we see that
there are three functors which determine all slices: the zeroth, first, and second.
The first two of these were determined in [4, Proposition 4.50], and a shift of the
third was determined by Ullman in [7, Corollary 8.9]. This gives us a complete
description of the slices for any Cp-spectrum.

Theorem C. When G = C, with p > 2, then the slices of a Cp-spectrum E are
given by

PRP(E) ~¥""Hr,,,(E)
2k+1 m _=
Prviii (B) =P (B) 0<k<bS
m k m _
Py (E) et A (EC, @ 1y rea(B)) 0< k< 52

where PO is the functor which sends a Mackey functor to the largest quotient on
which the restriction map is injective and where EC, ® — is the functor which takes
a Mackey functor to the subMackey functor generated by the underlying abelian
group.

Notation. In all that follows, let G be a finite group. We will also rely heavily on
a comparison with the Postnikov tower, so we fix some notation here.

Definition 1.4. Let 7'572“ denote the localizing subcategory generated by Gy Ay S*

for all £ > n and all H C G. We will say that E is n-connective if it is in 7';‘;“.

In particular, our notion of “n-connective” refers to membership in a particular
localizing subcategory, and that this category is closed under smashing with any
finite G-set.

On the algebraic side, we will work almost exclusively in the category of Mackey
functors. We will denote these with underlined Roman characters. Similarly, we
will denote the natural Mackey extensions of ordinary functors on abelian groups
with an underline.

2. A NEW CHARACTERIZATION OF SLICES

2.1. Geometric fixed points version. One of the most surprising early results
about the slice filtration is that for a class of spectra, “geometric spectra”, the slice
tower is simply a reindexed form of the Postnikov tower.

Definition 2.1. Let P denote the family of proper subgroups of G. Let EP
denote a universal space for P, and let EP denote the cofiber of the obvious map
EP, — S°. We say that a G-spectrum E is geometric if the natural map

E—EPAE,
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induced by smashing the inclusion S° — EP with E, is a G-equivalence.

Lemma 2.2 ([5, Theorem 6.14]). If E is a geometric G-spectrum, then the slice
tower of E is a reindexed form of the Postnikov tower of E: for all m € Z, we have

P o | ZPCHTE) m=k- |G,
m ] x otherwise.

This gives us a shockingly powerful restatement of the slice filtration. We begin
with two elementary lemmata.

Lemma 2.3. For any G-spectrum E and for anyn € Z, EPANE € Tgn if and only
if @9(E) € L%

Proof. For any G-spectrum FE, EPAE is geometric. The result is then a restatement
of Lemma O

Lemma 2.4. For any G-spectrum E and n € Z, the following are equivalent:
(1) EPL ANEerg,
(2) forall HC G, i, E € 7.
Proof. Since
iy(EPL NE)~iyFE
for all proper subgroups H, and since for all H C G, i%(7$)) € 7 | the first

condition implies the second. For the other direction, we simply observe that since
it B € 8 | we have that

Gy NpgiyE=G/H NE €S,

The spectrum EP; A E is a homotopy colimit for spectra of the form G/Hy A E

for H a proper subgroup of GG, and since Tgn is closed under homotopy colimits,

we conclude it is also in 75 . O

Putting these together, we get a very surprising new formulation of slice connec-
tivity.
Theorem 2.5. Letn € Z.
(1) A G-spectrum E is in 75 if and only if ity E € 7 for all proper subgroups
H and ®%(E) € 231, -
(2) A G-spectrum E is in 75, if and only if " (E) € T;(Z;TH\ forall H C G.

Proof. The second condition follows from repeated application of the first along the
lattice of subgroups.
For the first, we use isotropy separation. For any F, we have cofiber sequence

EP,NE—FE—>EPAE.

For the forward direction, assume that E € Tgn. This implies that for all H C G, we

also have iy E € 7 | giving the first condition. By Lemma 24, EP, A E € 75, .

Since T>Gn is closed under taking cofibers, this implies that EP A E € Tgn, and

Lemma [2.3] then gives the second condition.
For the reverse direction, Lemma[Z4limplies that EP, AE € Tgn, and Lemma[2.3]

implies that EP A E is too. Since TE,L is closed under extensions, this implies that
F e T>n- O
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2.2. Connectivity version. When X is a (—1)-connected spectrum, then there
is yet another version of the slice tower, this one based on connectivity of the
fixed points, rather than the geometric fixed points. In his thesis, Ullman uses a
decomposition of cells from 7>, for negative n along with an analogue of Brown-
Comenetz duality to show that slice n-connectivity, for positive n, is equivalent to
a statement about equivariant connectivity. The ultimate results in this section are
equivalent to [7, Theorem 8.10]. Here, we present an alternative proof which makes
use of the isotropy separation sequence.

Recall that the notion of connectivity for G-spaces and spectra involves the fixed
points for all subgroups. In particular, for any G-spectrum FE, the connectivity of
FE is a function from the isomorphism classes of orbits of G to the extended integers
Z U {£oo}:

conn(E)(G/H) := conn(E™).

Definition 2.6. If n > 0, let
v, : moOrbg — NU {oco}
be defined by
n
(Gl = | |
|H|

Definition 2.7. Let 7>, denote the localizing subcategory of SpY generated by
all G-spectra E with
conn(E)(G/H) > v,,(G/H)
for all H C G.
These are closely related to the various slice positive categories.
Proposition 2.8 ([4, Lemma 4.38]). If k- |H| > n, then
GJr ANy ke ET>y, -

Proof. We must show that for all K C G, the K-fixed points of G Ay S*’# have
connectivity at least v, (G/K). The double coset formula gives us an equivalence
ix (G+ Nu SkPH) ~ \/ Ky Agngrg-1 S5 ot

geK\G/H

The K-fixed points of the summand corresponding to g have connectivity

} H:HAg Ky > {n [H: o glng

2 | e = | e | 2 2 G0

n

[H|

k;-[H:HﬂglKg]zlr

(]
Corollary 2.9 ([4, Proposition 4.40]). For any n > 0,
T>n C T>v, -

It is somewhat surprising, but the converse is also true. This gives an alternative
characterization of being slice > n.

Theorem 2.10. For n > 0, we have

T>v, C T>n.
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Proof. We prove this by induction on the order of the group. For the trivial group,
this is by definition, since the non-equivariant slice filtration is the same as the
Postnikov filtration. Now assume that for all proper subgroups H,

H H
TZZ” C TZTL'

In particular, this implies that if X is any H spectrum with connectivity at least

v,,, then the induced spectrum G Ag X is in 7>,.
Consider X in 7>, . We argue via the isotropy separation sequence:

EP,AX - X - EPAX.

The spectrum EP, A X is a homotopy colimit of a diagram built out of the restric-
tions of X to proper subgroups. By the induction hypothesis, this is then in 7>,,.
Since 7>, is a localizing subcategory, it therefore suffices to show that EPAX is
in 7>,. However, by assumption, the bottom homotopy group of X, and hence of
EP A X is in dimension at least v, (G/G). This means that all slices of EP A X
are in dimensions at least
v,(G/G) |G| = n,
and hence EP A X is in Ton- O

3. REPRESENTATION SPHERES

One of the nicest features of this new characterization of slice greater than or
equal to n is that it makes showing that spectra, like representation spheres, are
in a particular slice category absurdly easy. Even more exciting, it allows one to
trivially check that smashing with a representation sphere moves us between slice
categories the way we might like. This was a major undertaking in [5] and [9], as it
often required judicious choices of ambient representations and various downward
inductions on cells.

Definition 3.1. If V is a representation of G, then let dim, be the function on
isomorphism classes of orbits given by

dim (G/H) = dim V.
Theorem 3.2. The representation sphere SV is in 7>y, if and only if for all H C G,
dim VH >n/|H|.
Proof. For all H C G, we have a natural isomorphism ®#(SV) = SV" . In partic-
ular .
eH(SY) =S e i /m) C Toajin-
The result follows from Theorem O

This gives a similarly vast generalization of how certain suspensions change slice
connectivity and moreover why other suspensions do not. We use the following
standard result, omitting the proof.

Proposition 3.3. If E € 7£%%" and E' € 7£%%, then EAE' € 7£0% .
Theorem 3.4. Let V' be a virtual representation of G. If dimy +v,, > v, 4, then
smashing with SV induces a map

»V. To>n — Tontk-

Moreover dimy, + v,, = v,, . if and only if this map is an equivalence.
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Proof. The first part follows immediately from the assumptions and from the pre-
vious proposition. The second follows from the observation that for this result, we
never needed that V be an actual representation, and hence smashing with S~V
provides the inverse. O

We deduce from this a very surprising collection of auto-equivalences of the
categories 7>, for all n.

Corollary 3.5. If V is a virtual representation of G such that for all H C G,
dimy, (G/H) = 0, then smashing with SV induces an auto-equivalence:

Vi, N n
for all n.
These auto-equivalences are ubiquitous. In Proposition E1l below, we show that
there are such auto-equivalences even for cyclic p-groups of order at least 5.

Applying this to the slices themselves, we deduce an even more surprising corol-
lary.

Corollary 3.6. If V is a virtual representation of G such that for all H C G,
dimy (G/H) = 0, then smashing with SV commutes with the formation of slices:
for all n and for all G-spectra E, we have

>V PYE)~ P 2VE).

Several non-inclusion results also follow immediately from Theorem B4t if we
do not have the desired inequality, then we do not have such a nice embedding. An
example is given by the reduced regular representation spheres. Classically,

S*7 & T>2(a1-1)

even though S” is in 75|g|_;. Here we see why: for all G, vy q_2(G/G) > 0, while
the connectivity of S” has dim;(G/G) = 0.

4. SLICES FOR CYCLIC p-GROUPS

Specializing to cyclic p-groups with p odd, we have an interesting series of results.
Choose a p™th root of unity ¢ and let A(k) denote the representation of Cp» sending a
generator 7 to (¥. The representations A\(k) for 1 < k < (p—1)/2 are representatives
for the isomorphism classes of non-trivial real representations of Cp». Work of
Kawakubo shows that the representation spheres are all integrally inequivalent [6].
Even so, the exact choices are immaterial due to the following observation.

Proposition 4.1. If the p-adic valuations of k and k' agree, then smashing with
GAR)=A(K)
induces an automorphism of the slice categories T>, for all m.

Proof. For all subgroups of Cj», the fixed points of A(k) and A(k’) agree. The result
follows from Corollary O

Since any two k with equal p-adic valuations yield naturally equivalent functors,
we will let A\ = A\(p*). Finally, let A = \¢.
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Definition 4.2. Let £k > 1 and 0 < j < k— 1. Define the C’pk—representation V; as
follows:

V= @ (P = p" ")) A\j—s

K3
Theorem 4.3. For G = Cpr and 0 < j < k — 1, smashing with SVi induces
equivalences
YV, — Tpt2pi
for alln >0, n=m (mod p’t) where 1 < m < pi*tt —2pJ.

Proof. Let n = m + £p?™! where 1 < m < p/*t! — 2p7 and ¢ > 0. By [Theorem 3.4]
we need to show that

i+t Ipi L 4 9opi
dim(vjcpd)jL{erdp W_[erpd + pw
p p
forall 0 < j<k—1and 0<d<k. From Definition 2] we can determine that

dim (V_de> _ {2pj‘d7 d <y,

J 0, d>j.

Thus, when d < j, the result is immediate so we need only consider d > j or
equivalently d > j + 1.

First, we may write p? 1 = gp® + r where ¢ > 0 and 0 < r < p? — pI*1 since
p?TL|r. Then,

m + fpi ! m+ qp® +r m-+r
d = d = T | T4
p p p
and _ ) )
m+ fpi T+ 2p) m+r+ 2p
So now we must show

{m—l—r—‘ B {m—l—r—!—ij—‘
p? p? '
Since m < pIt1 —2p7 and r < p¢ — pIt! we have
m4r<m+4r—+2p <pt 4 pt —pI Tt = pt
Then since m,r > 0, we have
m-+r m +r + 2p
d =l=|—F—
p p
which completes the proof. O

Corollary 4.4. The equivalences given in Theorem &3] along with the equivalences
induced by smashing with S°»* sort the categories T>y into 2% equivalence classes
defined by

k-1 .
) 1,2, i=0
n= a;p" where a; =< ’
;m ’ {0,1, 1<i<k-—1.

We specialize now to the case of C,, where we can describe more explicitly the
slices for any spectrum.
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Theorem 4.5. For G = C,, smashing with S* induces equivalences

2N Ta (051 = Ta(241)
for1<2j—1<p-—2and
DI T>2j i) T>242
for2<2j<p-3.
This lets us rewrite any slice in terms of basic operations.

Corollary 4.6. For a Cp-spectrum E, we have equivalences for any m € Z

P;?I?(E) :Zmszmp(E)
Pxﬁiglfill(E) ZEmPMAHHPOlmerk/\H(E) 0<k< p—§3
PSR ANmRR(SeNE) o<kt

where PO is the functor that takes a Mackey functor to its largest quotient in which
the restriction map is an injection.

Proof. Smashing with the regular representation always moves between the appro-
priate slice categories, hence it suffices to consider the case m = 0. In this case,
Theorem shows that smashing with 3** induces an equivalence between 1-slices
and (2k 4 1)-slices and between 2-slices and (2k + 2)-slices for 0 < 2k < p—3. The
result follows from the determination of the 0- and 1-slices. |

Work of Ullman allows us to complete the characterization of Cp-slices. Ullman
describes the (—1)-slice for any finite group G, and we recall the results here.

Definition 4.7. If M is a G-Mackey functor, then let EG ® M be the subMackey
functor generated by M (G/e).

Remark 4.8. The functor EG ® M is so named because it is m, of the spectrum
EG. NHM.

Theorem 4.9 ([7, Corollary 8.9, Section 1.8]). For any finite group G and for any
G-spectrum E, we have

PlE~Y"'H(EG®r_,E).
This gives a simple formula for the 2-slices for C),.

Corollary 4.10. For any Cp,-spectrum E, we have

P}E ~ Y H(EC, ® T,E).
Proof. Corollary 4.6l with m = —1 and k = (p — 3)/2 shows that

PTlE ~ prt(p=3)/22p2 (Ep—(p—3)/2f\E)

or equivalently

P}E ~ 2PN (E7172E).
Theorem then gives the result. O

Summarizing, we have the following determination of all of the C)-slices, com-
pleting the proof of Theorem [C] from the introduction.
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Theorem 4.11. Let p be odd. For any Cp-spectrum E, we have equivalences for
any m € Z

Py (E) ~¥"Hr,,,(E)

Prpizeir (B) St TP, o (B) 0<k< e

P,’:;’ﬁfif(E) ~ymt A (BC, @ Tpt(bpn(E))  0< k< 2.
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