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ROBUSTNESS OF EXPONENTIAL ATTRACTORS FOR

DAMPED KORTEWEG-DE VRIES EQUATIONS

MO CHEN

(Communicated by Wenxian Shen)

Abstract. In this paper, we study the long-time behaviour of the solutions
of the Korteweg-de Vries equations with localized dampings in a bounded do-
main. It is shown that, under appropriate assumptions on the dampings, these
equations possess robust families of exponential attractors in the corresponding
phase space.

1. Introduction

In this paper, we consider the Korteweg-de Vries (KdV) equations posed on a
finite interval with localized dampings:

(1.1)

⎧⎪⎨⎪⎩
ut + ux + uxxx + uux + aε(x)u = 0 in I × (0,+∞),

u(0, t) = u(L, t) = ux(L, t) = 0 in (0,+∞),

u(x, 0) = u0(x) in I,

where I = (0, L)(L > 0) and {aε}0≤ε≤1 is a family of given nonnegative functions.
Our aim is to study the existence and the robustness of exponential attractors for
(1.1).

The study of the long-time behavior of equations arising from mechanics and
physics is very important, as it is essential, for practical purposes, to understand
and predict the asymptotic behavior of the system. The natural object which is used
to describe the behavior of solutions of nonlinear evolutionary partial differential
equations is the global attractor of these equations. The global attractor is the
unique invariant compact set which (uniformly) attracts bounded sets of initial
data. The existence of global attractors and estimates of their fractal and Hausdorff
dimension were obtained for many equations of mathematical physics. Nevertheless,
the global attractor may present two major defaults for practical purposes. Indeed,
the rate of attraction of the trajectories may be small and it may be sensible to
perturbations. In order to overcome these difficulties, Foias, Sell, and Temam
proposed in [6] the notion of inertial manifold, which is a smooth finite-dimensional
hyperbolic (and thus robust) positively invariant manifold which contains the global
attractor and exponentially attracts the trajectories. But the conditions under
which it is possible to prove the existence of an inertial manifold (the gap condition
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on the spectrum of the principal linear part) is very restrictive. In many cases
inertial manifolds do not exist. Thus, as an intermediate object between the global
attractor and the inertial manifold, Eden, Foias, Nicolaenko, and Temam proposed
in [4] the notion of exponential attractor, which is a compact positively invariant set
which contains the global attractor, has finite fractal dimension, and exponentially
attracts the trajectories.

The KdV equation

ut + uxxx + uux = 0

was first derived by Korteweg and de Vries [11] in 1895 (or by Boussinesq [3] in
1877) as a model for propagation of some surface water waves along a channel. x is
often proportional to distance in the direction of propagation, and t is proportional
to the elapsed time. The equation is now commonly accepted as a mathematical
model for the unidirectional propagation of small amplitude long waves in nonlinear
dispersive systems. In many real situations, however, one cannot neglect energy
dissipation mechanisms and external excitation, thus many authors considered the
KdV equation in the form

(1.2) ut + uxxx + uux + L(u) = f,

where f represents the external excitation and L(u) is the damping term. Depend-
ing on the physical situation, L(u) can be a differential operator or even a pseudo-
differential operator. In many articles, the authors consider (1.2) with L(u) = γu,
where γ is a positive constant. The global attractors for the KdV type equations
with damping term L(u) = γu were considered in [10, 12, 14, 16, 20, 21] for x ∈ R

and in [7–9, 13, 22] for x ∈ T.
In applications, we may observe the propagation of water waves in a bounded

channel; however, there are to date few results concerning the attractors for the
KdV type equations in a bounded domain. Notice that, as it was suggested in [2],
the extra term ux should be incorporated in the equation in order to obtain an
appropriate model for water waves in a uniform channel. In this work, we study
the long-time behavior for (1.1). The damping term aεu in (1.1) is weaker than
γu if we require that the support set of aε is contained in an open subset of I;
consequently, we cannot obtain the decay of the solution by Gronwall inequality
directly. Assuming that aε = a satisfies

a ∈ H1(I) and a(x) ≥ a0 > 0 a.e. in ω,

where ω is any nonempty open subset of I, [15] and [18] investigated the exponential
decay for the solution of (1.1).

The rest of this paper is organized as follows. Section 2 is devoted to some
abstract theories which will be used in this paper. In Section 3, we prove that
(1.1) possesses robust families of exponential attractors in the corresponding phase
space.

2. Abstract theory

Let X be a Banach space; we usually denote the norm in X by ‖ · ‖X . We
indicate by

distX(B1, B2) := sup
U∈B1

inf
V ∈B2

‖U − V ‖X



ATTRACTORS FOR DAMPED KORTEWEG-DE-VRIES EQUATIONS 3441

the Hausdorff semidistance in X from a set B1 to a set B2. Let distsym(B1, B2)
denote the symmetric Hausdorff distance between B1 and B2 defined by

distsym(B1, B2) := max{distX(B1, B2), distX(B2, B1)}.
Let X be a subset of X and let S(t), 0 ≤ t < ∞, be a family of continuous

mappings from X into itself with the properties: (i) S(0) = I (the identity mapping)
and (ii) S(t)S(s) = S(t+ s), 0 ≤ t, s < ∞ (the semigroup property). Such a family
is called a (nonlinear) semigroup acting on X . For each U0 ∈ X , S(t)U0 defines a
function for t ∈ [0,∞) with values in X ; this function is called a trajectory starting
from U0. The space of all trajectories is called a dynamical system with phase space
X in the universal space X and is denoted by (S(t),X , X).

Now, we present the definition of the exponential attractor which can be found
in [1, 4].

Definition 2.1. A nonempty subset M ⊂ X is called an exponential attractor for
(S(t),X , X) if

• M is a compact subset of X with finite fractal dimension;
• M is a positively invariant set of S(t), namely, S(t)M ⊂ M for every t ≥ 0;
• M attracts X exponentially in the following sense:

distX(S(t)X ,M) ≤ Ce−δt, t ≥ 0,

with some exponent δ > 0 and a constant C > 0.

In the next section, we will use the following abstract result which was proved
in [5].

Theorem 2.1. Let X and Z be Banach spaces such that the embedding Z ↪→ X is
compact. Let (Sε(t),Xε, X) be a family of dynamical systems which are defined for
0 ≤ ε ≤ 1 with compact phase spaces Xε of X for all 0 ≤ ε ≤ 1. Assume that

• there exists a uniform absorbing set B ∈
⋂

0≤ε≤1 Xε and T ∗ > 0 such that

(2.1) Sε(t)Xε ⊂ B for every t ≥ T ∗

for all 0 ≤ ε ≤ 1;
• Sε(T

∗), 0 ≤ ε ≤ 1, satisfy a compact Lipschitz condition

(2.2) ‖Sε(T
∗)U − Sε(T

∗)V ‖Z ≤ L‖U − V ‖X , U, V ∈ Xε

with some uniform constant L > 0;
• Sε(t), 0 ≤ ε ≤ 1, satisfy a Lipschitz condition

(2.3) ‖Sε(t1)U −Sε(t2)V ‖X ≤ D(|t− s|+ ‖U −V ‖X), 0 ≤ t1, t2 ≤ T ∗, U, V ∈ Xε

on the interval [0, T ∗] with some uniform constant D > 0;
• there exists some constant K > 0 such that

(2.4) sup
U∈B

sup
0≤t≤T∗

‖Sε(t)U − S0(t)U‖X ≤ Kε

for all 0 ≤ ε ≤ 1.

Then, there exist exponential attractors Mε for (Sε(t),Xε, X), 0 ≤ ε ≤ 1, respec-
tively, for which the estimate

distsym(Mε,M0) ≤ Cεκ, 0 < ε ≤ 1,

holds with some exponent 0 < κ < 1 and constant C > 0.
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3. Existence and robustness of exponential attractors

In this section, we proceed to show the existence and robustness of the exponen-
tial attractors for (2.1) applying Theorem 2.1.

We begin with some assumptions on {aε}0≤ε≤1. Let {ωε}0≤ε≤1 be a family of
open, nonempty subsets of I. Assume that {aε}0≤ε≤1 is a family of nonnegative
H1(I)-valued functions satisfying

(3.1) ωε ⊂ supp aε, ‖aε‖H1(I) ≤ C and ‖aε − a0‖L2(I) ≤ Cε for any ε ∈ [0, 1];

here C > 0 is a constant independent of ε.
In what follows, unless otherwise specified, C denotes a generic positive constant

whose value can change from line to line. If it is essential, the dependence of a
constant C on some parameters, say “ · ” , will be written by C(·).

For any 0 ≤ s ≤ 3, Let Xs be the collection of all functions u0 in the space Hs(I)
satisfying the compatibility conditions{

u0(0) = u0(L) = 0, 1/2 < s ≤ 3/2,

u0(0) = u0(L) = u′
0(L) = 0, 3/2 < s ≤ 3

with its usual topology, and let

Ys,[a,b] = C([a, b];Xs) ∩ L2(a, b;Hs+1(I))

with its usual topology. For simplicity, we denote Ys,[0,T ] by Ys,T if [a, b] = [0, T ].
The well-posedness of (2.1) can be found in [18].

Proposition 3.1 ([18]). Let T > 0 and 0 ≤ s ≤ 3 be given. Suppose {aε}0≤ε≤1

satisfy (3.1). Then, for any ε ∈ [0, 1] and any u0 ∈ Xs, (1.1) admits a unique
solution uε ∈ Ys,T which also satisfies

‖uε‖Ys,T
≤ αs(‖u0‖L2(I))‖u0‖Hs(I),

‖uε
t‖Y0,T

≤ α3(‖u0‖L2(I))‖u0‖H3(I),

where αs : R+ → R+ is a nondecreasing continuous function. Moreover, system
(1.1) is globally uniformly exponentially stable in the space H3(I), i.e., there exists
a uniform constant ν > 0 and a continuous nonnegative function β : R+ → R+

such that for a given u0 ∈ X3, the corresponding solution uε satisfies

‖uε(·, t)‖H3(I) ≤ β(‖u0‖L2(I))‖u0‖H3(I)e
−νt ∀ t ≥ 0.

Remark 3.1. Following the proofs of Theorem 1.2 and 1.5 in [18] and assumption
(3.1), we can guarantee that functions αs, β and constant ν are all independent of
ε.

In this section, we consider the semigroup Sε(t) associated with (1.1). Set the
universal space X by L2(I) and Z by H3(I). Let R > 0 be a given constant and
consider the set

B = {v ∈ X3 : ‖v‖H3(I) ≤ R}.
According to Proposition 3.1, there exists a time TR > 0 independent of ε such that

Sε(t)B ⊂ B ∀ t ≥ TR.

We then set the phase space Xε by

Xε =
⋃

0≤t≤∞
Sε(t)B =

⋃
0≤t≤TR

Sε(t)B ∀ ε ∈ [0, 1].
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It is not difficult to verify that for any ε ∈ [0, 1], B ⊂ Xε ⊂ X3, Xε is a positively
invariant set, i.e., Sε(t)Xε ⊂ Xε for every t ≥ 0, and is a compact set of X.
Thus (Sε(t),Xε, X) (0 ≤ ε ≤ 1) define the dynamical systems we need. Applying
Proposition 3.1 again, there exists a constant M > 0 independent of ε such that
any element U in Xε satisfies

(3.2) ‖U‖H3(I) ≤ M.

We are now ready to state the main result in this paper.

Theorem 3.1. Suppose {aε}0≤ε≤1 satisfy (3.1). Then there exist exponential at-
tractors Mε for dynamical systems (Sε(t),Xε, L

2(I)) associated with (1.1), 0 ≤ ε ≤
1, respectively, for which the estimate

distsym(Mε,M0) ≤ Cεκ, 0 < ε ≤ 1

holds with some exponent 0 < κ < 1 and constant C > 0.

Proof. In order to apply Theorem 2.1, it is sufficient to verify (2.1)–(2.4) for (Sε(t),
Xε, L

2(I)). Therefore, we divide the proof into four steps.

Step 1. Let T ∗ = ln(νβ(M)M/R). According to Proposition 3.1 and (3.2), it is
easy to show that for any ε ∈ [0, 1] and any u0 ∈ Xε, we have

‖uε(·, t)‖H3(I) ≤ R for every t ≥ T ∗.

This implies (2.1).

Step 2. For ε ∈ [0, 1], let uε
0, ũ

ε
0 be two initial functions in Xε and let uε, ũε be the

corresponding solutions of (1.1), respectively.
Let vε = uε − ũε. Then function vε is a solution of

(3.3)

⎧⎪⎨⎪⎩
vεt + vεx + vεxxx + ũεvεx + uε

xv
ε + aεvε = 0 in I × (0, T ∗),

vε(0, t) = vε(L, t) = vεx(L, t) = 0 in (0, T ∗),

vε(x, 0) = vε0(x) in I,

where vε0 = uε
0 − ũε

0 ∈ X3. It follows from Proposition 3.1 that vε ∈ Y3,T∗ . In order
to prove (2.2), it remains to show that

(3.4) ‖vε(·, T ∗)‖H3(I) ≤ L‖vε0‖L2(I)

for some uniform constant L > 0.
Define an operator A by

A = −∂x − ∂3
x

with the domain X3. It is proved in [17] that A is the infinitesimal generator of a
C0-semigroup W (t) in L2(I). Moreover, there exists a constant C > 0 such that
for any 0 ≤ a < b < +∞, φ ∈ L2(I), and f ∈ L1(a, b;L2(I)), we have

‖W (·)φ+

∫ ·

a

W (· − τ )f(τ )‖Y0,[a,b]
≤ C(

√
|b− a|+ 1)(‖φ‖L2(I) + ‖f‖L1(a,b;L2(I))).

Then we can write (3.3) in its integral equation form

vε(t) = W (t)vε0 −
∫ t

0

W (t− τ )(ũεvεx + uε
xv

ε + aεvε)(τ )dτ,

where the spatial variable is suppressed throughout.
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Let N be a positive integer which will be determined later and let T = T ∗/N .
For any integer n ∈ [0, N − 1], we can deduce that

‖vε‖Y0,[nT,(n+1)T ]

≤C(
√
T + 1)(‖vε(·, nT )‖L2(I) + ‖ũεvεx + uε

xv
ε + aεvε‖L1(nT,(n+1)T ;L2(I)))

≤C(T ∗)‖vε(·, nT )‖L2(I)

+ C(T ∗)T 1/4(‖uε‖Y0,[nT,(n+1)T ]
+ ‖ũε‖Y0,[nT,(n+1)T ]

+ 1)‖vε‖Y0,[nT,(n+1)T ]
.

(3.5)

Here we have used the fact that there exists a constant C > 0 such that for any
0 ≤ a < b < +∞ and u, v ∈ Y0,[a,b],

(3.6)

∫ b

a

‖uvx‖L2(I)dt ≤ C|b− a|1/4‖u‖Y0,[a,b]
‖v‖Y0,[a,b]

.

Using Proposition 3.1, it is easy to obtain that

‖uε‖Y0,[nT,(n+1)T ]
+ ‖ũε‖Y0,[nT,(n+1)T ]

≤ ‖uε‖Y0,T∗ + ‖ũε‖Y0,T∗ ≤ C(M,T ∗).

Combining (3.5), we have

‖vε‖Y0,[nT,(n+1)T ]
≤ C(T ∗)‖vε(·, nT )‖L2(I) + C(M,T ∗)T 1/4‖vε‖Y0,[nT,(n+1)T ]

.

Choosing N large enough such that C(M,T ∗)T 1/4 < 1/2, it follows that

‖vε‖Y0,[nT,(n+1)T ]
≤ C0‖vε(·, nT )‖L2(I) ≤ C0‖vε‖Y0,[(n−1)T,nT ]

≤ · · · ≤ Cn+1
0 ‖vε0‖L2(I),

where C0 > 0 is a constant depending on T ∗ but independent of n and T . Therefore,
we can deduce that

‖vε‖Y0,T∗ ≤
N−1∑
n=0

‖vε‖Y0,[nT,(n+1)T ]
≤ ‖vε0‖L2(I)

N−1∑
n=0

Cn+1
0 = C(M,T ∗)‖vε0‖L2(I).

(3.7)

Similarly, we can show that for any vε01, v
ε
02 ∈ L2(I), the corresponding solutions

vε1 and vε2 of (3.3) satisfy

(3.8) ‖vε1 − vε2‖Y0,T∗ ≤ C(M,T ∗)‖vε01 − vε02‖L2(I).

Next, we shall prove that the solution vε of (3.3) satisfies

‖vε‖Y3,T∗ ≤ C(M,T ∗)‖vε0‖H3(I).

For this purpose, let wε = vεt . Then function wε is the solution of⎧⎪⎨⎪⎩
wε

t + wε
x + wε

xxx + ũεwε
x + uε

xv
ε + ũε

tv
ε
x + ũε

xtv
ε + aεwε = 0 in I × (0, T ∗),

wε(0, t) = wε(L, t) = wε
x(L, t) = 0 in (0, T ∗),

wε(x, 0) = wε
0(x) in I,

where wε
0 = −(vε0)

′− (vε0)
′′′ − ũε

0(v
ε
0)

′− (uε
0)

′vε0 − aεvε0 ∈ L2(I). Following the above
methods, we can prove that

‖wε‖Y0,T∗ ≤ C(M,T ∗)(‖wε
0‖L2(I) + ‖ũε

tv
ε
x‖L1(0,T∗;L2(I)) + ‖ũε

xtv
ε‖L1(0,T∗;L2(I))).

Taking (3.6), Proposition 3.1, and (3.7) into account, we have

‖ũε
tv

ε
x‖L1(0,T∗;L2(I)) + ‖ũε

xtv
ε‖L1(0,T∗;L2(I))

≤C(T ∗)(‖uε
t‖Y0,T∗ + ‖ũε

t‖Y0,T∗ )‖vε‖Y0,T∗

≤C(M,T ∗)‖vε0‖L2(I).
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This leads to

‖wε‖Y0,T∗ ≤ C(M,T ∗)(‖wε
0‖L2(I) + ‖vε0‖L2(I)).

Following the methods developed in [18] with minor changes, we can obtain that

(3.9) ‖vε‖Y3,T∗ ≤ C(M,T ∗)‖vε0‖H3(I).

Here we have used the fact that

‖vε0‖L2(I) ≤ ‖uε
0‖L2(I) + ‖ũε

0‖L2(I) ≤ M.

According to (3.7)–(3.9), system (3.3) defines a continuous nonlinear map K
from space Xj to Yj,T∗ for j = 0, 3. Then, using the nonlinear interpolation theory
([18, 19]), we can obtain that

‖vε‖Ys,T∗ ≤ Ls‖vε0‖Hs(I)

holds for 0 ≤ s ≤ 3, where Ls = Ls(M,T ∗) > 0 is a constant independent of ε.
This implies that (3.3) has a strong smoothing property; therefore, we can find a
constant L > 0 such that

‖vε‖Y3,T∗ ≤ L‖vε0‖L2(I).

According to the definitions of vε, vε0 and Y3,T∗ , we have (3.4). The proof of (2.2)
is complete.

Step 3. For ε ∈ [0, 1], let uε
0, ũ

ε
0 be two initial functions in Xε and let uε, ũε be the

corresponding solutions of (1.1), respectively. In this part, consideration is given
to the proof of the inequality

‖uε(·, t1)− ũε(·, t2)‖L2(I) ≤ D(|t1 − t2|+ ‖uε
0 − ũε

0‖L2(I)), 0 ≤ t1, t2 ≤ T ∗,

on the interval [0, T ∗] with some uniform constant D > 0.
It is easy to deduce that

‖uε(·, t1)− ũε(·, t2)‖L2(I)

≤‖uε(·, t1)− uε(·, t2)‖L2(I) + ‖uε(·, t2)− ũε(·, t2)‖L2(I)

≤‖uε
t (·, ξ)‖L2(I)|t1 − t2|+ ‖vε(·, t2)‖L2(I)

≤‖uε
t‖Y0,T∗ |t1 − t2|+ ‖vε‖Y0,T∗ ,

where ξ ∈ [t1, t2] and vε is the solution of (3.3). Applying Proposition 3.1 and
(3.7), we have

‖uε(·, t1)− ũε(·, t2)‖L2(I) ≤ C(M,T ∗)(|t1 − t2|+ ‖uε
0 − ũε

0‖L2(I)).

This ends the proof of (2.3).

Step 4. We intend to prove (2.4). Let u0 ∈ B and zε = uε − u0; then zε satisfies
(3.10)⎧⎪⎨⎪⎩

zεt + zεx + zεxxx + uεzεx + u0
xz

ε + aεzε + (aε − a0)u0 = 0 in I × (0, T ∗),

zε(0, t) = zε(L, t) = zεx(L, t) = 0 in (0, T ∗),

zε(x, 0) = 0 in I.
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Multiplying the first equation in (3.10) by zε and integrating in [0, L], we can obtain
that

1

2

d

dt

∫ L

0

|zε(x, t)|2dx+
1

2
|zεx(0, t)|2

≤
∫ L

0

(|uε
x|+ |u0

x|+ |aε|)|zε|2dx+

∫ L

0

|aε − a0||u0||zε|dx

≤C(‖uε(·, t)‖H2(I) + ‖u0(·, t)‖H2(I) + 1)

∫ L

0

|zε(x, t)|2dx

+ C‖u0(·, t)‖2H1(I)

∫ L

0

|aε − a0|2dx

≤C(‖uε‖Y3,T∗ + ‖u0‖Y3,T∗ + 1)

∫ L

0

|zε(x, t)|2dx+ C‖u0‖2Y3,T∗

∫ L

0

|aε − a0|2dx

≤C(R, T ∗)

∫ L

0

|zε(x, t)|2dx+ C(R, T ∗)

∫ L

0

|aε − a0|2dx ∀ t ∈ [0, T ∗].

It follows from Gronwall inequality and assumption (3.1) that

‖zε(·, t)‖2L2(I) ≤ eC(R,T∗)tC(R, T ∗)t‖aε − a0‖2L2(I) ≤ C(R, T ∗)ε2 ∀ t ∈ [0, T ∗].

This means that

sup
u0∈B

sup
0≤t≤T∗

‖uε(t)− u0(t)‖L2(I) ≤ C(R, T ∗)ε

holds for all 0 ≤ ε ≤ 1. Namely, we obtain (2.4).
Now, we have verified the assumptions in Proposition 3.1; consequently, we com-

plete the proof of Theorem 3.1.
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