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Abstract

In ZF, the existence of a Hamel basis does not yield a well–ordering of R.

Throughout this paper, by a Hamel basis we always mean a basis for R, construed
as a vector space over Q. We denote by E the Vitali equivalence relation, xEy iff
x− y ∈ Q for x, y ∈ R. We also write [x]E = {y : yEx} for the E–equivalence class
of x. A transversal for the set of all E–equivalence classes picks exactly one member
from each [x]E . The range of any such transversal is also called a Vitali set.

A set Λ ⊂ R is a Luzin set iff Λ is uncountable but Λ ∩M is at most countable
for every meager set M ⊂ R. A set S ⊂ R is a Sierpiński set iff S is uncountable
but S ∩ N is at most countable for every null set N ⊂ R (“null” in the sense of
Lebesgue measure). A set B ⊂ R is a Bernstein set iff B ∩P 6= ∅ 6= P \B for every
perfect set P ⊂ R.

It has been well–known for more than a century that the existence of a well–
ordering of the reals implies the existence of all these “pathological” sets of reals:
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Hamel bases, Vitali sets, Luzin sets, Sierpiński sets,5 and Bernstein sets; see e.g.
the thorough discussion in [4].6

D. Pincus and K. Prikry study the Cohen-Halpern-Lévy model H in [8] and
show that there is a Luzin set in H, thereby establishing that in ZF, the existence
of a Luzin set does not imply the existence of a well–ordering of the reals. We will
recall their proof below, cf. Theorem 1.5.

In ZF, the existence of a Hamel basis implies the existence of a Vitali set of
reals, cf. Lemma 1.1 below. Feferman had observed that H has a Vitali set, cf. [8,
p. 433]. Pincus and Prikry ask:

“We would be interested in knowing whether a Hamel basis for R over Q (the
rationals) exists in H or in any other model in which R cannot be well ordered.”
([8, p. 433])

In [1], A. Blass shows that in ZF, if every vector space has a basis, then the
axiom of choice holds true.

In the current paper we answer the question by Pincus and Prikry and show
that H does have a Hamel basis. This will also give Feferman’s result as a corollary,
cf. Corollary 2.4 below.

We shall also show that H has a Bernstein sets, cf. Theorem 1.7. There is
no Sierpiński set in H, though, cf. Lemma 1.6. Therefore, in ZF not even the
conjunction of the following statements (1), (3), (4), and (5) implies the existence
of a well–ordering of the reals.

(1) There is a Luzin set.

(2) There is a Sierpiński set.

(3) There is a Bernstein set.

(4) There is a Vitali set.

(5) There is a Hamel basis.

In a sequel to the current paper, in [10], it is shown that in ZF plus DC, (5) does
not yield a well–ordering of the reals.

We would like to thank the referee for her/his comments on the first draft of
this paper.

1 Warm ups.

In what follows, we shall sometimes think of reals as elements of the Baire space
ωω, sometimes as elements of the Cantor space ω2, and at other times think of them
as actual reals. The attentive reader will have no problem sorting this out.

5To get Luzin and Sierpiński sets, one needs to make the additional hypothesis that CH holds
true, unless e.g. one works with the concept of generalized Luzin and Sierpiński sets which arises
from the concept of Luzin and Sierpiński sets by replacing “at most countable” with “smaller than
the continuum” and works under Martin’s Axiom.

6A discussion of “paradoxical” decompositions of the unit ball à la Hausdorff and Banach–Tarski
is beyond the scope of this paper, cf. also [4].
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Let us first show that (4) implies (5). If X is a set of reals, then we write
span(X) for the set of all

∑m
n=1 qn · xn, where m ∈ N, m ≥ 1, qn ∈ Q, and xn ∈ X

for all n, 1 ≤ n ≤ m. By convention, we also declare span(∅) = {0}.

Lemma 1.1 (Folklore) In ZF, if there is a Hamel basis, then there is a Vitali set.

Proof. Let B be a Hamel basis. Let 1 =
∑n
k=1 qk · zk, where qk ∈ Q \ {0} and

zk ∈ B for 1 ≤ k ≤ n. It is straightforward to verify that span(B \ {z1}) is a Vitali
set. � (Lemma 1.1)

Let us now recall the Cohen-Halpern-Lévy model. We let C denote Cohen
forcing, i.e., the collection of all finite sequences of natural numbers, ordered by
end–extension. If I is any index set, then C(I) denotes the finite support product
of I many copies of C, i.e., p ∈ C(I) iff p(`) ∈ C for ` ∈ I and

supp(p) = {` ∈ I : p(`) 6= ∅}

is finite. In what follows, I ⊆ ω. If I ∩ J = ∅, then C(I ∪ J) ∼= C(I)× C(J).
Let us force with C(ω) over L,7 and let g be a generic filter. Let cn, n < ω,

denote the Cohen reals which g adds. Let us write A = {cn : n < ω} for the set of
those Cohen reals. The model

H = H(L) = HOD
L[g]
A∪{A}

of all sets which inside L[g] are hereditarily definable from parameters in OR∪A∪
{A} is the Cohen–Halpern–Lévy model (over L), cf. [2, pp. 136–141], [3], and [8, p.
429]. As L ⊂ H ⊂ L[g] and C(ω) is countable, and hence trivially has the c.c.c.,
L, H, and L[g] all have the same cardinals, and in particular ωH1 = ωL1 . It is well–
known that in H, the reals cannot be well–ordered and in fact A has no countable
subset, cf. e.g. [2, pp. 136–141] and Lemma 1.2 below. Here and in what follows, a
set X is called countable iff there is some bijection f : ω → X, and X is called at
most countable iff X is finite or countable.

In particular, the Continuum Hypothesis fails in H: the set A ⊂ R ∩H is not
countable, but H can see no surjection from A onto R ∩H.

For any finite a ⊂ A, we write L[a] for the model constructed from the finitely
many reals in a. Fixing some Gödelization of formulae (or some enumeration of all
the rud functions, resp.) at the outset, each L[a] comes with a unique canonical
global well–ordering <a of L[a] by which we mean the one which is induced by the
natural order of the elements of a and the fixed Gödelization device in the usual
fashion. The assignment a 7→<a, a ∈ [A]<ω, is hence in H.8 This is a crucial fact.

Let us fix a bijection

e : ω → ω × ω,(1)

and let us write ((n)0, (n)1) = e(n).
We shall also make use the following.

7We might as well force over V rather than L, but forcing over L will simplify the notation a
bit.

8More precisely, the ternary relation consisting of all (a, x, y) such that x <a y is definable over
H.
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Lemma 1.2 (1) Let a ∈ [A]<ω and X ⊂ L[a], X ∈ H, say X ∈ HOD
L[g]
b∪{A}, where

b ⊇ a, b ∈ [A]<ω. Then X ∈ L[b].
(2) There is no well–ordering of the reals in H.
(3) A has no countable subset in H.
(4) [A]<ω has no countable subset in H.

Proof sketch. (1) Every permutation π : ω → ω induces an automorphism eπ
of C(ω) by sending p to q, where q(π(n)) = p(n) for all n < ω. It is clear that
no eπ moves the canonical name for A, call it Ȧ. Let us also write ċn for the
canonical name for cn, n < ω. Now if a, and b are as in the statement of (1),
say b = {cn1

, . . . , cnk
}, if p, q ∈ C(ω), if π � {n1, . . . , nk} = id, p � {n1, . . . , nk}

is compatible with q � {n1, . . . , nk}, and supp(π(p)) ∩ supp(q) ⊆ {n1, . . . , nk}, if
x ∈ L, if α1, . . . , αm are ordinals, and if ϕ is a formula, then

p C(ω)
L ϕ(x̌, α̌1, . . . α̌m, ċn1 , . . . ċnk

, Ȧ) ⇐⇒

π(p) C(ω)
L ϕ(x̌, α̌1, . . . α̌m, ċn1

, . . . ċnk
, Ȧ)

and π(p) is compatible with q, so that the statement ϕ(x̌, α̌1, . . . α̌m, ċn1
, . . . ċnk

, Ȧ)
will be decided by conditions p ∈ C(ω) with supp(p) ⊆ {n1, . . . , nk}. But every set
in L[b] is coded by a set of ordinals, so if X is as in (1), this shows that X ∈ L[b].

(2) Every real is a subset of L. Hence by (1), if L[g] had a well–ordering of the

reals in HOD
L[g]
a∪{A}, some a ∈ [A]<ω, then every real of H would be in L[a], which

is nonsense.
(3) Assume that f : ω → A is injective, f ∈ H. Let x ∈ ωω be defined by

x(n) = f((n)0)((n)1), so that x ∈ H. By (1), x ∈ L[a] for some a ∈ [A]<ω.
But then ran(f) ⊂ L[a], which is nonsense, as there is some n < ω such that
cn ∈ ran(f) \ a.

(4) This readily follows from (3). � (Lemma 1.2)

Let us recall another standard fact.

If a, b ∈ [A]<ω, then L[a] ∩ L[b] = L[a ∩ b].(2)

To see this, let us assume without loss of generality that a \ b 6= ∅ 6= b \ a, and
say a \ b = {cn : n ∈ I} and b \ a = {cn : n ∈ J}, where I and J are non–empty
disjoint finite subsets of ω. Then C(I) ∼= C ∼= C(J), and a \ b and b \a are mutually
C–generic over L[a∩b]. But then L[a]∩L[b] = L[a∩b][a\b]∩L[a∩b][b\a] = L[a∩b],
cf. [9, Problem 6.12].

For any a ∈ [A]<ω, we write Ra = R ∩ L[a] and R+
a = Ra \

⋃
{Rb : b ( a}. By

[2, pp. 136–141], (R+
a : a ∈ [A]<ω) is a partition of R: By Lemma 1.2 (1),

R ∩H =
⋃
{R+

a : a ∈ [A]<ω},(3)

and Ra ∩ Rb = Ra∩b by (2), so that

R+
a ∩ R+

b = ∅ for a, b ∈ [A]<ω, a 6= b.(4)

For x ∈ R, we shall also write a(x) for the unique a ∈ [A]<ω such that x ∈ R+
a ,

and we shall write #(x) = Card(a(x)).
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Adrian Mathias showed that there is an H–definable function which assigns to
each x ∈ H an ordering <x such that <x is a well–ordering iff x can be well–ordered
in H, cf. [6, p. 182]. This gives the following as a special simple case.

Lemma 1.3 (A. Mathias) In H, the union of countably many countable sets of
reals is countable.

Proof. Let us work inside H. Let (An : n < ω) be such that for each n < ω,
An ⊂ R and there exists some surjection f : ω → An. For each such pair n, f let
yn,f ∈ ωω be such that yn,f (m) = f((m)0)((m)1). If a ∈ [A]<ω and yn,f ∈ Ra, then
An ∈ L[a]. By (2), for each n there is a unique an ∈ [A]<ω such that An ∈ L[an]
and b ⊃ an for each b ∈ [A]<ω such that An ∈ L[b]. Notice that An is also countable
in L[an].

Using the function n 7→ an, an easy recursion yields a surjection g : ω →⋃
{an : n < ω}: first enumerate the finitely many elements of a0 according to their

natural order, then enumerate the finitely many elements of a1 according to their
natural order, etc. As A has no countable subset,

⋃
{an : n < ω} must be finite,

say a =
⋃
{an : n < ω} ∈ [A]<ω. But then {An : n < ω} ⊂ L[a]. (We don’t claim

(An : n < ω) ∈ L[a].)
For each n < ω, we may now let fn the <a–least surjection f : ω → An. Then

f(n) = f(n)0((n)1) for n < ω defines a surjection from ω onto
⋃
{An : n < ω}, as

desired. � (Lemma 1.3)

Lemma 1.4 (1) ([5, Theorem 3.20]) Let a ∈ [A]<ω. Then Ra is a null set in H.
(2) If B ⊂ R ∩H, B ∈ H, and B is countable in L[g], then B is a null set in

H.

Proof sketch. (1) Let R = ω2 in this argument, with the addition + being the
componentwise addition in Z/2Z. Let n < ω be such that cn /∈ a. It suffices to
prove that Ra is null in L[a ∪ {cn}].

In L[a], let Ra = N ∪M , where N is Gδ and null set, and M is Fσ and meager,
cf. e.g. [7]. Inside L[a ∪ {cn}], let us consider N∗ + cn = {x + cn : x ∈ N∗}, where
N∗ is L[a ∪ {cn}]’s version of N .

Let x ∈ Ra. As N is comeager in L[a], N + x is also comeager in L[a], so
that cn ∈ (N + x)∗ = N∗ + x, see [9, Lemma 8.9 (2)], and hence x ∈ N∗ + cn.
So Ra ⊆ N∗ + cn. But N is null in L[a], and hence N∗ and N∗ + cn are null in
L[a∪ {cn}]. Ra is therefore contained in a null set of L[a∪ {cn}] and is hence itself
null.

(2) Say f : ω → B, f ∈ L[g], is an enumeration of B, and let τ ∈ LC(ω) be such
that τg = f . Let us write τ(n) for the canonical name for f(n) induced by τ . We
aim to find N ∈ H, a Gδ null set in H with a code in L such that B ⊂ N . Let
h : C(ω)× ω → ω be bijective.

Let m < ω. Set εm = 1
m+1 and εmn = 1

2n+1 ·εm for n < ω, so that
∑∞
n=0 ε

m
n = εm.

Working in L, for each pair (p, k) ∈ C(ω) × ω, write n = h((p, k)), and let us

pick some q ∈ C(ω), q ≤ p, and some s ∈ <ωω such that q C(ω)
L š ⊂ τ(k), and

µ(Us) ≤ εmn , and write Omn = Us. (Here, Us is the basis clopen set {x : x ⊃ s}.)
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Set Om =
⋃
{Omn : n < ω}. For a given k < ω, the set {q ∈ C(ω) : ∃n q C(ω)

L

τ(k) ∈ Omn } is dense, so that f(k) = (τ(k))g ∈ Omn for some n. In other words,
B ⊂ Om.

Set N =
⋂
m<ω Om, to be interpreted in H. We have that N is a Gδ null set

inside H with a code in L, and B ⊂ N . � (Lemma 1.4)

Theorem 1.5 (D. Pincus, K. Prikry) In H, there is a Luzin set.

Proof. Let Λ ∈ L be such that L |= “Λ is a Luzin set.” We aim to verify that Λ
is Luzin in H. Λ is uncountable in L, so that also H can see a bijection of Λ with
its own ω1, as ωH1 = ωL1 . In particular, Λ is uncountable in H.

By Lemma 1.3, it suffices to verify that inside H,

Λ \ O is at most countable,(5)

whenever O is a dense union of countably many open intervals with rational end–
points.

Let ((pn, qn) : n < ω) be an enumeration of all open intervals with rational
end–points, and let X ⊂ ω, X ∈ H, be such that

H |= “O =
⋃
{(pn, qn) : n ∈ X} is dense.”

Let us suppose that (5) were not true in H for this fixed O. As Λ ∈ L, inside H

there must then be a bijection from ω1 onto Λ \ O, so that by ω
L[g]
1 = ωH1 also

Λ \ O is uncountable in L[g].(6)

Let τ ∈ LC(ω) be a name for X, and let p ∈ g be such that

p C(ω)
L “Λ \

⋃
{(pn, qn) : n ∈ τ} is uncountable.”

As C(ω) is countable, we may work in L[g] and find some q ∈ g, q ≤ p, such that
for uncountably many x ∈ R ∩ L,

q C(ω)
L “x̌ ∈ Λ \

⋃
{(pn, qn) : n ∈ τ}.”(7)

Let us write U for the set of all x ∈ R∩L with (7), so that U is an uncountable set
of reals in L, and let

O∗ =
⋃
{(pn, qn) : ∃r ≤ q r C(ω)

L n ∈ τ},

as being defined in L.
Of course, O∗ ⊇ O ∩ L, so that O∗ is open and dense in L. As Λ is a Luzin set

in L, Λ \ O∗ must be countable in L.
We have a contradiction with (6). � (Theorem 1.5)

Lemma 1.6 In H, there is no Sierpiński set.
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Proof. We shall prove that there is no set S ∈ H of reals such that S is not at
most countable in H and for each null set N of H, S ∩N is at most countable.

Let us suppose that S ∈ H is such a set. By Lemma 1.4, we cannot have that
S ⊆ Ra for some a ∈ [A]<ω, because if this were true, then S ∩Ra = S and S itself
would have to be at most countable.

Therefore, the set
F = {a ∈ [A]<ω : S ∩ R+

a 6= ∅}

is not finite. We may then inside H define the function f : F → R ∩H by setting
f(a) to be the <a–least element of S ∩ R+

a .
Write B = ran(f). Then B ∈ H, and B is countable inside L[g]. By Lemma 1.4

(2), B is then a null set in H. Therefore, B = S ∩B must be countable in H, i.e.,
there is some bijective h ∈ H, h : ω → B.

However, ((a,R+
a ) : a ∈ [A]<ω) ∈ H, so that x 7→ a(x) is in H, and hence

a ◦ h ∈ H, where (a ◦ h)(n) = a(h(n)), n < ω. Then a ◦ h : ω → [A]<ω is injective,
which contradicts Lemma 1.2 (4). � (Lemma 1.6)

Theorem 1.7 In H, there is a Bernstein set.

Proof. In this proof, let us think of reals as elements of the Cantor space ω2.
Let us work in H.

We let

B = {x ∈ R : ∃ even n (2n < #(x) ≤ 2n+1)} and

B′ = {x ∈ R : ∃ odd n (2n < #(x) ≤ 2n+1)}.

Obviously, B ∩B′ = ∅.
Let P ⊂ R be perfect. We aim to see that P ∩B 6= ∅ 6= P ∩B′.
Say P = [T ] = {x ∈ ω2: ∀nx � n ∈ T}, where T ⊆ <ω2 is a perfect tree. Modulo

some fixed natural bijection <ω2 ↔ ω, we may identify T with a real. By (3), we
may pick some a ∈ [A]<ω such that T ∈ L[a]. Say Card(a) < 2n, where n is even.

Let b ∈ [A]2
n+1

, b ⊃ a, and let x ∈ R+
b . In particular, #(x) = 2n+1. It is easy to

work in L[b] and construct some z ∈ [T ] such that x ≤T z ⊕ T ,9 e.g., arrange that
if z � m is the kth splitting node of T along z, where k ≤ m < ω, then z(m) = 0 if
x(k) = 0 and z(m) = 1 if x(k) = 1.

If we had #(z) ≤ 2n, then #(z ⊕ T ) ≤ #(z) + #(T ) < 2n + 2n = 2n+1, so
that #(x) < 2n+1 by x ≤T z ⊕ T . Contradiction! Hence #(z) > 2n. By z ∈ L[b],
#(z) ≤ 2n+1. Therefore, z ∈ P ∩B.

The same argument shows that P ∩B′ 6= ∅. B (and also B′) is thus a Bernstein
set. � (Theorem 1.7)

2 A Hamel basis.

The following is the main theorem of the current paper. Recall that for any a ∈
[A]<ω, we write Ra = R ∩ L[a]. Let us now also write R<a = span(

⋃
{Rb : b ( a}),

9Here, (x⊕ y)(2n) = x(n) and (x⊕ y)(2n + 1) = y(n), n < ω.
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and R∗a = Ra \ R<a. In particular, R<∅ = {0} by our above convention that
span(∅) = {0}, and R∗∅ = (R ∩ L) \ {0}.

The proof of Claim 2.2 below will show that

R ∩H = span(
⋃
{R∗a : a ∈ [A]<ω}.(8)

Also, we have that R∗a ⊂ R+
a , so that by (3),

R∗a ∩ R∗b = ∅ for a, b ∈ [A]<ω, a 6= b.(9)

Theorem 2.1 In H, there is a Hamel basis.

Proof. We call X ⊂ R∗a linearly independent over R<a iff whenever

m∑
n=1

qn · xn ∈ R<a,

where m ∈ N, m ≥ 1, and qn ∈ Q and xn ∈ X for all n, 1 ≤ n ≤ m, then
q1 = . . . = qm = 0. In other words, X ⊂ R∗a is linearly independent over R<a iff

span(X) ∩ R<a = {0}.

We call X ⊂ R∗a maximal linearly independent over R<a iff X is linearly independent
over R<a and no Y ) X, Y ⊂ Ra is still linearly independent over R<a. In
particular, X ⊂ R∗∅ = (R ∩ L) \ {0} is linearly independent over R<∅ = {0} iff X is
a Hamel basis for R ∩ L.

For any a ∈ [A]<ω, we let ba denote the <a–least set X ⊂ R∗a, X ∈ L[a], which
is maximal linearly independent over R<a. By the above crucial fact, the function
a 7→ ba is well–defined and exists inside H. In particular,

B =
⋃
{ba : a ∈ [A]<ω}

is an element of H.
We claim that B is a Hamel basis for the reals of H, which will be established

by Claims 2.2 and 2.3.

Claim 2.2 R ∩H ⊂ span(B).

Proof of Claim 2.2. Assume not, and let n < ω be the least size of some a ∈ [A]<ω

such that R∗a \ span(B) 6= ∅. Pick x ∈ R∗a \ span(B) 6= ∅, where Card(a) = n.
We must have n > 0, as b∅ is a Hamel basis for the reals of L. Then, by the

maximality of ba, while ba is linearly independent over R<a, ba ∪ {x} cannot be
linearly independent over R<a. This means that there are q ∈ Q, q 6= 0, m ∈ N,
m ≥ 1, and qn ∈ Q \ {0} and xn ∈ ba for all n, 1 ≤ n ≤ m, such that

z = q · x+

m∑
n=1

qn · xn ∈ R<a.

By the definition of R<a and the minimality of n, z ∈ span(
⋃
{bc : c ( a}), which

then clearly implies that x ∈ span(
⋃
{bc : c ⊆ a}) ⊂ span(B).

This is a contradiction! � (Claim 2.2)

8

3 Nov 2017 08:03:41 EDT
Version 2 - Submitted to Proc. Amer. Math. Soc.

Algebra+NT+Comb+LogiThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



Claim 2.3 B is linearly independent.

Proof of Claim 2.3. Assume not. This means that there are 1 ≤ k < ω, ai ∈
[A]<ω pairwise different, mi ∈ N, mi ≥ 1 for 1 ≤ i ≤ k, and qin ∈ Q \ {0} and
xin ∈ bai for all n, 1 ≤ n ≤ m, and i, 1 ≤ i ≤ k, such that

m1∑
n=1

q1n · x1n + . . .+

mk∑
n=1

qkn · xkn = 0.(10)

By the properties of bai ,
∑mi

n=1 q
i
n · xin ∈ R∗ai , so that (10) buys us that there are

zi ∈ R∗ai , zi 6= 0, 1 ≤ i ≤ k, such that

z1 + . . .+ zk = 0.(11)

There must be some i such that there is no j with aj ) ai, which implies that
aj ∩ ai ( ai for all j 6= i. Let us assume without loss of generality that aj ∩ a1 ( a1
for all j, 1 < j ≤ k.

Let a1 = {c` : ` ∈ I}, where I ∈ [ω]<ω, and let aj ∩ a1 = {c` : ` ∈ Ij}, where
Ij ( I, for 1 < j ≤ l.

In what follows, a nice name τ for a real is a name of the form

τ =
⋃

n,m<ω

{(n,m)∨} ×An,m,(12)

where each An,m is a maximal antichain of conditions of the forcing in question
deciding that τ(ň) = m̌.

We have that z1 is C(I)–generic over L, so that we may pick a nice name
τ1 ∈ LC(I) for z1 with (τ1)g�I = z1. Similarly, for 1 < j ≤ k, zk is C(Ij)–generic
over L[g � (ω\I)], so that we may pick a nice name τj ∈ L[g � (ω\I)]C(Ij) for zj with
(τj)

g�Ij = zj . We may construe each τj , 1 < j ≤ k, as a name in L[g � (ω\I)]C(I) by
replacing each p : Ij → C in an antichain as in (12) by p′ : I → C, where p′(`) = p(`)
for ` ∈ Ij and p′(`) = ∅ otherwise. Let p ∈ g � I be such that

p C(I)
L[g�(ω\I)] τ1 + τ2 + . . .+ τk = 0.

We now have that inside L[g � (ω \ I)], there are nice C(I)–names τ ′j , 1 < j ≤ k
(namey, τj , 1 < j ≤ k), such that still inside L[g � (ω \ I)]

(1) p C(I) τ1 + τ ′2 + . . .+ τ ′k = 0, and

(2) for all j, 1 < j ≤ k and for all p in one of the antichains of the nice name τ ′j ,
supp(p) ⊆ Ij .

Both (1) and (2) are arithmetic in real codes for τ1,τ ′2, . . . , τ ′k, so that by τ1 ∈ LC(I)

and Σ1
1–absoluteness between L and L[g � (ω \ I)] there are inside L nice C(I)–

names τ ′j , 1 < j ≤ k, such that in L, (1) and (2) hold true. But then, writing

z′j = (τ ′j)
g�I , we have by (2) that z′j ∈ RIj for 1 < j ≤ k, and z1 + z′2 + . . .+ z′k = 0

by (1). But then z1 ∈ R∗I ∩ R<I , which is absurd. � (Claim 2.3)

This finishes the proof of Theorem 2.1. � (Theorem 2.1)

In the light of Lemma 1.1, Theorem 2.1 reproves Feferman’s result.

Corollary 2.4 (S. Feferman) In H, there is a Vitali set.
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