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REFINED INTERLACING PROPERTIES FOR ZEROS

OF PARAORTHOGONAL POLYNOMIALS

ON THE UNIT CIRCLE

K. CASTILLO AND J. PETRONILHO

(Communicated by Mourad Ismail)

Abstract. The purpose of this note is to extend in a simple and unified
way the known results on interlacing of zeros of paraorthogonal polynomials
on the unit circle. These polynomials can be regarded as the characteristic
polynomials of any matrix similar to a unitary upper Hessenberg matrix with
positive subdiagonal elements.

1. Introduction and main result

The study of zeros of orthogonal polynomials on the real line (hereafter abbre-
viated by OPRL) can be regarded as an eigenvalue problem for Jacobi matrices.1

This allows us to go back to one of the most important single books in the nine-
teenth century, Cours d’analyse de l’École royale polytechnique (1821) by Cauchy
to deduce, at least in the weak sense, the zero interlacing property of consecutive
OPRL from the simplest form of the nowadays called Cauchy interlacing theo-
rem. The search of more refined eigenvalue interlacing properties was probably
initiated by Cauchy himself in his work Sur l’ Équation à l’ Aide de Laquelle on
Détermine les Inegalitées Séculaires des Mouvements des Planètes (1829) and later
continued by Wilkinson [45], Kahan [29], Golub [20], Hill and Parlett [26], and
Bar-On [6], among others. In the same spirit, this work recovers one of the earli-
est approaches used to study zeros of paraorthogonal polynomials on the unit cir-
cle (hereafter abbreviated by POPUC), which is based on an eigenvalue problem
for certain unitary matrices which bear many similarities to Jacobi matrices (cf.
[1, 3, 7, 9–11,16, 23, 25, 30, 31, 35, 36, 38–40,44]).

Without wishing to delve into a historical discussion,2 as far as we know, the
POPUC3 were introduced (in a somewhat hidden form) and successfully developed
in a series of papers by Delsarte and Genin at the end of the 1980s [13,15,16] when
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1A symmetric tridiagonal matrix whose next-to-diagonal elements are positive (cf. [27, p. 36]).
2The weakened orthogonality condition that POPUC satisfy appeared in [13, Equation 4.10] as

far as we can tell, while it is true that in Geronimus’ 1944 paper [18, Theorem IV] such polynomials
were presented.

3In [13], Delsarte and Genin called these polynomials (symmetric) predictor polynomials and
its weakened orthogonality property quasi-orthogonality. In [14], they refer to these polynomials
as quasi-orthogonal polynomials on the unit circle. This determination could also be supported
by the fact that in 1946 Geronimus in regard to these polynomials wrote that they “...play the
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they were working in signal processing. In [16], the authors focus on the problem
of computing the zeros of POPUC regarded as an eigenvalue problem for a unitary
upper Hessenberg matrix with positive subdiagonal elements. Elegant and recent
proofs of most interlacing properties of zeros of POPUC shared with OPRL are due
to Simon [39] (cf. [40, Theorem 2.14.4]) where the theory of rank one perturbations
plays a central role. However, before such work (and the references therein) the
zeros of POPUC were studied by the Linear Algebra community based on ideas
close to those of Simon but supported on more elementary facts. Further analysis
of these ideas will allow us to easily extend the known results. Indeed, our main
purpose is to prove and improve, in connection with the works of Delsarte and
Genin on the subject, the known zero interlacing properties of POPUC, based on
the development of the ideas discussed by Arbenz and Golub in [4, Section 6].4

Here and below, we mainly follow the notation of [35, 36, 40]. Denote by D the
open unit disk and by S

1 its boundary, i.e.,

D := {z ∈ C : |z| < 1} , S
1 := {z ∈ C : |z| = 1} .

Let (a0, . . . , an−1, bn) with aj ∈ D (j = 0, 1, . . . , n− 1) and bn ∈ S1. Set

Θj := Θ(aj), Θ(a) :=

(
a r
r −a

)
, r :=

(
1− |a|2

)1/2
.

Define the (n+ 1)-by-(n+ 1) matrix

C := LM ,(1)

where L and M are given explicitly by

L :=

{
Θ0 ⊕Θ2 ⊕ · · · ⊕Θn−2 ⊕ bn if n is even,

Θ0 ⊕Θ2 ⊕ · · · ⊕Θn−1 if n is odd ,

M :=

{
1 ⊕ Θ1 ⊕Θ3 ⊕ · · · ⊕Θn−1 if n is even,

1 ⊕ Θ1 ⊕Θ3 ⊕ · · · ⊕Θn−2 ⊕ bn if n is odd.

Any unitary (n+1)-by-(n+1) upper Hessenberg matrix with positive subdiagonal
elements is uniquely parameterized by 2n + 1 real numbers that compose the pa-
rameters of the array (a0, . . . , an−1, bn) [22] (cf. [24] and [2, Proposition 1]). The
resulting matrix after this process is referred to as the Schur parametric form of the
original matrix. The factorization (1), which is unitarily similar to the Schur para-
metric form of an upper Hessenberg matrix with positive subdiagonal elements, was
presented by Bunse-Gerstner and Elsner [9] (cf. [21, Section 12.2.10] and [7, Defi-
nition 3.3 and Lemma 3.4]). The explicit unitary pentadiagonal or double-staircase
form of C (referred to as the Doppel-Treppen-Matrix in the original German source)
was studied extensively by Bohnhorst [7]; see Figure 1 for an 8-by-8 example (cf.
[7, Equation 3.9] and [30, Figure 1.1]). The matrix C becomes a very popular ob-
ject in the Mathematical Physics and Orthogonal Polynomials communities after
the work [11], in particular, after Simon’s monographs [35, 36] where it was called
(improper) CMV matrix (cf. [38, 40]).

same role here as the quasi-orthogonal polynomials of M. Riesz in the Hamburger problem.” (See
[17, Remark I].) The expression POPUC was coined in [28].

4Such pioneering ideas were employed in the present context by Bohnhorst in her Ph.D. thesis
[7] defended in 1993 at the Bielefeld University under the supervision of Elsner.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 r0a1 r0r1
r0 −a0a1 −a0r1

r1a2 −a1a2 r2a3 r2r3
r1r2 −a1r2 −a2a3 −a2r3

r3a4 −a3a4 r4a5 r4r5
r3r4 −a3r4 −a4a5 −a4r5

r5a6 −a5a6 r6b7
r5r6 −a5r6 −a6b7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1. The matrix C for n = 7.

In order to make the notation more transparent, we write C(a0, . . . , an−1, bn)
instead of C. We choose the representation (1) instead of their unitary similar upper
Hessenberg matrix for a technical reason related to the manner in which Lemma 2.1
below is presented. In the next definition and subsequently, I denotes the identity
matrix, whose order is made explicit or may be inferred from the context.

Definition 1.1 (cf. [39, Proposition 3.2]). Let C(a0, . . . , an−1, bn) be the matrix
given by (1), where aj ∈ D (j = 0, 1, . . . , n−1) and bn ∈ S1. The (monic) polynomial
Pn+1 defined by

Pn+1(z) := det
(
zI − C(a0, . . . , an−1, bn)

)
is the POPUC of degree n+ 1 associated with the array (a0, . . . , an−1, bn).

It is not difficult to see that the eigenvalues of C(a0, . . . , an−1, bn) are simple. This
fact was observed in 1944 by Geronimus [18, Theorem IV] (cf. [17, Theorem III],
[19, Theorem 9.1] and [5, Theorem 7.2.2]) using the connection between POPUC
and orthogonal polynomials on the unit circle (hereafter abbreviated by OPUC).
Note that if bn were in D, then the corresponding characteristic polynomial would be
an OPUC and their zeros would be in D. A remarkable property of the eigenvectors
of C(a0, . . . , an−1, bn) is the fact that all their components are nonzero (cf. [35,
Chapter 4] and the references therein). This property is clearly valid also for the
corresponding unitarily similar Hessenberg matrix.

Definition 1.2. Two finite subsets {ζ1, ζ2, . . . , ζm} and {ξ1, ξ2, . . . , ξn} (1 ≤ m ≤
n) of S1 interlace (respectively, strictly interlace) whenever there exist n−m points
ζm+1, ζm+2, . . . , ζn ∈ S

1 such that any closed arc (respectively, open arc) on S
1

connecting two distinct elements of {ζ1, ζ2, . . . , ζn} contains at least one element of
{ξ1, ξ2, . . . , ξn}, and vice versa.

We can now formulate our main result.

Theorem 1.1. Let C(a0, . . . , an−1, bn) be a matrix given by (1), where aj ∈ D

(j = 0, 1, . . . , n− 1) and bn ∈ S1. The following sentences hold:

(i) Let β ∈ S
1 \ {1} and define Cβ

m := C(a0, . . . , am−1, βam, . . . , βan−1, βbn)
(0 ≤ m < n) and Cβ

n := C(a0, . . . , an−1, βbn). Then the eigenvalues of
C(a0, . . . , an−1, bn) and Cβ

m strictly interlace on S1 for each 0 ≤ m ≤ n.



3288 K. CASTILLO AND J. PETRONILHO

(ii) For each 0 ≤ m < n, let bm ∈ S1. For each ζ ∈ S1, define recursively the
numbers5

bn(ζ) := bn, bj(ζ) :=
ζ aj + bj+1(ζ)

ajbj+1(ζ) + ζ
(j = n− 1, . . . , 1, 0) .(2)

Set6

A := C ∩ σ(C(a0, . . . , am−1, bm)), B := σ(N ) \A ,

where C := {ζ ∈ S1 : bm(ζ) = bm}, N := C(am+1, . . . , an−1, bn)D with
D := diag (dm, I),7 and

dm :=
am − bm
ambm − 1

.(3)

Then C(a0, . . . , an−1, bn) and C(a0, . . . , am−1, bm) have at most
min{m+1, n−m} common eigenvalues. More precisely, C(a0, . . . , an−1, bn)
and C(a0, . . . , am−1, bm) have A as the set of common eigenvalues, A being
also given by the alternative expression

A = σ(N ) ∩ σ(C(a0, . . . , am−1, bm)) .

Furthermore, the elements of the sets σ
(
C (a0, . . . , an−1, bn)

)
\ A and

σ
(
C(a0, . . . , am−1, bm)

)
∪ B strictly interlace on S1.

Let Pn+1 be the POPUC of degree n + 1 associated to the array (0, . . . , 0, 1).
Since C(0, . . . , 0, 1) is a permutation matrix, it follows that Pn+1(z) = zn+1 − 1.
The sequence (Pj)j≥1 (all of whose zeros are roots of unity) produce, by geometric
intuition, illuminating examples that fall within Theorem 1.1.

Example 1.1. Let P3 and P6 be the POPUC associated to the arrays (0, 0, 1) and
(0, 0, 0, 0, 0, 1), respectively. In this situation,

C(0, 0, 1) =

⎛
⎝0 0 1
1 0 0
0 1 0

⎞
⎠ , C(0, 0, 0, 0, 0, 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and, therefore,

σ(C(0, 0, 1)) =
{
1, e±i2π/3

}
, σ(C(0, 0, 0, 0, 0, 1)) =

{
±1, e±i2π/3, e±iπ/3

}
.

In the notation of Theorem 1.1 we have n = 5,m = 2, bj(ζ) = ζ5−j (0 ≤ j ≤ 5), A =
C = σ(C(0, 0, 1)), and B = ∅, where A is obtained by using any of the expressions
outlined in Theorem 1.1. Clearly, C(0, 0, 0, 0, 0, 1) and C(0, 0, 1) have A as the set
of common eigenvalues and the elements of the sets σ(C(0, 0, 0, 0, 0, 1)) \ A and
σ(C(0, 0, 1)) strictly interlace on S1, in concordance with sentence (ii) of Theorem
1.1.

5In [15] (cf. [16, Equation 2.6]), Delsarte and Genin have shown that if the bj(ζ)’s (known as
pseudo-reflection coefficients) are given by (2), then the corresponding POPUC satisfy a three-
term recurrence relation (cf. [12]). Bunse-Gerstner and He [10] have provided an illuminating
discussion of the works of Delsarte and Genin on POPUC in matrix terms.

6σ(A) denotes the spectrum of A.
7diag (dm, I) denotes the block diagonal matrix dm

⊕
I.
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Regarding Theorem 1.1, as far as we know, sentence (i) for m = 0 was proved
by Ammar, Gragg and Reichel [1, Proposition 4.2], although the particular case
β = −1 is known since Geronimus’ work [18, Theorem IV] (cf. [17, Theorem III]).
The sentence (i) for m = n was proved by Bohnhorst in [7, Theorem 3.19] (cf. [8,
Theorem 3.5]). In [39, Theorem 3.4], Simon proved a weaker version of sentence (ii)
that reads as follows: Strictly between any pair of eigenvalues of C(a0, . . . , am−1, bm)
there is at least one eigenvalue of C(a0, . . . , an−1, bn).

Corollary 1.1. Let C(a0, . . . , an−1, bn) be a matrix given by (1), where aj ∈
D (j = 0, 1, . . . , n − 1) and bn ∈ S1. Let bn−1 ∈ S1 and define dn−1 as in
(3) for m = n − 1. Then C(a0, . . . , an−1, bn) and C(a0, . . . , an−2, bn−1) have
at most one common eigenvalue. More precisely, either C(a0, . . . , an−1, bn) and
C(a0, . . . , an−2, bn−1) have bndn−1 as (only) common eigenvalue and the elements
of σ

(
C(a0, . . . , an−1, bn)

)
\ {bndn−1} and σ

(
C(a0, . . . , an−2, bn−1)

)
strictly interlace

on S1, or else C(a0, . . . , an−1, bn) and C(a0, . . . , an−2, bn−1) have no common eigen-
values, and in such case bndn−1 is not an eigenvalue of either, and the elements
of the sets σ

(
C(a0, . . . , an−1, bn)

)
and σ

(
C(a0, . . . , an−2, bn−1)

)
∪{bndn−1} strictly

interlace on S1.

Proof. Take m = n − 1 in Theorem 1.1. Hence, (2) and (3) yield C = {bndn−1}
which, in turn, is equal to σ(N ). Then either A = C and B = ∅ if bndn−1 ∈
σ
(
C(a0, . . . , an−2, bn−1)

)
, or else A = ∅ and B = C otherwise. The result follows

immediately from sentence (ii) of Theorem 1.1. �

Corollary 1.1 was proved by Bohnhorst [7, p. 48] (cf. [8, p. 819]) and rediscovered
by Simon [39, Theorem 1.4]. It is worth noting that in view of Corollary 1.1 and
besides the several and well-known practical consequences, POPUC answered the
following open-ended question proposed by Turán as far back as 1974 [42, Problem
LXVI, p. 60]: “It is known that the zeros of the nth orthogonal polynomial (with
respect to a Lebesgue-integral function on an interval) separate the zeros of the
(n+ 1)th polynomial. What corresponds to this fact on the unit circle?”.8

2. Proof of Theorem 1.1

2.1. Some preliminary lemmas. Theorem 1.1 will be proved through the fol-
lowing sequence of lemmas.

Lemma 2.1. Let U and S be unitary matrices of the same order and suppose that
rank (I − S) = 1 . Then U and US have interlacing eigenvalues on S

1. Moreover,
assume that US admits a decomposition US = U1 ⊕ U2 , and let U be partitioned
as

U =

(
U11 U12

U21 U22

)
,

U11 and U1 being of the same order. Set U1 := σ(U1), U2 := σ(U2), and U := σ(U).
Assume further that the eigenvalues of U1 and U2 are simple and σ(U11) ∩ U1 =
σ(U22) ∩ U2 = ∅. Then the elements of the sets U \

(
U1 ∩ U2

)
and U1 ∪

(
U2\(U1 ∩

U2)
)
strictly interlace on S1.

8We quote the English translation provided by Szüsz [43, Problem LXVI].
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Proof. The first sentence of the lemma is the simplest form of a result due to Arbenz
and Golub [4, Section 6] (cf. [7, Theorem 2.9] and [8, Theorem 2.7]).9 In order to
deduce the second one, we first claim that

U1 ∩ U2 = U1 ∩ U = U2 ∩ U .(4)

Indeed, since rank (US −U) = 1, there exist nonzero vectors u, v ∈ Cn (n being the
common order of U and S) such that US = U + uvT . Using the formula for the
determinant of a rank one perturbation (cf. [34, Proposition 3.21]), we may write
for each ζ ∈ C 10

χU (ζ) = χUS (ζ) + vT Adj (ζI − US)u .(5)

Let US = ZΛZ∗ be the spectral decomposition of US in which Λ = diag (λ1, . . . , λn)
and Z = (z1 . . . zn). Thompson-McEnteggert’s formula for the adjugate [41] (cf.
[33, Theorem 2.1]) gives

Adj (λjI − US) = χ′
US (λj)zjz

∗
j ,(6)

where the prime denotes the derivative. Combining (5) with (6) yields11

χU (λj) =
(
χ′

U1
(λj)χU2

(λj) + χU1
(λj)χ

′
U2
(λj)

)
z∗j uv

T zj .(7)

We next claim that if λj ∈ (U1 − U2) ∪ (U2 − U1),
12 then z∗j uv

T zj �= 0. We only

prove that λj ∈ U1 − U2 implies vT zj �= 0. (To prove that λj ∈ U1 − U2 implies
z∗ju �= 0, we proceed similarly, as well as for proving that λj ∈ U2 − U1 implies

z∗juv
T zj �= 0.) Indeed, suppose that λj ∈ U1 − U2 and vT zj = 0. Since there is a

normalized eigenvector vj of U1 associated with λj such that zj = (vTj , 0, . . . , 0)
T ,

we deduce

U11 vj = λjvj ,

hence λj ∈ σ(U11)∩U1, contrary to σ(U11)∩U1 = ∅. Consequently, (4) follows from
(7). Finally, it follows from (4) that the sets U \

(
U1 ∩ U2

)
and U1 ∪

(
U2\(U1 ∩ U2)

)
have no common elements, thus the second sentence of the lemma follows from the
first one. �

Lemma 2.2. Let U be a unitary matrix and for a fixed k let S be the diagonal matrix
obtained from the identity matrix by replacing the (k, k) entry with a number on
S1 \ {1}. Assume that U and S have the same order. Assume further that the
eigenvalues of U are simple and all its eigenvectors have a nonzero component at
the position k. Then U and US have strictly interlacing eigenvalues on S1.

Proof. Without loss of generality we can assume that k = 1, and so S = diag (β, I)
with β ∈ S1 \ {1}. Let U = ZΛZ∗ be the spectral decomposition of U in which
Λ = diag (λ1, . . . , λn) and Z = (z1 . . . zn). Arguing as in the proof of Lemma 2.1
we have

χUS (λj) = χ′
U (λj) z

∗
juv

T zj .(8)

9It can be deduced directly using [32, p. 222] and [27, Corollary 4.3.9].
10χA denotes the characteristic polynomial of A.
11The eigenvalue interlacing already stated implies U1 ∩ U2 ⊆ U , and so U1 ∩ U2 ⊆ U1 ∩ U

and U1 ∩ U2 ⊆ U2 ∩ U .
12Given a set E and F,G ⊆ E, we define F −G := F ∩ (E\G); if G ⊆ F , then F −G = F\G.



REFINED INTERLACING PROPERTIES 3291

Let zj,1 �= 0 be the first component of the vector zj . Then

z∗j uv
T zj = z∗jU(I − S)zj = λj(1− β) |zj,1|2 �= 0 .

Thus the result follows from (8) and the first sentence of Lemma 2.1. �

Lemma 2.3. Let aj ∈ D (j = 0, 1, . . . , n−1) and bn ∈ S1. The following sentences
hold:

(i) Let S be a diagonal matrix obtained from the (n + 1)-by-(n + 1) identity
matrix by replacing one of its diagonal entries with a number on S1 \ {1}.
Then C(a0, . . . , an−1, bn) and C(a0, . . . , an−1, bn)S have strictly interlacing
eigenvalues on S

1.
(ii) Let C(a0, . . . , an−1, bn) be partitioned as

C(a0, . . . , an−1, bn) =

(
C11 C12
C21 C22

)
,(9)

C11 being the (m + 1)-by-(m + 1) leading principal submatrix of
C(a0, . . . , an−1, bn). Then, for each 0 ≤ m < n, C22 has no eigenvalues
on S

1.

Proof. (i) The result follows directly from Lemma 2.2 and the fact that all the
components of the eigenvectors of C(a0, . . . , an−1, bn) are nonzero.

(ii) Assume thatm is even. Note that C22 is the (n−m)-by-(n−m) trailing princi-
pal submatrix of each of the matrices C(am, . . . , an−1, bn) and C(am, . . . , an−1, bn)S,
where S := diag (β, I). Suppose the assertion (ii) is false. Since C(am, . . . , an−1, bn)
and C(am, . . . , an−1, bn)S are unitary matrices, these matrices share all the eigen-
values of C22 on S1, which contradicts sentence (i). If m is odd, we argue in the
same way noting that CT

22 is the (n−m)-by-(n−m) trailing principal submatrix of
each of the matrices C(am, . . . , an−1, bn) and S C(am, . . . , an−1, bn). �

Lemma 2.4. Let aj ∈ D (j = 0, 1, . . . , n− 1) and bn ∈ S1. Let C(a0, . . . , an−1, bn)
be partitioned as in (9), where 0 ≤ m < n. Let bm ∈ S

1 and define bm(ζ) via
(2) for each ζ ∈ S1. Then C(a0, . . . , an−1, bn) and C(a0, . . . , am−1, bm) have at
most min{m+ 1, n−m} common eigenvalues, which consist of the set of different
solutions ζ of the equation bm(ζ) = bm on σ(C(a0, . . . , am−1, bm)).

Proof. We begin by noting that

det
(
ζI − Cn

)
= det

(
ζI − C(a0, . . . , am−1, bm(ζ))

)
det

(
ζI − C22

)
(10)

for each ζ ∈ S1. Indeed, by sentence (ii) of Lemma 2.3, ζI − C22 is nonsingular,
hence (10) follows from the equality (cf. [7, Equation 3.41])

C(a0, . . . , am−1, bm(ζ)) = C11 − C12(C22 − ζI)−1C21 ,

after taking into account the Schur complement of ζI −C22 in ζI −C(a0, . . . , an−1,
bn) is ζI −

(
C11 − C12(C22 − ζI)−1C21

)
. The result follows from (10) and the fact

that for ν, ζ ∈ S
1, with ν �= ζ, C(a0, . . . , am−1, ν) and C(a0, . . . , am−1, ζ) have no

common eigenvalues (see, e.g., [40, Theorem 2.14.4]; alternatively, apply sentence
(i) of Lemma 2.3). �
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2.2. Proof of Theorem 1.1.
(i) Let S := diag (Im, β, In−m), D := diag (Im, J β

n−m+1), and V := diag (Im+1,

J β
n−m), where J β

k := diag (β, 1, β, 1, . . . ) is a k-by-k diagonal matrix. Note that(
β 0
0 1

)
Θ(a)

(
1 0
0 β

)
= Θ(βa) .(11)

Using (11) it is easily seen that13

D∗ C(a0, . . . , an−1, bn)DS =
(
D∗ LV

) (
V∗ MDS

)
= Cβ

m ,

when m is even. Similarly, the transpose of (11) leads to

S D C(a0, . . . , an−1, bn)D∗ =
(
S DLV∗) (VMD∗) = Cβ

m ,

when m is odd. The result follows from sentence (i) of Lemma 2.3.
(ii) Define the block diagonal matrix S := diag (Im,Z, In−m−1), where

Z = Θ∗
m

(
bm 0
0 dm

)
.

Hence

C(a0, . . . , am−1, bm) ⊕ N = C(a0, . . . , an−1, bn)S ,

when m is odd, and

C(a0, . . . , am−1, bm) ⊕ N T = ST C(a0, . . . , an−1, bn) ,

when m is even. Note that N has simple eigenvalues (on S
1) by sentence (i) of

Lemma 2.3. The result follows from Lemma 2.1, sentence (ii) of Lemma 2.3, and
Lemma 2.4.
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