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CRITICAL PERCOLATION ON RANDOM REGULAR GRAPHS

FELIX JOOS AND GUILLEM PERARNAU

(Communicated by David Levin)

Abstract. We show that for all d ∈ {3, . . . , n − 1} the size of the largest
component of a random d-regular graph on n vertices around the percolation
threshold p = 1/(d−1) is Θ(n2/3), with high probability. This extends known
results for fixed d ≥ 3 and for d = n− 1, confirming a prediction of Nachmias
and Peres on a question of Benjamini. As a corollary, for the largest component
of the percolated random d-regular graph, we also determine the diameter and
the mixing time of the lazy random walk. In contrast to previous approaches,
our proof is based on a simple application of the switching method.

1. Introduction

For every d ∈ {3, . . . , n− 1}, let Gn,d be the set of all simple and vertex-labelled
d-regular graphs on n vertices and let Gn,d be a graph chosen uniformly at random
from Gn,d. For p ∈ [0, 1], let Gn,d,p be a graph obtained from Gn,d by retaining
each edge independently with probability p. The goal of this paper is to study the
order of the largest component of Gn,d,p, denoted by L1(Gn,d,p), in terms of n, d,
and p.

Most of the literature in the area focuses either on fixed d ≥ 3 or on d = n− 1.
Goerdt [8] showed the existence of a critical probability, pcrit := 1/(d−1), such that
for every fixed d ≥ 3 and every ε > 0 the following holds with probability 1− o(1):
if p ≤ (1 − ε)pcrit, then L1(Gn,d,p) = O(logn), while if p ≥ (1 + ε)pcrit, then
L1(Gn,d,p) = Θ(n). Similar results were also obtained in a more general setting by
Alon, Benjamini and Stacey [1]. For d = n−1, the random graph Gn,d,p corresponds
to the classic Erdős-Rényi random graph Gn,p. In their seminal paper [5], Erdős
and Rényi proved that for every ε > 0, the following holds with probability 1−o(1):
if p ≤ (1− ε)/n, then the largest component of Gn,p has order O(logn), if p = 1/n

(critical probability), then it has order Θ(n2/3), while if p ≥ (1 + ε)/n, then it has
linear order.

Both for fixed d ≥ 3 and for d = n− 1, the behaviour around the critical proba-
bility has attracted a lot of interest. It is well established that the critical window
in Gn,p around p = 1/n is of order n−1/3 (see, e.g., [21]). More precise estimates
can be found in [14]. Benjamini posed the problem of determining the width of
the critical window in Gn,d,p around pcrit = 1/(d− 1) (see [20,22]). Nachmias and
Peres [20] and Pittel [22], independently showed that the critical window exhibits
mean-field behaviour for fixed d ≥ 3, namely, the following holds with probability
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1 − o(1): for every fixed λ ∈ R, if p = 1+λn−1/3

d−1 , then L1(Gn,d,p) = Θ(n2/3). See

also Riordan [23] for more precise results on L1(Gn,d,p) in the critical window.
The case when d is an arbitrary function of n is much less understood. It follows

from existing results in the literature1 that for every d ∈ {3, . . . , n− 1}, the critical
probability for the existence of a linear order component in Gn,d,p is 1/(d − 1).
Results inside the critical window for given d-regular graphs have also been obtained
in the context of transitive graphs under the finite triangle condition [4] or under
certain expansion conditions [18].

Finally, similar results have been obtained for irregular degree sequences when-
ever the average degree is bounded by a constant [3, 6, 7, 10].

In view of the fact that both the sparse regime (fixed d ≥ 3) and the densest
one (d = n− 1) exhibit similar properties, Nachmias and Peres [20] suggested that
the mean-field behaviour extends to every d ∈ {3, . . . , n − 1}. In this paper we
confirm this prediction in the critical window and thus answer the question posed
by Benjamini for all d ∈ {3, . . . , n− 1}.

Theorem 1. Suppose λ ∈ R and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is

sufficiently large. Let p = 1+λn−1/3

d−1 . Then for every sufficiently large A = A(λ),
we have

P[L1(Gn,d,p) /∈ [A−1n2/3, An2/3]] ≤ 20A−1/2 .

The upper bound in Theorem 1 directly follows from the upper bound for d-
regular graphs in Proposition 1 in [20]. The proof of the lower bound is more
intricate and we devote the rest of the paper to it.

Most of the previous work on the component structure of Gn,d,p uses the config-
uration model introduced by Bollobás in [2]. The configuration model, denoted by
G∗

n,d, is a model of random d-regular multigraphs on n vertices. Conditional on G∗
n,d

being simple, one obtains the uniform distribution on Gn,d. It is well known (see
for example [24]) that

P[G∗
n,d simple] = e−Ω(d2) .(1)

While P[G∗
n,d simple] is constant for fixed d ≥ 3, it quickly tends to 0 if d grows

with n, and new ideas are needed to study Gn,d. A standard tool to estimate
probabilities for Gn,d when d grows with n is the switching method, introduced
by McKay in [16]. For instance, this method has been used to estimate (1) for
d = o(

√
n) [17] or to determine several combinatorial properties of Gn,d when d

grows with n [13].
The proof of the lower bound in Theorem 1 is based on the analysis of an

exploration process in Gn,d,p using the switching method. The central quantity
that we track through the process is the number of edges between the explored and
unexplored parts of the graph, denoted byXt. Our proof relies on sharp estimations
of the first and second moments of Xt.

This approach is inspired by recent developments of the switching method for the
study of the component structure of random graphs with a given degree sequence [7,
11]. We take this opportunity to illustrate the use of our method with a simple
proof that makes no assumptions on d.

1The non-existence of a linear order component when p ≤ (1−ε)pcrit follows from Proposition 1
in [20]. The existence of a linear order component when p ≥ (1+ε)pcrit follows from the expansion
properties of Gn,d (see Corollary 2.8 in [13]) and the results on (n, d, λ)−graphs in [12].
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The critical window. Theorem 1 shows that the critical window has width
Ω(n−1/3). Proposition 1 in [20] implies that, as λ → −∞, the typical order of
the largest component is o(n2/3). Following analogous ideas as the ones used in the
proof of Theorem 1, one obtains that, as λ → ∞, the typical order of the largest
component is ω(n2/3). More precisely, there exist constants c, C > 0 such that for

every 3 ≤ d ≤ n− 1 and λ > 0, if p = 1+λn−1/3

d−1 , then

P

[
L1(Gn,d,p) ≤ c · λn2/3

]
≤ Cλ−1 .

The proof of this statement is simpler than the proof of our main theorem, since
the assumption λ > 0 implies that Xt has positive drift. In particular, the first part
of the exploration process can be analysed using a first moment argument only and
for the entire process it suffices to control the variance of Xt from above. It follows
that the width of the critical window is Θ(n−1/3).

In its current form, our method does not give sharp estimates for L1(Gn,d,p) in
the barely subcritical and barely supercritical regimes. However, we believe that
similar estimates as the ones in Lemma 6 hold in general and may be used to extend
the results of Nachmias and Peres in [20] to all d ∈ {3, . . . , n− 1}.

Diameter and mixing time. We present a consequence of Theorem 1. For a
component C, let diam(C) denote its diameter and let Tmix(C) denote the mixing
time of the lazy random walk on C. Theorem 1.2 in [19] implies the following
corollary.

Corollary 2. Suppose λ ∈ R and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is

sufficiently large. Let p = 1+λn−1/3

d−1 . Let C be the largest component of Gn,d,p.

Then, for every ε > 0, there exists A = A(λ, ε) such that

P[diam(C) /∈ [A−1n1/3, An1/3]] < ε,

and

P[Tmix(C) /∈ [A−1n,An]] < ε .

Organisation of the paper. The paper is organized as follows. In Section 2,
we describe our exploration process of Gn,d,p and introduce different quantities we
will track during the process. In Section 3, we present our main combinatorial tool
(switching method) and prove two technical lemmas. In Section 4, we use these
lemmas to study a single step of the exploration process. Finally, in Section 5, we
conclude with the proof of the lower bound in Theorem 1.

2. The exploration process

Before describing the exploration process, we briefly introduce some notation.
For a graph G, a subset of vertices X of G, and a vertex u of G, we write dG(u) for
the number of neighbours of u in G and dG,X(u) for the number of neighbours of u
in G that belong to X. We also write Δ(G) for the maximum degree of G. Finally,
for p ∈ [0, 1], we write Gp for the graph where each edge in G is independently
retained with probability p.

We will use an exploration process to reveal the component structure of Gn,d,p.
Let us denote the vertex set by V , which we equip with a linear order (from now on
V is always a vertex set of size n). For technical reasons, we perform our exploration
process not on Gn,d,p, but on what we call an input. An input is a tuple (G,S),
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where G ∈ Gn,d and S = {σv}v∈V is a collection of n permutations of length d. For
each vertex of G, arbitrarily label the edges incident to it with distinct elements
from {1, . . . , d}. Thus every edge receives two labels. In fact, we may think about
this as a labelling of the semi-edges of G. Let I be the set of all inputs (G,S)
where G ∈ Gn,d and S is a collection of n permutations of length d. Observe
that every graph in G ∈ Gn,d gives rise to exactly (d!)n inputs. Thus, choosing
an input uniformly at random from I and ignoring the edge-labels is equivalent to
choosing Gn,d. Let Sn,d be a collection of n permutations of length d each chosen
independently and uniformly at random. Hence, if an input is chosen uniformly at
random from I, then this input is distributed as (Gn,d,Sn,d).

Next, we describe our exploration process on an input (G,S). First, for every
uv ∈ E(G), we denote by I(uv) the indicator random variable that is 1 if uv belongs
to Gp (it percolates) and 0 otherwise. If I(uv) is revealed, we say that the edge uv
has been exposed. For each integer t ≥ 0, the set St consists of the vertices explored
up to time t (with S0 = ∅); the bipartite graph Ft, with bipartition (St, V \ St),
consists of all edges in G between St and V \ St that have been exposed and have
failed to percolate; and the graph Ht, with vertex set St, consists of all edges in
G within St, that is, Ht := G[St]. Let Ht be the history of all random choices we
make until time t (which we will treat as an event).

We now describe how to obtain Ht+1, given Ht. Suppose there exists at least
one vertex u ∈ St such that dHt

(u) + dFt
(u) < d. Among all such vertices u, let

vt+1 be the vertex which comes first in the linear order of V . Let wt+1 be the vertex
w ∈ V \ St with vt+1w ∈ E(G) \ E(Ft) that minimizes σvt+1

(�(w)), where �(w) is
the label of the semi-edge incident to vt+1 that corresponds to vt+1w. Thereafter,
we expose vt+1wt+1. If I(vt+1wt+1) = 0, then we set St+1 := St, Yt+1 := 0,
Zt+1 := 0 and we let Ft+1 be the graph obtained from Ft by adding vt+1wt+1. If
I(vt+1wt+1) = 1, then we set

St+1 := St ∪ {wt+1}, Yt+1 := dFt
(wt+1), Zt+1 := dG,St

(wt+1)− Yt+1 − 1,

and we let Ft+1 be the graph obtained from Ft by deleting all edges incident to
wt+1 and moving wt+1 to the other side of the bipartition. Since Ht+1 = G[St+1],
we also reveal all the edges between wt+1 and St. Observe that Zt+1 counts the
number of neighbours of wt+1 in St \ {vt+1} whose corresponding edge has not yet
been exposed.

If dHt
(u) + dFt

(u) = d for all u ∈ St, that is, every edge incident to a vertex
in St has been exposed, then we pick a vertex x ∈ V \ St that minimises dFt

(x)
and set wt+1 := x, St+1 := St ∪ {wt+1}, Yt+1 := dFt

(wt+1), Zt+1 := 0 and we
let Ft+1 be the graph obtained from Ft by deleting all edges incident to wt+1 and
by moving wt+1 to the other side of the bipartition. Observe that, in any of the
above-mentioned cases, |E(Ft+1)| ≤ |E(Ft)|+ 1 and hence |E(Ft)| ≤ t.

A crucial parameter of our exploration process is the number of edges between
St and V \ St which have not yet been exposed:

Xt :=
∑
u∈St

(d− dHt
(u)− dFt

(u)) .

For the sake of simplicity, we define ηt+1 := Xt+1 −Xt. If Xt > 0, then

ηt+1 = −(1− I(vt+1wt+1)) + I(vt+1wt+1)(d− 2− Yt+1 − 2Zt+1) ,(2)
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and if Xt = 0, then

ηt+1 = d− Yt+1 .(3)

Note that Yt+1 and Zt+1 are measurable random variables given Ht and thus ηt+1

is a predictable sequence with respect to Ht.

3. The switching method and some applications

In this section we explain the switching method and we present two simple
applications. In Lemma 3 we use the switching method to bound the probability
from above that two vertices are adjacent. In Lemma 4 we provide an upper bound
on the expectation of the number of neighbours of a vertex in a specified set of
vertices.

Let G be a graph and let x1, x2, x3, x4 be distinct vertices of G. Suppose
x1x2, x3x4 ∈ E(G) and x1x4, x2x3 /∈ E(G). A switching on the 4-cycle x1x2x3x4

transforms G into a graph G′ by deleting x1x2, x3x4 and adding x1x4, x2x3. Ob-
serve that the degree sequence of G is preserved by the switching. In particular, if
G is d-regular, then so is G′. Moreover, the switching operation is reversible: if G
can be transformed into G′ by a switching, then G can also be obtained from G′

by a switching on the same 4-cycle. Finally, there is a natural way to extend the
notion of a switching from graphs to inputs by simply preserving the labels on each
semi-edge.

Switchings can be used to obtain bounds on the probability that Gn,d satisfies a
certain property. Suppose A,B are disjoint subsets of Gn,d. Suppose that for every
graph G ∈ A, there are at least a switchings that transform G into a graph in B
and for every graph G′ ∈ B, there are at most b switchings that transform G′ into
a graph in A. By double-counting the number of switchings between A and B, we
obtain a|A| ≤ b|B|. Thus aP[A] ≤ bP[B], where we define P[S] := |S|/|Gn,d| for
every S ⊆ Gn,d.

Lemma 3. Suppose d, n ∈ N such that 3 ≤ d ≤ n/4 and S ⊆ V such that |S| ≤ n/6.
Let H be a graph with vertex set S and let F be a bipartite graph with vertex partition
(S, V \S) with Δ(F ∪H) ≤ d. Let u ∈ S and v ∈ V \S such that uv /∈ E(F ). Then

P[uv ∈ E(Gn,d) | Gn,d[S] = H, F ⊆ Gn,d] ≤
6(d− dH(u)− dF (u))

n
.

Proof. Let F+ be the set of graphs G ∈ Gn,d such that G[S] = H, F ⊆ G and
uv ∈ E(G), and let F− be the set of graphs G ∈ Gn,d such that G[S] = H, F ⊆ G
but uv /∈ E(G). We will only perform switchings that involve edges and non-edges
that are not contained in E(H) ∪ E(F ). This ensures that the graph G′ obtained
from a switching also satisfies G′[S] = H and F ⊆ G′.

Suppose G ∈ F+. In order to bound the number of switchings from below it
suffices to switch on a cycle uvxy that satisfies xy ∈ E(G), uy, vx /∈ E(G), and
x, y ∈ V \ S. There are at least dn − 2d|S| ordered edges xy with both endpoints
in V \ S. There are at most d2 edges xy such that x is at distance at most 1 from
v and at most d2 edges xy such that y is at distance at most 1 from u. Thus, there
are at least dn − 2d|S| − 2d2 ≥ dn/6 switchings that transform G into a graph in
F−. Suppose now G ∈ F−. Then there are clearly at most d · (d− dH(u)− dF (u))
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switchings that transform G into a graph in F+. It follows that

P[uv ∈ E(Gn,d) | Gn,d[S] = H, F ⊆ Gn,d]

≤ d(d− dH(u)− dF (u))

dn/6
· P[uv /∈E(Gn,d) | Gn,d[S]=H, F ⊆ Gn,d]

≤ 6(d− dH(u)− dF (u))

n
. �

Lemma 4. Suppose d, n ∈ N such that 3 ≤ d ≤ n/4 and S ⊆ V such that |S| ≤ n/6.
Let H be a graph with vertex set S and let F be a bipartite graph with vertex partition
(S, V \ S) with Δ(F ∪H) ≤ d. Let v ∈ V \ S. Then

E[dG,S(v)− dF (v) | Gn,d[S] = H, F ⊆ Gn,d] ≤ 6d|S|/n.

Proof. For every k ≥ 0, let Fk be the set of graphs G ∈ Gn,d such that G[S] = H,
F ⊆ G, and dG,S(v)− dF (v) = k. As in Lemma 3, we will only perform switchings
using edges and non-edges that are not contained in E(H) ∪E(F ).

Consider a graph in Fk. There are at most (d− dF (v)) · d|S| ≤ d2|S| switchings
that lead to a graph in Fk+1. For every graph in Fk+1, we can use a switching on
a cycle uvxy that satisfies uv, xy ∈ E(G) \ E(F ), uy, vx /∈ E(G) and u ∈ S, and
v, x, y ∈ V \ S. There are k + 1 choices for uv and, for any particular choice of
uv, there are at least dn − 2d|S| − 2d2 ≥ dn/6 choices for the (ordered) edge xy.
Hence, there are at least (k + 1)dn/6 switchings that lead to a graph in Fk. Thus,
for every k ≥ 0, we obtain

P[Fk+1] ≤
6d|S|/n
(k + 1)

· P[Fk] .(4)

Let X be a Poisson distributed random variable with mean 6d|S|/n. Lemma 3.4
in [15] together with (4) implies that for every m ≥ 0

P[dG,S(v)− dF (v) ≥ m | Gn,d[S] = H, F ⊆ Gn,d] ≤ P[X ≥ m] ,

which implies the statement of the lemma. �

4. Analysis of the exploration process

In this section we show how to control the expectation of ηt and η2t . We first use
Lemmas 3 and 4 to bound the expectation of Yt+1 and Zt+1 from above.

Lemma 5. Suppose d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is sufficiently large.
Fix p ∈ [0, 1]. Consider the exploration process described above on (Gn,d,Sn,d)

with percolation probability p and suppose t ≤ dn2/3. Conditional on Ht satisfying
|St| ≤ 5n2/3, we have

E[Yt+1|Ht] ≤ 20dn−1/3 and E[Zt+1|Ht] ≤ 180dn−1/3 .

Proof. If Ht satisfies Xt = 0, then Yt+1 ≤ t/(n− |St|) ≤ 2dn−1/3 by our choice of
wt+1 (we always choose the vertex x that minimises dFt

(x)) and |E(Ft)| ≤ t. Note
that Zt+1 = 0 by definition. Hence we may assume from now on that Xt > 0.

Note that if d ≥ n/4, then the lemma follows directly from the fact that Yt+1 ≤
|St| ≤ 5n2/3 ≤ 20dn−1/3, and similarly for Zt+1. Thus, in the following we assume
that d ≤ n/4.
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Given w ∈ V \ St such that vt+1w /∈ E(Ft), we apply Lemma 3 with S = St,
F = Ft, H = Ht, u = vt+1 and v = w to obtain

P[vt+1w ∈ E(Gn,d) | vt+1w /∈ E(Ft),Ht] ≤
6(d− dHt

(vt+1)− dFt
(vt+1))

n
.

Observe that we run our exploration process on inputs. In order to apply Lemma 3,
we fix the semi-edge labelings and perform switchings on the graphs.

Since σvt+1
is a random permutation, each edge incident to vt+1 that is not

contained in E(Ft) ∪ E(Ht) is chosen with the same probability to continue the
exploration process. Hence, given that vt+1w ∈ E(Gn,d) \ E(Ft), the probability
that wt+1 = w is precisely (d− dHt

(vt+1)− dFt
(vt+1))

−1. Therefore,

P[wt+1 = w | vt+1w /∈ E(Ft),Ht]

= P[wt+1 = w | vt+1w ∈ E(Gn,d) \ E(Ft),Ht]

· P[vt+1w ∈ E(Gn,d) | vt+1w /∈ E(Ft),Ht] ≤
6

n
.

Since P[wt+1 = w | vt+1w ∈ E(Ft),Ht] = 0, it follows that for every w ∈ V \ St

P[wt+1 = w | Ht] ≤
6

n
.(5)

Using that |E(Ft)| ≤ t, we conclude

E[Yt+1|Ht] =
∑

w∈V \St

dFt
(w)P[wt+1

= w|Ht]
(5)

≤ 6

n

∑
w∈V \St

dFt
(w) ≤ 6

n
· t ≤ 6dn−1/3 .

We now prove the second statement. Given w ∈ V \ St with P[wt+1 = w | Ht] > 0
(that is, vt+1w /∈ E(Ft)), we apply Lemma 4 with S = St, F obtained from Ft by
adding vt+1w, H = Ht, and v = w, to obtain

E[Zt+1|Ht] =
∑

w∈V \St

E[Zt+1|wt+1

= w, vt+1w /∈ E(Ft),Ht]P[wt+1 = w | vt+1w /∈ E(Ft),Ht]

(5)

≤
∑

w∈V \St

6d|St|
n

· 6
n
≤ 180dn−1/3 . �

Lemma 6. Suppose μ ≥ 0 and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is
sufficiently large. Consider the exploration process described above on (Gn,d,Sn,d)

with p = 1−μn−1/3

d−1 and suppose t ≤ dn2/3. Conditional on |St| ≤ 5n2/3, then

E[ηt+1|Ht] ≥ −(570 + μ)n−1/3 and E[η2t+1|Ht] ≥ d/4 .

Moreover, if Xt > 0, then E[η2t+1|Ht] ≤ d.

Proof. First assume that Xt > 0. Recall that for any Ht and for any edge uv that
has not been exposed yet, we have E[I(uv) | Ht] = p = (1 − μn−1/3)/(d − 1).
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Recall that Yt+1 and Zt+1 are measurable with respect to Ht. Taking conditional
expectations on (2) and using Lemma 5, we obtain

E[ηt+1|Ht]

= −
(
1− 1− μn−1/3

d− 1

)
+

1− μn−1/3

d− 1
(d− 2− E[Yt+1|Ht]− 2E[Zt+1|Ht])

≥ −E[Yt+1|Ht] + 2E[Zt+1|Ht]

d− 1
− μn−1/3

≥ −380dn−1/3

d− 1
− μn−1/3 ≥ −(570 + μ)n−1/3 ,

since d ≥ 3.
Again, by Lemma 5 and (2), we obtain

E[η2t+1|Ht]

=

(
1− 1− μn−1/3

d− 1

)
(−1)2 +

1− μn−1/3

d− 1
E[(d− 2− Yt+1 − 2Zt+1)

2 | Ht]

≥ d− 2

d− 1
+

(1− μn−1/3)(d− 2)2

d− 1
− 2(d− 2)(E[Yt+1|Ht] + 2E[Zt+1|Ht])

d− 1

≥ (1− μn−1/3)(d− 2)− 2(E[Yt+1|Ht] + 2E[Zt+1|Ht])

≥ (1− μn−1/3)(d− 2)− 760dn−1/3

≥ d/4 ,

where the last inequality holds since d ≥ 3 and n is sufficiently large. Observe that
E[η2t+1|Ht] ≤ d follows from a similar argument as (d−2−Yt+1−2Zt+1)

2 ≤ (d−2)2.
If Xt = 0, then clearly E[ηt+1|Ht] ≥ 0 and, since E[η2t+1|Ht] = E[(d−Yt+1)

2|Ht],
similarly as before, one can prove that E[η2t+1|Ht] ≥ d/4. �

Lemma 7. Suppose μ ≥ 0 and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is
sufficiently large. Consider the exploration process described above on (Gn,d,Sn,d)

with p = 1−μn−1/3

d−1 . Then, for every fixed δ > 0 and all 0 ≤ t1 ≤ t2 ≤ 5dn2/3, we
have

P

[
|St2 \ St1 | −

t2 − t1
d− 1

≥ −δn2/3

]
= 1− o(n−2) and

P

[
|St2 \ St1 | −

t2 − t1
d− 1

−
⌈

t2
5d/6

⌉
≤ δn2/3

]
= 1− o(n−2) .

Proof. We add a vertex to St either if I(vt+1wt+1) = 1 or if we start exploring a
new component of Gn,d,p at time t + 1. Thus, |St2 \ St1 | stochastically dominates

a binomial random variable with parameters t2 − t1 and (1 − μn−1/3)/(d − 1). A
standard application of Chernoff’s inequality implies the first statement.

Let At ⊆ St be the set of vertices that start a new component in Gn,d,p. For

every 0 ≤ t ≤ 5dn2/3, let at := |At|, let ct := |St \At|, and let bt := |St \ (St1 ∪At)|.
Observe that ct is stochastically dominated by a binomial random variable with
parameters t and 1/(d − 1). Using Chernoff’s inequality, we have ct ≤ 8n2/3 with
probability 1− o(n−2) for any t ≤ 5dn2/3.

We claim that for every 0 ≤ t ≤ 5dn2/3 and conditional on ct ≤ 8n2/3, we have
at ≤ � t

5d/6�. Indeed, the claim is true for t ∈ {0, 1}. Assume that t ≥ 2 and that
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the claim holds for every t′ ∈ {0, . . . , t−1}. If Xt−1 > 0, then at = at−1 and we are
done. Thus, assume that Xt−1 = 0. Let s be the largest integer s′ ∈ {0, . . . , t− 2}
such that Xs′ = 0 (it exists since X0 = 0 and t ≥ 2). Recall that ws+1 is a vertex
x ∈ V \ Ss that minimises dFs

(x). It follows that

dFs
(ws+1) ≤

|E(Fs)|
n− (as + cs)

≤ s

n− �s/(5d/6)� − 8n2/3
≤ d

6
,

provided that n is large enough. Hence, Xs+1 ≥ 5d/6 and the process will not start
a new component for the next 5d/6 steps. In particular, s+5d/6 ≤ t. This implies
at = as + 1 ≤ � s

5d/6�+ 1 ≤ � t
5d/6�.

Since |St2 \ St1 | ≤ at2 + bt2 , the second part of the lemma now follows from the
upper bound on at2 (which holds as we assume ct ≤ 8n2/3) and an upper bound on
bt2 obtained by Chernoff’s inequality. �

5. Proof of Theorem 1

As we mentioned in the introduction, due to the result of Nachmias and Peres, we
only need to prove a lower bound. Since it suffices to prove the lower bound of the
statement for λ ≤ 0, we use the definition μ := −λ. We now present a brief overview
of the proof. In the first phase, we show that with probability at least 1 − A−1/2,
the process Xt exceeds A

−1/4dn1/3 in the first 5dn2/3/6 steps. In the second phase
and conditional on the success of the first phase, we show that Xt stays positive
for at least 2A−1dn2/3 steps with probability at least 1 − A−1/2. From standard
concentration inequalities, this gives the existence of a component of order at least
A−1n2/3, concluding the proof. This proof strategy was introduced by Nachmias
and Peres to prove the same statement for fixed d ≥ 3 [20] and for d = n− 1 [21].
We remark that, in comparison to [20], our analysis of the exploration process is
simpler, as we do not need to track the number of vertices x ∈ V \St which satisfy
dFt

(x) = k for k ∈ {0, 1, . . . , d}. If d ≥ 3 is fixed, as in [20], almost every vertex x
satisfies dFt

(x) ∈ {0, 1}. However, this is no longer true if d is an arbitrary function
of n. We avoid the technicalities involved with this issue by averaging over the
values of dFt

(x).

First phase: We start with the definition of a few parameters. Let h :=A−1/4dn1/3,
T1 := 5dn2/3/6, and T2 := 2A−1dn2/3. In addition, we define the following stopping
times:

τh := min{t : Xt ≥ h} ∧ T1,

τ1S := min{t : |St| ≥ 3n2/3},
τ1 := τh ∧ τ1S .

Recall that Xt+1 = ηt+1 +Xt. Note also that for every t < τ1, we have Xt ≤ h and
|St| ≤ 5n2/3. Hence, Lemma 6 implies that

E[X2
t+1 −X2

t |Ht] ≥ E[η2t+1|Ht] + 2E[ηt+1Xt|Ht]

≥ d/4− 2 · (570 + μ)n−1/3h ≥ d/5 ,

provided that A is large enough with respect to μ (and thus, with respect to λ).
Hence X2

t∧τ1 − (t ∧ τ1)d/5 is a submartingale. By the Optional Stopping theorem
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for submartingales (see for example [9] p. 491), E[X2
τ1 −

d
5 τ1] ≥ E[X2

0 ] = 0, which

implies that E[τ1] ≤ 5
dE[X

2
τ1 ]. Since X2

τ1 ≤ (h+ d)2 ≤ 2h2, we obtain

P[τ1 = T1] ≤
E[τ1]

T1
≤

5E[X2
τ1 ]

dT1
≤ 10h2

dT1
= 12A−1/2 .

By Lemma 7 with t1 = 0 and t2 = T1, we have P[τ1S ≤ T1] = o(1). Thus

P[{τh = T1} ∪ {τ1S ≤ τh}] ≤ P[τ1 = T1] + P[τ1S ≤ T1] ≤ 12A−1/2 + o(1) ≤ 13A−1/2 .

(6)

We conclude that the event E := {τh < T1, τh < τ1S} holds with probability at

least 1− 13A−1/2. In particular, with probability at least 1− 13A−1/2, the random
process Xt exceeds h before time T1.

Second phase. Write P∗ and E∗ for the probability and the expectation condi-
tional on E . We define

τ0 : = min{t : Xτh+t = 0} ∧ T2,

τ2S : = min{t : |Sτh+t \ Sτh | ≥ 2n2/3},
τ2 : = τ0 ∧ τ2S .

Consider the random variable

Wt := h−min{h,Xτh+t} .

Hence

W 2
t+1 −W 2

t ≤ (h−min{h,Xτh+t} − ητh+t+1)
2 − (h−min{h,Xτh+t})2

= η2τh+t+1 − 2ητh+t+1(h−min{h,Xτh+t})
≤ η2τh+t+1 − 2ητh+t+1h .

If t < τ2 and n is sufficiently large, we can apply Lemma 6 and this leads to
(provided A is sufficiently large with respect to μ)

E∗[W
2
t+1 −W 2

t | Hτh+t] ≤ d+ 2 · (570 + μ)n−1/3 · h ≤ 2d .

Thus, W 2
t∧τ2−2d(t∧τ2) is a supermartingale. Similar as before, we use the Optional

Stopping theorem to conclude that

E∗[W
2
τ2 ] ≤ 2dE∗[τ2] ≤ 2dT2 .

Thus

P∗[τ2 < T2] = P∗[τ0 < T2, τ
2
S > T2] + P∗[τ

2
S ≤ T2]

≤ P∗[Wτ2 ≥ h] + P∗[|Sτh+T2
\ Sτh | ≥ 2n2/3]

≤ P∗[W
2
τ2 ≥ h2] + o(1)

≤
E∗[W

2
τ2 ]

h2
+ o(1) ≤ 5A−1/2 ,

where we used Lemma 7 with t1 = τh and t2 = τh + T2 for the second inequality.
(Observe that we cannot apply Lemma 7 directly, because we assume E holds and
τh is a random time. However, as τh ≤ T1, a simple union bound with t1 = k and
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t2 = k + T2 for all k ≤ T1 together with the fact that P[E ] ≥ 1 − 13A−1/2 ≥ 1/2,
yields the desired result.) It follows that

P[{τ2 < T2} ∪ {τh = T1} ∪ {τ1S ≤ τh}] ≤ P[{τh = T1} ∪ {τ1S ≤ τh}] + P∗[τ2 < T2]

(6)

≤ 13A−1/2 + 5A−1/2 = 18A−1/2 .

Since all the vertices explored from time τh to τh + τ2 belong to the same com-
ponent of Gn,d,p, there exists a component of size at least |Sτh+τ2 \ Sτh |. As

τ2 = T2 = 2A−1dn2/3 with probability at least 1 − 18A−1/2, by Lemma 7 with
t1 = τh and t2 = τh + T2 (as above, strictly speaking, we apply Lemma 7 with
t1 = k and t2 = k + T2 for all k ≤ T1 and use the fact that P[E ] ≥ 1/2) with
probability at least 1− 18A−1/2 − o(1) ≥ 1− 19A−1/2, there exists a component of
size at least A−1n2/3.
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