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(Communicated by Jeremy Tyson)

Abstract. For a bounded simply connected domain Ω ⊂ R2, any point z ∈ Ω
and any 0 < α < 1, we give a lower bound for the α-dimensional Hausdorff
content of the set of points in the boundary of Ω which can be joined to z by a
John curve with a suitable John constant depending only on α, in terms of the
distance of z to ∂Ω. In fact this set in the boundary contains the intersection
∂Ωz∩∂Ω of the boundary of a John subdomain Ωz of Ω, centered at z, with the
boundary of Ω. This may be understood as a quantitative version of a result
of Makarov. This estimate is then applied to obtain the pointwise version of a
weighted Hardy inequality.

1. Introduction

Let Ω ⊂ C be a domain. We say that Ω is C-John with center z0 if for any z ∈ Ω
there exists a rectifiable curve γz joining z and z0 in Ω such that for any point z′

in the image of γz, it holds that

CdΩ(z
′) ≥ l(γz(z

′, z)),

where dΩ(z
′) := dist(z′, ∂Ω) and l(γz(z

′, z)) is the length of the subcurve between
z′ and z. Given A ⊂ C, we define the α-Hausdorff content as

Hα
∞(A) := inf{

∞∑
j=1

diam(Ej)
α : Ej ⊂ C, A ⊂ ∪

j∈N

Ej}.

Given a simply connected John domain and z ∈ Ω there is a John subdomain Ωz

with center z so that, for the ball in the intrinsic metric (defined by taking the
infimum of the lengths of rectifiable paths in the domain joining pairs of points) of
radius 2dΩ(z), we have BΩ(z, 2dΩ(z)) ⊂ Ωz; see [5], for example. This statement
is quantitative in the sense that the John constant of Ωz depends only on the John
constant of Ω. It is easy to see that this conclusion fails for general simply connected
Ω: we may not capture all of ∂BΩ(z, 2dΩ(z)) ∩ ∂Ω by ∂Ωz for a John subdomain
Ωz for a fixed John constant. The best we can hope for is to capture a part of
∂Ω of H1-content of the order of dΩ(z). Our main result gives a rather optimal
conclusion.
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Theorem 1.1. Let Ω be a bounded, simply connected domain in the plane. Let
0 < α < 1 be fixed. Given z ∈ Ω, there is a John subdomain Ωz ⊂ Ω with center z
and John constant depending only on α such that

Hα
∞(∂Ωz ∩ ∂Ω) ≥ c(α)dΩ(z)

α.

The motivation for Theorem 1.1 partially arises from the weighted pointwise
Hardy inequalities (see [1], [4], [5])

(1) |u(x)| ≤ CdΩ(x)
1−β

p sup
0<r<2dΩ(x)

(
−
∫
B(x,r)∩Ω

|∇u|qdqβ/pΩ

)1/q

,

where u ∈ C∞
0 (Ω), 1 < q < p and −∞ < β < ∞. This inequality immediately yields

the usual weighted Hardy inequality (see [2], [3] for the classical Hardy inequality
and [8], [5] for higher dimensional versions of it)∫

Ω

|u(x)|pdΩ(x)β−p dx ≤ C

∫
Ω

|∇u(x)|pdΩ(x)β dx

via the boundedness of the Hardy-Littlewood maximal operator on Lp/q. The
pointwise Hardy inequalities were shown in [5] to hold for any simply connected
John domain for all 1 < p < ∞ and every β < p − 1. This is the optimal range
even for Lipschitz domains; see [8]. From Theorem 1.1 together with Theorem 5.1
in [5] we have the following corollary.

Corollary 1.2. Let Ω ⊂ C be simply connected. Let 1 < p < ∞. Then for each
β < p − 1 there exist 1 < q(β, p) < p and C > 0 such that the weighted pointwise
Hardy inequality (1) holds for each x ∈ Ω.

Above, q and C are independent of Ω. The corresponding weighted Hardy in-
equalities were already established in [6]. Our proof of Theorem 1.1 is based on
the following estimate for conformal maps which we expect to be of independent
interest. Let H be the upper half plane.

Theorem 1.3. Let f : H → Ω be a conformal map. Let 0 < α < 1 be fixed. Then
there exists C(α) > 0 such that the following holds.

Given z0 = x0+ iy0 ∈ H, there exists a set E = E(z0, α) ⊂ (x0−y0/2, x0+y0/2)
such that

(a) Hα
∞(E) ≥ yα

0

C(α) ,

(b) 1
C(α) |f ′(z0)| ≤ |f ′(w)| ≤ C(α)|f ′(z0)|

for any point w in the sawtooth region S(E) := {x + iy : x ∈ (x0 − y0/2, x0 +
y0/2), d(x,E) ≤ y < y0}.

Theorem 1.3 can be understood as a quantitative version of a result of Makarov;
see Theorem 5.1 of [7], see also corollary 1.4 of [11]. Our proof of Theorem 1.3 uses
Makarov’s idea of approximating Bloch functions by dyadic martingales. Theorem
1.1 then follows from Theorem 1.3 and Lemma 3.3 below; in fact we have that
(Ωz0 , dΩz0

) is bilipschitz equivalent to the sawtooth region in Theorem 1.3.

2. Preliminaries

Let D be the unit disk in the complex plane. A function g : D → C is called a
Bloch function if it is analytic and

‖g‖B := sup
z∈D

(1− |z|2)|g′(z)| < ∞.
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This defines a seminorm. The Bloch functions form a complex Banach space B
with the norm |g(0)|+ ‖g‖B.

Given a univalent analytic function f : D → C we have that the function log f ′ is
a Bloch function by the Koebe Distortion Theorem with ‖ log f ′‖B ≤ 6. Conversely,
given a function g ∈ B with ‖g‖B ≤ 2, there exists a univalent function f : D → C

such that g = log f ′; see (Chapter 4, [10]). Given a conformal map f : H → C, it
follows by a conformal change of coordinates that

sup
z∈H

Im(z)|g′(z)| < 6,

where g is the function log f ′.
Let us introduce some notation. Given a closed interval I ⊂ R we denote by xI

the center of I and zI := xI + i|I|. We denote by Q(I) the square {x + iy : x ∈
I, y ∈ (0, |I|)}. The intrinsic metric of a domain Ω ⊂ C is given by dΩ(x, y) :=
inf{l(γx,y) : γx,y is a rectifiable curve joining x and y in Ω}. The euclidean disk
with center z and radius r is denoted by B(z, r) and BΩ(z, r) is the corresponding
intrinsic ball. We denote by diam(A), the diameter of a set A ⊂ C. We denote by
diamΩ(A) the diameter of a subset A ⊂ Ω measured with respect to the intrinsic
metric of Ω.

3. Proofs of the theorems

We first sketch the proof of Theorem 1.3. The set E constructed below is a
Cantor-type set. One considers the harmonic function u = log |f ′|, the real part
of the Bloch function log f ′, where f is the conformal map from Theorem 1.3.
The construction involves selecting “good” parts in the boundary near which the
function u remains essentially bounded and estimating the size of the “bad” parts
in the boundary where the difference from a fixed value is large and positive or
large and negative. The good parts correspond to the points in the boundary,
accessible from some interior point of Ω by a John curve. The key observation is
that it is possible to recursively choose subsets from the bad parts of the boundary,
near which the difference from the fixed value is “up” and “down” at consecutive
generations so that the final error in the intersection is not too large. The set E
consists of the good parts and an intersection of suitable nested sets of the bad
part. The Hausdorff content of E is shown to be large by the mass distribution
principle after defining a limit measure supported on E.

We use the following well-known lemma in the proof of Theorem 1.3; see Lemma
2.2 of [9].

Lemma 3.1. Let u be a harmonic function in the upper half plane H such that

sup
z∈H

Im(z)|∇u(z)| ≤ A.

Let I ⊂ R be an interval and let {Ij} be a collection of pairwise disjoint dyadic
subintervals of I and assume additionally that u is bounded in Q(I)\ ∪j Q(Ij).
Then we have

(2) u(zI) =
∑
j

u(zIj )
|Ij |
|I| +

1

|I|

∫
I\∪jIj

u(x)dx+O(A).
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Proof. Let us write y for the imaginary part of z and fix 0 < ε < 1. Green’s theorem
applied to the harmonic functions u and y in the domain Uε := (Q(I)\∪j(Q(Ij)))∩
{y > ε} gives ∫

Uε

yΔu−
∫
∂Uε

uΔy =

∫
Uε

y∇u · νds−
∫
∂Uε

u∇y · νds

and thus

(3)

∫
∂Uε

u∇y · νds =
∫
∂Uε

y∇u · νds,

where ν is the outward unit normal vector. The absolute value of the latter integral
is bounded by 10A|I| by assumption. Note that the oscillation of u on the upper
edges of Q(I) and Q(Ij) is bounded; indeed

|u(x+ i|Ij |)− u(x′ + i|Ij |)| ≤ A|x− x′|/|Ij |
for x, x′ ∈ Ij . From (3) we have

u(zI) =
∑

|Ij |>ε

u(zIj )
|Ij |
|I| +

1

|I|

∫
I

u(x+ iε)χI\( ∪
|Ij |>ε

Ij)(x) dx+O(A)

because the vertical sides of ∂(Q(Ij)) do not contribute to the integral. The esti-
mate now follows once we let ε → 0, since the function u has radial limits almost
everywhere in I\ ∪j Ij . �

Lemma 3.2. Let u be a harmonic function in the upper half plane H such that

sup
z∈H

Im(z)|∇u(z)| ≤ A.

Then there is a number M0 = M0(A) such that the following holds for any M > M0.
Given any interval I ⊂ R, define

G(I) := {Re(z) : z ∈ Q(I), sup
0<Im(z)<|I|

|u(z)− u(zI)| ≤ M +A
√
2},

and assume that |G(I)| ≤ |I|
100 . Consider the family F(I) of maximal dyadic subin-

tervals Ij ⊂ I such that |u(zIj )− u(zI)| ≥ M . Then we have

(a) |u(z) − u(zI)| ≤ M + A
√
2 for any z ∈ Q(I)\ ∪

j
Q(Ij). In particular,

|u(zIj )− u(zI)| ≤ M +A
√
2.

(b) |Ij | ≤ 2
− M

A
√

2 |I| for every Ij ∈ F(I).
(c) Consider the family F+(I) (respectively, F−(I)) of intervals in F(I) such

that u(zIj )−u(zI) ≥ M (respectively, u(zIj )−u(zI) ≤ −M). Then we have
(i)

∑
Ij∈F+(I)

|Ij | ≥ |I|/4,

(ii)
∑

Ij∈F−(I)

|Ij | ≥ |I|/4.

Proof. Given z = x+ iy ∈ H such that x ∈ I (respectively, Ij) and |I|/2 < y < |I|
(respectively, |Ij |/2 < y < |Ij |) it follows that |u(z) − u(zI)| ≤ A

√
2 (respectively,

|u(z)− u(zIj )| ≤ A
√
2) by our hypothesis.

Part (b) follows by iterating the above inequality and part (a) follows from the
maximality of the dyadic intervals.
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For part (c) we write the estimate from Lemma 3.1 as∑
j

(u(zIj )− u(zI))
|Ij |
|I| +

1

|I|

∫
I\∪

j
Ij

(u(x)− u(zI))dx = δ,

where δ = δ(u,A) lies in the interval [−δA, δA], where δA is a constant that depends
only on A. We observe that I\∪

j
Ij ⊂ G(I). Thus the absolute value of the integral

is bounded by M+A
√
2

100 , by part (a) and the assumption that |G(I)| ≤ |I|/100.
Hence we have ∣∣∣∣∣∣

∑
j

(u(zIj )− u(zI))
|Ij |
|I|

∣∣∣∣∣∣ ≤
M +A

√
2

100
+ |δ|.

Next we note that M ≤ |u(zIj )−u(zI)| ≤ M+A
√
2 for any j. Part (c) then follows

from this. Indeed, if

(4)
∑

Ij∈F+(I)

|Ij |
|I| ≤ 1

4
,

then we have ∑
Ij∈F−(I)

|Ij |
|I| ≥ 74

100

and

−M +A
√
2

100
− |δ| ≤ M +A

√
2

4
+

∑
Ij∈F−(I)

(u(zIj )− u(zI))
|Ij |
|I|

from which we get ∑
Ij∈F−(I)

|Ij |
|I| ≤ 26

100
+

26A
√
2

4M
+

δA
M

.

This contradicts (4) if M > M0(A). The other inequality in part (c) follows simi-
larly. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let 0 < α < 1 be fixed.
We may assume without loss of generality that z0 = i. We construct the set E

as follows. Set u(z) = log(|f ′(z)|). Then u is the real part of a Bloch function and
thus satisfies the hypothesis of Lemma 3.2 with A = 6.

Denote by I0 the interval (− 1
2 ,

1
2 ). Consider the set Q(I(0)) and the subset

G(I(0)) as defined in Lemma 3.2. An interval I is called “good” if |G(I)| ≥ |I|/100
and “bad” otherwise. If |G(I(0))| ≥ |I(0)|/100, then set E = G(I(0)). Then
Hα

∞(E) � 1 and the claim follows.
So we assume that the other case holds and consider the maximal family F(I(0))

of subintervals Ij ⊂ I0 as chosen in Lemma 3.2, with M = M(α) to be fixed later.
Thus I0 is a bad interval and we may apply Lemma 3.2. We have

|I| ≤ 2
− M

6
√

2 |I(0)| if I ∈ F+(I(0))

and ∑
I∈F+(I(0))

|I| ≥ |I(0)|/4.
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The first generation G1 = G1(I
(0)) is formed by the subsets G(I) of the good

intervals I ∈ F+(I(0)) and by the bad intervals I ∈ F+(I(0)). We write G1 = Gg
1∪Gb

1

where

Gg
1 (I

(0)) = {G(I) : I ∈ F+(I(0)) is good}
and

Gb
1(I

(0)) = {I ∈ F+(I(0)) : I is bad}.
We also have ∑

I∈G1

|I| ≥ |I(0)|/400.

The construction stops in the sets in the family Gg
1 of good sets. In the sets

I ∈ Gb
1 it continues as follows.

Fix I(1) ∈ Gb
1. Since I(1) is bad we can apply Lemma 3.2 and consider the

collection F−(I(1)) which satisfies

|I| ≤ 2
− M

6
√

2 |I(1)| if I ∈ F−(I(1))

and ∑
I∈F−(I(1))

|I| ≥ |I(1)|/400.

The first generation G1(I
(1)) of the interval I(1) ∈ Gb

1 is written Gg
1 (I

(1)) = G1(I
(1))∪

Gb
1(I

(1)), where

Gg
1 (I

(1)) = {G(I) : I ∈ F−(I(1)) is good}
and

Gb
1(I

(1)) = {I ∈ F−(I(1)) : I is bad}.
We use the first generation as defined above, of members of the collection

Gb
1(I

(0)), to define the second generation G2(I
(0)) = Gg

2 (I
(0)) ∪ Gb

2(I
(0)), where

Gg
2 (I

(0)) = ∪
I(1)∈Gb

1(I
(0))

Gg
1 (I

(1))

and

Gb
2(I

(0)) = ∪
I(1)∈Gb

1(I
(0))

Gb
1(I

(1)).

We also have ∑
I⊂I(1)

I∈G2

|I| ≥ |I(1)|/400 for any I(1) ∈ Gb
1.

Observe that u oscillates to the right of u(zI0) in the first step of the construction
and to the left of u(zI) in the second. We have

|u(zI)− u(zI(0))| ≤ 12
√
2 for any I ∈ Gb

2.

Again the construction continues in the intervals of Gb
2(I

(0)). Since the errors
cancel but do not vanish, we use a slightly different value of M , if needed, for
choosing the maximal family F(I) for the bad intervals I ∈ Gb

2, so that the errors
do not add up. More precisely, given I(2) ∈ Gb

2, we choose a value M ′ from the

interval [M − 6
√
2,M + 6

√
2] such that u(zI(2)) +M ′ = u(zI(0)) +M .

So the construction stops after finitely many steps or continues indefinitely pro-
viding new generations Gn. Let I

(n) ∈ Gn. Either I
(n) is of the form G(Ĩ) and the
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construction stops in I(n) or I(n) ∈ Gb
n(I

(0)) and the construction provides new sets
and intervals of Gn+1 contained in I(n) which satisfy

|I| ≤ 2
− M

6
√

2 |I(n)| if I ⊂ I(n) , I ∈ Gn+1

and ∑
I⊂I(n)

I∈Gn+1

|I| ≥ |I(n)|/400.

We define

E := (
⋃
n

Gg
n) ∪ (

⋂
n

Gb
n).

By construction for any x ∈ E and any 0 ≤ y ≤ 1 we have

| log |f ′(x+ iy)| − log |f ′(i)|| ≤ 2M + 24.

Consider the set S(E) as defined in the statement of the theorem. Since u is a
Bloch function, the previous estimate gives that

e−2M−30|f ′(i)| ≤ |f ′(w)| ≤ e2M+30|f ′(i)|

for any w ∈ S(E). Thus part (b) of the statement follows.
Part (a) of the statement follows if it is shown that

Hα
∞(E) ≥ c(α).

To prove the last estimate, it suffices by the mass distribution principle to construct
a positive measure μ with μ(E) ≥ 1 such that there exists a constant c(α) > 0 with

μ(I) ≤ c(α)|I|α,

for any interval I ⊆ I0. The measure μ will be the limit of certain measures μn

supported in the union (
⋃

k≤n

Gg
k) ∪ Gb

n, where Gg
k are the good parts of the previous

generations.
Next we construct the measure μ. Let μ0 = dx

¬
I(0). Consider

a(I(0)) =
|I(0)|∑
I∈G1

|I|

which satisfies a(I(0)) ≤ 400. By defining

μ1 := a(I(0))
∑
I∈G1

dx
¬
I

we have μ1(I
(0)) = 1. The measure μ2 will coincide with μ1 on Gg

1 . On G2 the
measure μ2 will be defined by redistributing the mass of μ1. More concretely, if
I(1) ∈ Gb

1 set

a(I(1)) =
μ1(I

(1))∑
I⊂I(1)

I∈G2

|I| .

Since

a(I(1)) =
|I(1)|∑
I⊂I(1)

I∈G2

|I|
μ1(I

(1))

|I(1)| = a(I(0))
|I(1)|∑
I⊂I(1)

I∈G2

|I| ,
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we deduce that a(I(1)) ≤ 4002. Define

μ2 = μ1
¬ Gg

1 +
∑

I(1)∈Gb
1

a(I(1))
∑

I⊂I(1)

I∈G2

dx
¬
I.

The measures μ3, . . . , μn, . . . are defined recursively. Observe that μk(I) = μn(I)
for any k ≥ n, provided I ∈ Gn. Moreover, if I ∈ Gn we have

μn(I)

|I| ≤ 400n.

Finally set
μ = lim

n→∞
μn.

It is clear that sptμ ⊂ E and μ(E) = 1. We want to check that μ(I) ≤ c(α)|I|α
for any interval I ⊆ I0. Let J ⊂ I0 be an interval. We may assume that there is a
positive integer j such that

2
−M(j+1)

6
√

2 ≤ |J | ≤ 2
− Mj

6
√

2 .

Let Gj(J) (respectively, Gg
k(J)) be the family of sets of generation Gj (respectively,

Gg
k) which intersect J . Let Aj(J) be the family of sets in

⋃j−1
k=0 G

g
k(J) of diameters

smaller than 2
− Mj

6
√

2 . Since the sets in Gj(J)∪Aj(J) intersect J and have diameter
smaller than 2|J |, we have

Gj(J) ∪ Aj(J) ⊂ 4J.

Hence

μ(J) ≤
∑

I∈Gj(J)

μ(I) +

j−1∑
k=0

∑
I∈Gg

k(J)

μ(I ∩ J)

≤
∑

I∈Gj(J)∪Aj(J)

μ(I) +
∑

I∈∪j−1
k=0G

g
k(J)\Aj(J)

μ(I ∩ J)

=: A+B.

If I ∈ Gj(J) ∪Aj(J), then we have

μ(I) = μj(I) =
μj(I)

|I| |I| ≤ 400j |I|.

Hence
A ≤ 400j

∑
I⊂4J

I∈Gj(J)∪Aj(J)

|I| ≤ 4 · 400j |J |.

Since the sets in
⋃j−1

k=0 G
g
k(J)\Aj(J) intersect J and are contained in intervals of

length larger than |J | which are pairwise disjoint, the collection
⋃j−1

k=0 G
g
k(J)\Aj(J)

is contained in at most two intervals L1 and L2. Now

B ≤
2∑

i=1

μ(Li) ≤ 400j
2∑

i=1

|Li ∩ J | ≤ 400j [J |.

Hence μ(J) ≤ A+B ≤ 5 · 400j |J |.
Since |J | ≤ 2

− Mj

6
√

2 , we deduce that

μ(J) ≤ 5|J |1−
6
√

2 ln2(400)
M .
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We choose M large enough so that 1− 6
√
2 ln2(400)

M > α. The theorem follows with
this value of M . �

The proof of Theorem 1.1 uses the following auxiliary result.

Lemma 3.3. Assume that a set E = E(z0, α) ⊂ R exists, for which part (b) of
Theorem 1.3 is satisfied. Then we have that f(S(E)) is a John domain with John
constant depending on α. Moreover,

Hα
∞(f(E)) ≥ c(α)|f ′(z0)|αHα

∞(E).

Proof. We may assume that E is compact. We have for f(z) ∈ f(S(E)) that

df(S(E))(f(z), ∂f(S(E))) � c(α)|f ′(z0)|dS(E)(z)

from which it follows that f(S(E)) is John, with John curves being the images of
the John curves in S(E) (which we may take to be the vertical line segment joining
the point z to the upper edge of Q(I) followed by a horizontal line segment till zI).
The constant only depends on α.

Let {Bi}i be a countable (possibly finite) collection of disks covering f(E). We
may assume that f(z0) /∈ Bi for all indices i. For each point f(ẑ) ∈ f(E) ∩ Bi

consider the John curve γẑ joining f(ẑ) to the John center f(z0). Let f(z) ∈ γẑ
be a point such that l(γẑ(f(ẑ), f(z))) = rad(Bi) =: Ri. By the John condition we
have that df(S(E))(f(z)) ≥ 1

c(α)Ri.

In the following we write S′(E) for the set f(S(E)). Consider the collection of
intrinsic balls {BS′(E)(f(z), c(α)dS′(E)(f(z)))}f(ẑ) in the intrinsic metric of S′(E).
The balls in this collection cover the set f(E)∩Bi. By the 5r-covering theorem we
find pairwise disjoint balls

BS′(E)(f(z
i
j), c(α)dS′(E)(f(z

i
j))), j = 1, 2, . . .

such that {BS′(E)(f(z
i
j), 5c(α)dS′(E)(f(z

i
j)))}j covers f(E) ∩Bi.

We have also an upper bound N(α) for the number Ni of the pairwise
disjoint intrinsic balls found above for each f(E) ∩ Bi, since every ball BS′(E)

(f(zij), c(α)dS′(E)(f(z
i
j))) in the collection contains the euclidean disk B(f(zij),

Ri/c(α)). Let the collection of finitely many such intrinsic balls chosen for each
index i be denoted together {Bij} i∈N

1≤j≤Ni

where for given i and 1 ≤ j ≤ Ni,

Bij = BS′(E)(f(z
i
j), 5c(α)dS′(E)(f(z

i
j))). We have

∑
i

(diam(Bi))
α �

∑
i

Ni∑
j=1

(diamS′(E)(Bij))
α

≥ c(α)|f ′(z0)|α
∑
i,j

(diamS(E)(f
−1(Bij)))

α

≥ c(α)|f ′(z0)|αHα
∞(E).

The lemma follows. �
Proof of Theorem 1.1. Let f be the conformal map from H to Ω. Consider the set
E = E(f−1(z), α) obtained using Theorem 1.3. Applying Lemma 3.3 we have

Hα
∞(f(E)) � (e−2M |f ′(f−1(z))|)αHα

∞(E).

Theorem 1.1 now follows by combining the above estimate with part (a) of Theorem
1.3 and observing that, by part (b), z can be joined to ∂Ω by a curve which is the
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bilipschitz image of a curve in H of length comparable to Im f−1(z) joining f−1(z)
to R. �
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