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RADIALLY SYMMETRIC CONNECTIONS

OVER ROUND SPHERES

KRISTOPHER TAPP

(Communicated by Guofang Wei)

Abstract. We classify the radially symmetric connections in vector bundles
over round spheres by proving that they are all parallel.

1. Introduction

Suppose that B is a compact Riemannian manifold and E is the total space of a
rank k vector bundle over B endowed with a Euclidean structure (a smoothly vary-
ing inner product on the fibers) and a compatible connection ∇. This connection
is called parallel if its curvature tensor, R∇, has zero covariant derivative, that is,
(DZR

∇)(X,Y )V = 0 for all p ∈ B, X,Y, Z ∈ TpB, and V ∈ Ep = the fiber over
p. It is called radially symmetric if the Z = X case of this hypothesis is satisfied;
that is, (DXR∇)(X,Y )V = 0 for all p ∈ B, X,Y ∈ TpB and V ∈ Ep. Notice that
both properties depend on the metric of B.

Strake and Walschap proved in [6] that when B has positive sectional curvature,
radial symmetry is a sufficient condition for ∇ to induce a connection metric with
nonnegative sectional curvature on E. Other conditions have appeared in the lit-
erature, some necessary and some sufficient, for ∇ to induce a connection metric
with nonnegative curvature on E (or of positive or nonnegative curvature on the
unit sphere bundle). All of these conditions boil down to a bound on the norm
of (DXR∇)(X,Y )V ; see for example [2], [6], [7], and [9]. This motivates a study
of connections satisfying such bounds, and a natural starting point is the radial
symmetry condition.

Partly motivated by the application to nonnegative curvature, Guijarro, Sadun
and Walschap classified the parallel connections in vector bundles over irreducible
simply connected symmetric spaces: every one is an associated vector bundle of a
canonical principal bundle with the connection inherited from the principal bun-
dle [3].

For rank 2 vector bundles, parallel is equivalent to radial symmetry (even locally),
as observed in [5, Remark 6.3]. For higher rank, nothing is known about the gap
between these two hypotheses. For vector bundles over the round sphere, we will
prove that a condition even weaker than radial symmetry implies they are parallel.

Theorem 1.1 (Main Theorem). Suppose that E is the total space of a vector bundle
over (Sn, round), endowed with a Euclidean structure and a compatible connection
∇. Let p0 ∈ Sn and let α̂ denote the gradient of the distance function to p0, regarded
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as a unit vector field on U = Sn − {±p0}. If (Dα̂R
∇)(α̂,X)V = 0 for all p ∈ U ,

X ∈ TpS
n and V ∈ Ep, then ∇ is parallel.

That is, if at each point ∇ satisfies the radial symmetry condition in the “longi-
tude” direction, then it must be parallel.

The remainder of the paper is organized as follows. In Section 2, we present
a geometric method for constructing the clutching map, trivializing the bundle
locally, and describing the connection form with respect to this trivialization. This
description is nonstandard, but in Section 3 we show how natural it looks for known
examples of parallel connections. In Section 4, we derive curvature formulas for a
connection described in this manner. In Section 5, we prove the main theorem as
follows. The radial symmetry hypothesis rigidly determines the connection form in
terms of the clutching map along each longitude geodesic from p0 to −p0. For the
connection to be smooth at ±p0, these determiniations along individual longitudes
must match up in a way that places geometric restrictions on the clutching map,
from which the theorem is proven.

2. Setup

Throughout this paper, E will denote the total space of a vector bundle over
(Sn, round), endowed with a Euclidean structure and a compatible connection ∇.
In this section, we exhibit an advantageous method of describing ∇ in local coor-
dinates.

First we will express an arbitrary element p ∈ Sn as

p = ((cosα)a, sinα) ∈ Rn × R ∼= Rn+1,

where α ∈ [−π/2, π/2] and a ∈ Sn−1 ⊂ Rn. We will sometimes identify a with the
element (a, 0) of the “equatorial” Sn−1 in Sn. This description of Sn distinguishes
the axis between p− = (0,−1) and p+ = (0, 1), which is an arbitrary antipodal
pair, since we are free to chose the coordinates of Rn+1. Notice that Sn is covered
by the following pair of contractible subsets:

U+ = Sn − {p−} and U− = Sn − {p+},
named so that p± is the center of U±. Define U = U+ ∩ U−. We will sometimes
consider a : U → Sn to be the function sending ((cosα)a, sinα) �→ a and consider
α : Sn → [−π/2, π/2] to be the function that sends ((cosα)a, sinα) �→ α.

There is a natural geometric way to trivialize the bundle over U±. First choose
arbitrary orthogonal identifications Rk ∼= Ep± . Then for each p ∈ U± and each

v ∈ Rk ∼= Ep± , let (p, v)± ∈ Ep denote the parallel transport of v along the unique

minimizing geodesic from p± to p. The resulting diffeomorphism U± × Rk → E,
that sends (p, v) �→ (p, v)±, is a trivialization of the bundle over U±. The whole
bundle can therefore be described as

E ∼=
((
U+ × Rk

)
	
(
U− × Rk

))
/ ∼,

where “∼” denotes the equivalence relation on the disjoint union defined so that
for all p = ((cosα)a, sinα) ∈ U and all v ∈ Rk we have

(2.1) (p, v)+ ∼ (p, C(a) · v)− .

Here C : Sn−1 → SO(k) is the clutching map, defined so that for a ∈ Sn−1, left
multiplication by C(a) equals the orthogonal transformation from Rk ∼= Ep+ to

Rk ∼= Ep− obtained by parallel transport along the unique minimizing geodesic
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from p+ to p− that passes through (a, 0). The homotopy type of C determines the
isomorphism class of the vector bundle, while the geometry of C encodes information
about ∇.

Fix a0 ∈ Sn−1, and henceforth assume that the above-mentioned identifications
Rk ∼= Ep− and Rk ∼= Ep+ are chosen to be related by C(a0) = I (the identity).
This ensures that for every a ∈ Sn−1, C(a) equals the parallel transport around
the loop βa in Sn that first follows the geodesic segment from p+ to p− passing
through a and then follows the geodesic segment from p− to p+ passing through
a0. In summary:

(2.2) C(a) = Pβa
= the parallel transport along βa.

For each v ∈ Rk, let v± denote the corresponding “constant” section over U±,
defined as v±(p) = (p, v)±. The bundle trivializations determine how a k-by-k
matrix M acts from the left on a section over U±, namely,

M · v± = (M · v)± for all v ∈ Rk,

with v considered as a column matrix. But this multiplication is only individually
defined over U+ and U−; it does not determine a well-defined operation on all of
E.

The connection ∇ is represented over U± by a 1-form, ω±, on U± with values
in so(k), defined so that for every vector field X on U± and every v ∈ Rk,

(2.3) ∇X(v±) = ω±(X) · v±.

The following Leibniz Rule holds.

Lemma 2.1. If X is a tangent field on U±, M is a smooth function on U± with
values in the space of k-by-k real matrices, and v ∈ Rk, then

∇X(M · v±) =
(
X(M) + ω±(X) ·M

)
· v±.

Proof. Let {e1, . . . , ek} denote the standard orthonormal basis of Rk. It will suffice
to prove the statement when v = es for arbitrary fixed s ∈ {1, . . . , k}. Using
subscripts to denote the components of vectors and matrices, we have

∇X(M · e±s ) = ∇X

(∑
i

Mis e
+
i

)
=

∑
i

X (Mis) e
±
i +

∑
i

Mis ω
±(X) · e±i

=
∑
i

X (Mis) e
±
i +

∑
i,j

Mis(ω
±(X))ji e

±
j

= X(M) · e±s + ω±(X) ·M · e±s .

�

We will next describe ω± in terms of its action on certain Killing fields. To
describe these Killing fields, let H be a Lie group with a transitive left action on
the equatorial Sn−1, let K denote the isotropy group at a0, and let π : H → H/K ∼=
Sn−1 denote the quotient map. Let k ⊂ h denote the Lie algebras and let p denote
the orthogonal complement of k in h, which is naturally identified with Ta0

Sn−1.
If a ∈ Sn−1, we denote ka = Adg−1(k) and pa = Adg−1(p), which does not depend
on the choice of g ∈ π−1(a). Notice that h = ka ⊕ pa, and pa is naturally identified
with TaS

n−1.
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Let α̂ denote the gradient of α, considered as a unit-length vector field on U . For
each X ∈ h, let XR denote the associated right-invariant field on H, let X̃ denote
the associated Killing field on Sn−1, and let X̂ denote the associated Killing field
on Sn coming from the left action of H on Sn with fixed points {p+, p−}.

To be more explicit, for α ∈ (−π/2, π/2) and g ∈ H, we set a = π(g) ∈ Sn−1

and p = ((cosα)a, sinα) ∈ Sn and observe that

α̂(p) = (−(sinα)a, cosα) , XR(g) = X · g,
X̃(a) = π∗(XR(g)), X̂(p) = ((cosα)X̃(a), 0).

Notice that ω±(α̂) = 0 because we trivialized the bundle via parallel transport along
longitude geodesics. Therefore ω± can be fully described in terms of the smooth
function that assigns to each p ∈ U± the linear map F±

p : h → so(k) defined as

(2.4) F±
p (X) = ω±

p (X̂).

Notice that F±
p vanishes on ka and is therefore determined by its values on pa.

The function F± was defined by (2.3) and (2.4), but it could alternatively be
described purely in terms of parallel transport. If p = ((cosα)a, sinα) ∈ U and
X ∈ pa, we can compute F±

p (X) by considering the loop γt that traverses the

minimal geodesic from p± to p, followed by the flow for time t along X̂, followed
by the minimal geodesic back to p±. It is straightforward to see that

(2.5) F±
p (X) = − d

dt

∣∣∣
t=0

Pγt
.

We next define Q as the function that associates to each a ∈ Sn−1 the linear
map Qa : h → so(k) defined so that for all X ∈ h,

Qa(X) = dCa(X̃(a)) · C(a)−1.

Notice that Qa vanishes on ka and is therefore determined by its values on pa. The
continuity of the connection at p+ (the point that’s missing from U−) implies the
following asymptotic behavior of F−.

Proposition 2.2. Fix a∈Sn−1 and define γ :
(
−π

2 ,
π
2

)
→Sn as γ(t)=((cos t)a, sin t).

For any X ∈ h,
lim
t→ π

2

F−
γ(t)(X) = −Qa(X).

Proof. Since both sides of the desired equation vanish when X ∈ ka, it will suffice to
prove the equation when X is a unit-length element of pa, in which case |X̂(γ(t))| =
cos t. The following is a smooth unit-length tangent field along γ:

X(t) =
X̂(γ(t))

|X̂(γ(t))|
=

X̂(γ(t))

cos(t)
.

Fix v ∈ Rk and consider the section W (t) = ∇X(t) (v
+) along γ. Equation (2.1)

and Lemma 2.1 yield

W (t) = ∇X(t)

(
v+

)
=

1

cos t
· ∇X̂(t)

(
(C ◦ a) · v−

)
=

1

cos t
·
(
dCa(X̃(a)) + F−

γ(t)(X) · C(a)
)
· v−.

Since W (t) naturally extends smoothly beyond the value t = π
2 , we see that

limt→(π
2 )

|W (t)| is finite, from which the result follows. �
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We will henceforth work entirely over U−, which allows us to omit the “−”
superscripts whenever it’s convenient to do so, in particular, defining U = U−,
ω = ω−, F = F−, and p0 = p−. From this viewpoint, the results of this section
can be summarized as follows. We identify the bundle over U = Sn − {−p0} with
U × Rk via parallel transport along longitudes. For each v ∈ Rk, we denote by
v− the corresponding “constant” section over U with respect to this identification.
The connection over U is fully determined by its connection form ω, which is itself
fully determined by the function F such that associated to each p ∈ U = U − {p0}
a linear map Fp : h → so(k). More precisely, for every v ∈ Rk, X ∈ h, and p ∈ U ,

∇α̂v
− = ω(α̂) · v− = 0 and (∇X̂v−)p = ω(X̂(p)) · v−(p) = Fp(X) · v−(p).

Finally, the asymptotic behavior of F is described as follows: as p → −p0 along the
longitude geodesic through a ∈ Sn−1, we have for all X ∈ h that

Fp(X) → −Qa(X) = −dCa(X̃(a)) · C(a)−1.

3. Examples

In this section, we describe the functions C,F ,Q for natural examples of parallel
connections, beginning with the Levi–Civita connection.

Lemma 3.1. If E = TSn, ∇ is the Levi–Civita connection, and H = SO(n), then
for all p = ((cosα)a, sinα) ∈ U and all X ∈ h = so(n),

Qa(X) = 2Xpa and Fp(X) = −(sinα+ 1)Xpa ,

where the superscripts denote the orthogonal projection onto the subspace pa.

We will prove this using only elementary facts about parallel transport with
respect to the Levi–Civita connection.

Proof. Let a ∈ Sn−1 and define βa as in (2.2). Assume a �= ±a0 and let a⊥ denote
the normalized component of a orthogonal to a0 so that a = (cos θ)a0 + (sin θ)a⊥

for some θ ∈ (0, π). A straightforward holonomy calculation in the totally geodesic
S2 formed by intersecting Sn with span{p0, a0, a⊥} gives

(3.1) C(a) = Pβa
is a rotation by angle 2θ in span{a0, a⊥}.

We reinterpreted this conclusion in terms of the homogeneous description of
the equatorial sphere as Sn−1 = H/K = SO(n)/SO(n − 1) by considering the
composition

p
exp−→ SO(n)

π−→ Sn−1 C−→ SO(n).

For any X ∈ p, (3.1) gives that (C ◦π◦exp)(X) = exp(2X). Therefore, the image of
the clutching map equals exp(p), and furthermore the composition C ◦π : SO(n) →
SO(n) restricted to exp(p) equals the squaring map g �→ g2.

Using this characterization of C, we next compute Qa0
(X) for arbitrary X ∈ p.

Since π(I) = a0 and since C ◦ π equals the squaring map on exp(p), we have

Qa0
(X) = dCa0

(X̃(a0)) = d(C ◦ π)I(X) =
d

dt

∣∣∣
t=0

(exp(tX))
2
= 2X.

Since Qa0
vanishes on k, we have more generally that Qa0

(X) = 2Xp for all X ∈ h.
Since a0 is only artificially distinguished in the discussion, it is straightforward to
derive from this the more general rule that Qa(X) = 2Xpa for all a ∈ Sn−1 and all
X ∈ h.
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For p = ((cosα)a, sinα) ∈ U and X ∈ pa with |X̃(a)| = 1, we next wish to com-
pute Fp(X). For this, define γt as in (2.5). A straightforward holonomy calculation

in the totally geodesic S2 formed by intersecting Sn with span{p0, a, X̃(a)} gives

that Pγt
equals a rotation by angle t(sinα+1) in the plane spanned by a and X̃(a).

Therefore by the definition of F ,

Fp(X) = − d

dt

∣∣∣
t=0

Pγt
= −(sinα+ 1) ·

(
infinitesimal rotation in span{a, X̃(a)}

)(3.2)

= −(sinα+ 1)X.

More generally, Fp(X) = −(sinα+ 1)Xpa for every X ∈ h. �

Proposition 3.2. If G = SO(n + 1), H = SO(n), ρ : H → SO(k) is a homo-
morphism, E is the associated bundle G ×ρ Rk, and ∇ is the connection inher-
ited from the natural principal connection in the bundle G → G/H, then for all
p = ((cosα)a, sinα) ∈ U and all X ∈ h = so(n),

Qa(X) = 2ϕ(Xpa) and Fp(X) = −(sinα+ 1)ϕ(Xpa),

where ϕ = dρI : h → so(k). This implies that for all a ∈ Sn−1 and X ∈ pa, we
have

(3.3) 2(X̃Q)a(Y ) = −2(Ỹ Q)a(X) = [Qa(X),Qa(Y )]−Qa([X,Y ]).

Notice that the previous lemma is the special case of this proposition with k = n
and ρ = I.

Proof. According to [3, Diagram 1.2], parallel transport around a loop γ in Sn with
respect to ∇ (denoted Pγ) and with respect to the Levi–Civita connection (denoted
PLC
γ ) are related by

Pγ = ρ(PLC
γ ).

Let a ∈ Sn−1. Defining βa as in (3.1), the clutching map of ∇ (denoted C) is related
to the clutching map of the Levi–Civita connection (denoted CLC) as follows:

C(a) = Pβa
= ρ(PLC

βa
) = ρ(CLC(a)) = (ρ ◦ CLC)(a),

in other words, C = ρ ◦ CLC . Using “LC” superscripts for objects related to the
Levi–Civita connection, we next relate Qa and QLC

a by setting y = CLC(a) ∈ SO(n)
and observing that for all X ∈ h,

Qa(X) = dCa(X̃(a)) · C(a)−1 = d(ρ ◦ CLC)a(X̃(a)) · (ρ ◦ CLC)(a)−1

= dρy(dCLC
a (X̃(a))) · ρ(y)−1 = dρy(QLC

a (X) · y) · ρ(y)−1

= dρI(QLC
a (X)) = dρI(2X

pa) = 2ϕ(Xpa).

To relate F and FLC , we define γt as in (3.2) and observe that

Fp(X) = − d

dt

∣∣∣
t=0

Pγt
= − d

dt

∣∣∣
t=0

ρ(PLC
γt

) = dρI(FLC
p ) = −(sinα+ 1)ϕ(Xpa).

Finally to prove (3.3), let a ∈ Sn−1, g ∈ π−1(a), and X,Y ∈ pa. Consider the path
g(t) = etX · g in H and the path a(t) = π(g(t)) in Sn−1. Notice that a(0) = a and
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a′(0) = X̃(a). A straightforward calculation shows that d
dt |t=0Y

pa(t) = [X,Y ]ka ,
which is the same as [X,Y ] because k ⊂ h is a symmetric pair. Thus,

(X̃Q)a(Y ) =
d

dt

∣∣∣
t=0

Qa(t)(Y ) = 2ϕ

(
d

dt

∣∣∣
t=0

Y pa(t)

)
= 2ϕ ([X,Y ]) ,

from which (3.3) follows. �
Our setup requires us to choose a Lie group H that acts transitively on the

equatorial sphere Sn−1. We selected H = SO(n) in the previous examples, but in
certain situations it will be advantageous to choose a smaller-dimensional group.
For bundles over S4, the choice H = Sp(1) has the advantage of being a free action,
so the isotropy group K becomes trivial. In particular, to study a quaternionic H-
bundle over S4 with a connection ∇ that is compatible with the fiber quaternionic
structure, we can consider C : Sp(1) → Sp(1), where elements of the image act
on the fiber R4 ∼= H via quaternionic multiplication. In the following well-known
example, C is the identity.

Proposition 3.3. If S3 → S7 → HP
1 ∼= S4 is the Hopf bundle, E = (S7×H)/Sp(1)

is the associated vector bundle, ∇ is the connection inherited from the principal
connection in the Hopf bundle, and H = Sp(1), then C : Sp(1) → Sp(1) is the
identity map, and for all p = ((cosα)a, sinα) ∈ U and all X ∈ h = sp(1),

Qa(X) = X and Fp(X) = −1

2
(sinα+ 1)X.

This proposition can be verified by direct calculation, but this is not necessary
because a minor rephrasing of the proposition is well known. The formula Fp(X) =
− 1

2 (sinα+ 1)X is equivalent to the following expression for the connection form:

ω =
1

2
(sinα+ 1)(a · da),

where the overline denotes quaternionic conjugation in S3 ⊂ R4 ∼= H. The push-
forward of ω via the stereographic projection map P : U → H defined as z =

P ((cosα)a, sinα) = (cosα)a
1−sinα equals

P∗ω =
Im(z · dz)
1 + z2

,

which is the standard expression in the mathematical physics literature for the basic
instanton. This expression first appeared in the literature as a surprising solution
to the Yang–Mills equation on R4 (space-time), but its above-described relationship
to the Hopf bundle eventually became well understood; see for example [1].

4. Curvature formulas

In this section, we return to the generality of Section 2, where E is an arbitrary
vector bundle over Sn and ∇ is an arbitrary connection described in local coordi-
nates through the functions C,F ,Q. Our goal is to derive curvature formulas for
∇ in terms of these functions.

Let R∇ denote the curvature tensor of ∇ and let Ω denote the so(k)-valued
2-form on U defined such that for every pair A,B of vector fields on U and every
v ∈ Rk,

R∇(A,B)v− = Ω(A,B) · v−.
The form Ω is determined by ω as follows.
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Lemma 4.1. For any X,Y ∈ h the following holds on U :

Ω(α̂, X̂) = (α̂F)(X),

Ω(X̂, Ŷ ) = (X̂F)(Y )− (Ŷ F)(X) + F([X,Y ]) + [F(X),F(Y )].

Proof. It is straightforward to prove the following standard equation:

Ω(A,B) = A(ω(B))−B(ω(A))− ω([A,B]) + [ω(A), ω(B)]

for any pair A,B of vector fields on U . In particular,

Ω(α̂, Ŷ ) = α̂ω(Ŷ )− Ŷ ω(α̂)︸ ︷︷ ︸
0

−ω([α̂, Ŷ ]︸ ︷︷ ︸
0

) + [ω(α̂)︸ ︷︷ ︸
0

, ω(Ŷ )] = (α̂F)(Y ),

Ω(X̂, Ŷ ) = X̂ω(Ŷ )− Ŷ ω(X̂)− ω([X̂, Ŷ ]) + [ω(X̂), ω(Ŷ )]

= (X̂F)(Y )− (X̂F)(X) + ω([̂X,Y ]) + [F(X),F(Y )].

�

We next collect some elementary facts about the Levi–Civita connection on Sn,
which is henceforth denoted by “∇”. First, we have for all X,Y ∈ h,

(4.1) [α̂, X̂] = 0, [X̂, Ŷ ] = −[̂X,Y ], ∇α̂α̂ = 0, ∇X̂ α̂ = ∇α̂X̂ = −(tanα)X̂.

Letting S denote the shape operator of the latitude Sn−1 (the α-level set), we next
have 〈

∇X̂ Ŷ , α̂
〉
=

〈
Sα̂(X̂), Ŷ

〉
= −

〈
∇X̂ α̂, Ŷ

〉
= (tanα)

〈
X̂, Ŷ

〉
.

The component of ∇X̂ Ŷ tangent to the α-level set at a point p = ((cosα)a, sinα) ∈
U is easier to express under the added assumption that X,Y ∈ pa, in which case

(4.2)
(
∇X̂ Ŷ

)
p
= −1

2
[̂X,Y ]p + (tanα)

〈
X̂, Ŷ

〉
p
α̂(p).

We will use “D” to denote the covariant derivative of a tensor with respect to
∇ and/or ∇. Let Θ denote the so(k)-valued tensor of order 3 on U defined as

(4.3) Θ(C,A,B) = (DCΩ)(A,B) + [ω(C),Ω(A,B)].

This tensor represents DR∇ in the sense of the following lemma.

Lemma 4.2. For every vector field A,B,C on U and every v ∈ Rk,

(DCR
∇)(A,B)v− = Θ(C,A,B) · v−.

Proof. Let γ(t) denote a path in Sn with γ(0) = p and γ′(0) = C(p). Let Vt =
v−(γ(t)) and let At, Bt denote the parallel extensions of A,B along γ. Using the
prime symbol to denote the t = 0 value of the ∇-covariant derivatives of a section
along γ, we have at p

(DCR
∇)(A,B)V = (R∇(At, Bt)Vt)

′ −R∇(A,B)(V ′)

= (Ω(At, Bt) · Vt)
′ −R∇(A,B)(ω(C) · V )

= (DCΩ)(A,B) · V + ω(C) · Ω(A,B) · V − Ω(A,B) · ω(C) · V.

In the last equality, the fact that (Ω(At, Bt) · Vt)
′ = (DCΩ)(A,B) · V + ω(C) ·

Ω(A,B) · V follows from Lemma 2.1. �
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5. Radially symmetric connections

In this section, we prove the Main Theorem. In our local coordinates, the hy-
pothesis becomes: Θ(α̂, α̂, X̂)p = 0 for all p ∈ U and X ∈ h, or more concisely that
Θ(α̂, α̂, ·) = 0 on U . We first show that this hypothesis uniquely determines the
connection in terms of C.
Lemma 5.1. If Θ(α̂, α̂, ·) = 0 on U , then for every p = ((cosα)a, sinα) ∈ U and
every X ∈ h,

(5.1) Fp(X) = −1

2
(sinα+ 1)︸ ︷︷ ︸

denoted g(α)

Qa(X).

Proof. Using Lemma 4.1 and (4.1), we compute

Θ(α̂, α̂, X̂) = (Dα̂Ω)(α̂, X̂) + [ω(α̂)︸ ︷︷ ︸
0

,Ω(α̂, X̂)]

= α̂(Ω(α̂, X̂))− Ω(∇α̂α̂︸︷︷︸
0

, X̂)− Ω(α̂,∇α̂X̂)=(α̂α̂F)(X)+(tanα)Ω(α̂, X̂)

= (α̂α̂F)(X) + (tanα)(α̂F)(X).

Now fix a ∈ Sn−1 and consider the path γ(α) = ((cosα)a, sinα) in Sn. Denote
Fγ(α) simply as F(α); that is, along γ we are considering F as a one-parameter
family of linear maps from h to so(k) with parameter α ∈ (−π/2, π/2). The previous
equation becomes

(5.2) F ′′(α) = −(tanα)F ′(α).

At the endpoints of the domain, we have for all X ∈ h,

(5.3) lim
α→−π/2

F(α) = 0, lim
α→π/2

F(α)(X) = −Qa(X).

The first limit follows from limα→−π/2 |X̂| = 0, while the second limit comes from
Proposition 2.2.

Equation (5.2) says that J = F ′ satisfies the differential equation J ′(α) =
−(tanα)J (α) on (−π/2, π/2), which means it has the form: J (α) = F ′(α) =
(cosα)C1 on this open interval for some linear map C1 from h to so(k). This
implies that F itself has the form

F(α) = (sinα)C1 + C2

on (−π/2, π/2) for some linear maps C1, C2 from h to so(k). The first part of
(5.3) gives C1 = C2, while the second part gives C1 + C2 = −Qa. Thus, F(α) =
−(1/2)(sinα+ 1)Qa. �

The previous lemma says that a connection satisfying Θ(α̂, α̂, ·) = 0 is determined
in a canonical way by the clutching map. But not every smooth map C : Sn−1 →
SO(k) can be plugged into (5.1) to determine a smooth connection. As the next
lemma shows, smoothness of the connection at the poles ±p0 implies restrictions
on C.
Lemma 5.2. If Θ(α̂, α̂, ·) = 0 on U , so that F = g · Q as in (5.1), then for every
a ∈ Sn−1 and every X,Y ∈ pa, we have

(5.4) 2(X̃Q)a(Y ) = −2(Ỹ Q)a(X) = [Qa(X),Qa(Y )]−Qa([X,Y ]).
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Notice that (5.4) is the same as (3.3), so it’s already been verified for the examples
of the previous section.

Proof. Fix a ∈ Sn−1 and unit length X,Y ∈ pa. Along the path p(α) = ((cosα)a,
sinα), consider the following function of α, in which everything is assumed to be
evaluated at p(α) or a as appropriate:

Θ(X̂, Ŷ , α̂)p(α) = X̂(Ω(Ŷ , α̂)) + [ω(X̂),Ω(Ŷ , α̂)]− Ω(∇X̂ Ŷ , α̂)− Ω(Ŷ ,∇X̂ α̂)

= −g′(α)(X̃Q)(Y ) + [g(α)Q(X),−g′(α)Q(Y )]

+
1

2
Ω([̂X,Y ], α̂) + (tanα)Ω(Ŷ , X̂)

= −g′(α)(X̃Q)(Y )− g(α)g′(α)[Q(X),Q(Y )]− 1

2
g′(α)Q([X,Y ])

− tan(α)
(
g(α)(X̃Q)(Y )− g(α)(ỸQ)(X) + g(α)Q([X,Y ])

+ g(α)2[Q(X),Q(Y )]
)
.

Since |X̂| = |Ŷ | = cosα at p, this yields

(5.5) T (α) = Θ

(
X̂

|X̂|
,
Ŷ

|Ŷ |
, α̂

)
p(α)

= C1W1 + C2W2 + C3W3,

where

C1 =
− cos2 α+ 2 sin(α) + 2

4 cos3(α)
, C2 =

sinα+ 1

2 cos3(α)
, C3 =

− sinα · (sinα+ 1)

2 cos3 α
,

W1 = Q([X,Y ])− [Q(X),Q(Y )], W2 = (X̃Q)(Y ), W3 = (ỸQ)(X).

The smoothness of ∇ at the poles ±p0 implies that |T (α)| remains bounded as
α → ±π/2, which will imply relationships between W1, W2, and W3. More specifi-
cally, first notice that limα→−π/2+ C1 = 0 while limα→−π/2+ C2 = limα→−π/2+ C3 =

∞. This implies that W2 is parallel to W3. In fact, since limα→−π/2+
C2

C3
= 1, we

learn that W2 = −W3, so (5.5) becomes

T (α) = C1W1 + (C2 − C3)W2 = C1(W1 + 2W2)︸ ︷︷ ︸
because 2C1=C2−C3

.

Since limα→π/2− C1 = ∞, we learn that W1 + 2W2 = 0. In summary, we have
learned that W2 = −W3 and W1 + 2W2 = 0, which is exactly (5.4). �

Proposition 5.3. If Θ(α̂, α̂, ·) = 0 on U , then ∇ is parallel.

Proof. Write F = g · Q as in Lemma 5.1. Fix p = ((cosα)a, sinα) ∈ U and fix
X,Y, Z ∈ pa. Equation (5.4) and Lemma 4.1 now give that

Ω(α̂, X̂)p = g′Qa(X),

Ω(X̂, Ŷ )p = g(X̃Q)a(Y )− g(ỸQ)a(X) + gQa([X,Y ]) + g2[Qa(X),Qa(Y )]

= (g2 + g)[Qa(X),Qa(Y )],

where expressions involving g are assumed to be evaluated at α.
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We need to show that Θ = 0. Since {p,X, Y, Z} were arbitrarily chosen, this is
equivalent to showing

(5.6) Θ(α̂, α̂, X̂)p = Θ(α̂, X̂, Ŷ )p = Θ(X̂, Ŷ , α̂)p = Θ(X̂, Ŷ , Ẑ)p = 0.

First, Θ(α̂, α̂, X̂) = 0 by hypothesis. Next,

Θ(α̂, X̂, Ŷ )p = α̂Ω(X̂, Ŷ )p − Ω(∇α̂X̂, Ŷ )p − Ω(X̂,∇α̂Ŷ )p + [ω(α̂)p︸ ︷︷ ︸
0

,Ω(X̂, Ŷ )p]

= (g2 + g)′[Qa(X),Qa(Y )] + 2(tanα)Ω(X̂, Ŷ )p

=
(
2gg′ + g′ + 2(tanα)(g2 + g)

)︸ ︷︷ ︸
0

[Qa(X),Qa(Y )] = 0.

The proof Lemma 5.2 established that Θ(X̂, Ŷ , α̂)p = 0. So to verify (5.6), it
remains to prove that the following vanishes:

Θ(Ẑ, X̂, Ŷ )p =
(
ẐΩ(X̂, Ŷ )

)
p
− Ω(∇ẐX̂, Ŷ )p − Ω(X̂,∇Ẑ Ŷ )p + [ω(Ẑ)p,Ω(X̂, Ŷ )p].

For this, we must first use (5.4) to simplify the expression Ẑ[Q(X),Q(Y )]:

2Ẑ[Q(X),Q(Y )] = 2[(Z̃Q)(X),Q(Y )] + 2[Q(X), (Z̃Q)(Y )]

= [[Q(Z),Q(X)]−Q([Z,X]),Q(Y )]

+ [Q(X), [Q(Z),Q(Y )]−Q([Z, Y ])]

= −[Q([Z,X]),Q(Y )]− [Q(X),Q([Z, Y ])]

+
(
[[Q(Z),Q(X)],Q(Y )] + [Q(X), [Q(Z),Q(Y )]]︸ ︷︷ ︸

=−[[Q(X),Q(Y )],Q(Z)] by Jacobi

)

= −[Q([Z,X]),Q(Y )]− [Q(X),Q([Z, Y ])]− [[Q(X),Q(Y )],Q(Z)].

Next observe that
〈
Ẑ, Ŷ

〉
p
= cos2(α) 〈Z, Y 〉 because the vectors lie in pa by hy-

pothesis. Therefore,

Ω(∇ẐX̂, Ŷ ) = Ω

(
−1

2
[̂Z,X] + (tanα)

〈
Ẑ, X̂

〉
p
α̂, Ŷ

)
= −1

2
(g2 + g)[Q([Z,X]),Q(Y )] + g′(cosα)(sinα) 〈Z,X〉Q(Y ),

and similarly for Ω(X̂,∇Ẑ Ŷ ), so that

−Ω(∇ẐX̂, Ŷ )− Ω(X̂,∇Ẑ Ŷ ) =
1

2
(g2 + g) ([Q([Z,X]),Q(Y )] + [Q(X),Q([Z, Y ])])

− g′(cosα)(sinα) (〈Z,X〉Q(Y )− 〈Z, Y 〉Q(X)) .

Finally,

[ω(Ẑ),Ω(X̂, Ŷ )] = g(g2 + g)[Q(Z), [Q(X),Q(Y )]].
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These expressions give the following simplification:

Θ(Ẑ, X̂, Ŷ ) = ẐΩ(X̂, Ŷ )︸ ︷︷ ︸
(g2+g)Z̃[Q(X),Q(Y )]

+[ω(Ẑ),Ω(X̂, Ŷ )]− Ω(∇ẐX̂, Ŷ )− Ω(X̂,∇Ẑ Ŷ )

= −(g2 + g)(g + 1/2)[[Q(X),Q(Y )],Q(Z)]

− g′(cosα)(sinα) (〈Z,X〉Q(Y )− 〈Z, Y 〉Q(X))

=
1

8
cos2(α) sin(α)

(
4 〈Z,X〉Q(Y )− 4 〈Z, Y 〉Q(X)

− [[Q(X),Q(Y )],Q(Z)]
)
.

Since |X̂| = |Ŷ | = |Ẑ| = cosα at p, we can express T (α) = Θ
(

Ẑ
|Ẑ| ,

X̂
|X̂| ,

Ŷ
|Ŷ |

)
as

T (α) =
1

8
(tanα)

(
4 〈Z,X〉Q(Y )− 4 〈Z, Y 〉Q(X)− [[Q(X),Q(Y )],Q(Z)]

)
.

But T (α) has bounded norm as α → ±π/2, while tan(α) does not, which implies
that

(5.7) 4 〈Z,X〉Q(Y )− 4 〈Z, Y 〉Q(X)− [[Q(X),Q(Y )],Q(Z)] = 0.

Thus, Θ(Ẑ, X̂, Ŷ ) = 0, as desired.
This completes the proof, although it’s worth mentioning that (5.7) is true for the

associated bundles described in Proposition 3.2, simply because ϕ is a Lie algebra
homomorphism and H/K = Sn−1 is a symmetric space with constant curvature
1. �

Given a rank k vector bundle over Sn and an explicit map C : Sn−1 → SO(k)
with the correct homotopy type to represent the clutching map of the bundle, one
might wish that a connection in the bundle could be canonically determined from C,
but the above proof suggests not. Equation (5.1) prescribes a connection in terms
of C, and is the only prescription that matches the natural examples, but yet the
proof shows that the resulting connection is smooth only for the known examples.

In contrast, an explicit representative of the homotopy type of the classifying
map is known to canonically determine a connection (see [4]), but it is often more
difficult to work with than the clutching map. For example, the parallel and radial
symmetry hypotheses have been translated into geometric conditions on the clas-
sifying map (see [8]), but this translation probably doesn’t yield any natural proof
of the Main Theorem of this paper.
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