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ON THE RING OF DIFFERENTIAL OPERATORS

OF CERTAIN REGULAR DOMAINS

TONY J. PUTHENPURAKAL

(Communicated by Irena Peeva)

Abstract. Let (A,m) be a complete equicharacteristic Noetherian domain of
dimension d + 1 ≥ 2. Assume k = A/m has characteristic zero and that A is
not a regular local ring. Let Sing(A), the singular locus of A, be defined by
an ideal J in A. Note that J �= 0. Let f ∈ J with f �= 0. Set R = Af . Then
R is a regular domain of dimension d. We show that R contains naturally a
field L ∼= k((X)) such that D(R), the ring of L-linear differential operators on
R, is a left and right Noetherian ring of global dimension d. This enables us
to prove Lyubeznik’s conjecture on R regarding finiteness of associate primes
of local cohomology modules of R.

1. Introduction

Let K be a field of characteristic zero and let R be a commutative Noetherian
domain containing K as a subring. Let D(R) = DK(R) be the ring of K-linear dif-
ferential operators on R. In general D(R) does not have good properties. However
in the following cases it is known that D(R) is both left and right Noetherian with
finite global dimension:

(1) R = K[X1, . . . , Xn]. In this case D(R) = An(K), the nth-Weyl algebra
over K. We have that the global dimension of D(R) is equal to n; see
[2, Chapter 2, Theorem 3.15].

(2) R = K[[X1, . . . , Xn]]. In this case the global dimension of D(R) is equal to
n; see [2, Chapter 3, Proposition 1.8].

(3) Let K = C and let V be a non-singular affine K-variety. Let R be the
co-ordinate ring of V . In this case global dimension of D(R) is equal to
dimV ; see [2, Chapter 3, Theorem 2.5].

(4) Let R = C{z1, . . . , zn} be the local ring of convergent power series in n-
variables. In this case the global dimension of D(R) is equal to n; see
[2, p. 197].

More generally for rings of differentiable type, D(R) behaves well; see [11] and
[12]. In this paper we describe a new infinite class of Noetherian domains R with
D(R) both left and right Noetherian and with finite global dimension.
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1.1. Setup. Let (A,m) be a complete equicharacteristic Noetherian domain of di-
mension d + 1 ≥ 2. Assume k = A/m has characteristic zero and that A is not a
regular local ring. We note that A contains a field isomorphic to k. For convenience
we also denote it with k. Let Sing(A), the singular locus of A, be defined by an
ideal J in A. Note that J �= 0. Let f ∈ J with f �= 0. Set R = Af . Then R
is a regular domain of dimension d. In subsection 2.3 we show that R contains
naturally a field L ∼= k((X)). Let DerL(R) be the set of L-linear derivations of R.
Let D(R) = DL(R) be the ring of L-linear differential operators on R. The main
result of this paper is:

Theorem 1.2. Let R and L be as in Setup 1.1.

(1) R is a domain such that height n = d for each maximal ideal n of R.
(2) For each maximal ideal n of R the residual field R/n is a finite extension

of L.
(3) DerL(R) is a finitely generated projective R-module of rank d such that

DerL(Rn) = Rn ⊗R DerL(R) for each maximal ideal n of R.

As an immediate corollary we obtain (using Theorem 1.1 of [12])

Corollary 1.3. Let R and L be as in Setup 1.1. The ring D(R) is a left and right
Noetherian ring with global dimension d. Moreover, the Bernstein class of D(R) is
closed under localization at one element of R.

We note that the first half of the above result also holds by [2, Chapter 2,
Theorem 1.2].

1.4. Application. In [4], Huneke asked whether for any Noetherian ring T and
ideal I, the set AssHi

I(T ) is finite for all i ≥ 0. In addition, he also stated that it
is more reasonable to expect this for regular rings. In general, Huneke’s question
has a negative answer. Singh gave the first example of a singular ring R having an
ideal I such that AssR Hi

I(R) is infinite; see [13]. In this example the ring R did
not contain a field. Later Katzman (see [6]) gave an example of an affine algebra
R over a field (and also a local ring containing a field) having an ideal I such that
AssR Hi

I(R) is infinite. Later Singh and Swanson gave similar examples of a ring
having only rational singularities; see [14]. Lyubeznik conjectured (see [8]), that if
S is a regular ring and I is an ideal in S, then for any i ≥ 0 the set AssS Hi

I(S) is
finite. Previously this conjecture was known to be true in the following cases:

(1) S contains a field K with charK = p > 0; see [5].
(2) S is local and contains a field K with charK = 0; see [7].
(3) S is a regular affine K-algebra (here charK = 0; see [7].
(4) S is an unramifed regular local ring; see [9, 17].
(5) S is a smooth Z-algebra; see [1].

As an application of our results, we verify Lyubeznik’s conjecture for regular rings
satisfying Setup 1.1. We stress that there exist regular rings that satisfy Setup 1.1
and that are not included in the results previously known.

Corollary 1.5. Let R and L be as in Setup 1.1. Let I be an ideal in R. Then for
any i ≥ 0 the set AssR Hi

I(R) is finite.
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Here is an overview of the contents of the paper. In section 2 we discuss some
preliminaries that we need. In section 3 we discuss our result on ranks of certain
modules of derivations. We prove Theorem 1.3, Corollary 1.3, and Corollary 1.5
in section 4. Finally in section 5 we give an infinite number of examples of non-
isomorphic regular rings satisfying our hypothesis 1.1.

2. Preliminaries

2.1. Our running hypotheses will be as in Setup 1.1. In this section we prove some
preliminary facts about R and A.

We first prove

Proposition 2.2. Let R and L be as in Setup 1.1. Let n be a maximal ideal in R.
Then n = qR where q is a prime ideal of height d in A. In particular, dimR = d.

Proof. Suppose if possible there exists a prime ideal q in A of height ≤ d− 1 such
that n = qR is a maximal ideal of R. Note f /∈ q. As A is complete it is catenary.
So height(m/q) ≥ 2. In particular dimA/q ≥ 2. The image of f is non-zero in A/q.
By [10, Theorem 31.2] we get that A/q has infinitely many prime ideals of height
1. We can choose one, say P = P/q, not containing f . Thus P is a prime ideal
in A not containing f , and P strictly contains q. It follows that n = qR is not a
maximal ideal of R, a contradiction. �

2.3. Consider the map φ : k[[X]] → A which maps k identically to k and X to f .
As A is a domain it follows that φ is an injective map. Inverting X we get a map
ψ : k((X)) → AX . Notice that AX = Af = R. Thus R naturally contains a field
L ∼= k((X)). We also note that imageφ = k[[f ]] and L = k((f)).

The following is a crucial ingredient to prove Theorem 1.3.

Lemma 2.4. Let R and L be as in Setup 1.1. Let n be a maximal ideal of R. Then
R/n is a finite extension of L.

Proof. By Proposition 2.2 we get that n = qR, where q is a prime ideal of height d
in A not containing f . The map φ : k[[X]] → A as in subsection 2.3 descends to a
map φ : k[[X]] → A/q. Set T = A/q and S = k[[X]]. As (q, f) is m-primary in A
we get that T/XT = A/(q, f) is a finite dimensional k-vector space. We also get
that ⋂

n≥1

XnT ⊆
⋂
n≥1

fnT ⊆
⋂
n≥1

m
nT = 0.

Thus T is separated with respect to (X)-topology of S. It follows that T is a finite
S-module; see [10, Theorem 8.4]. Therefore the quotient field of A/q is a finite
extension of the quotient field of S. The result follows. �

We will use the next result in the next section.

Lemma 2.5. Let A,R, and L be as in Setup 1.1. Let q be a prime of height d in A
such that f /∈ q. Let κ(q) be the residue field of Aq. Then there exists y1, . . . , yd ∈ q

such that:

(1) height(f, y1, . . . , yj) = j + 1 for j = 0, . . . , d.
(2) The images of y1, . . . , yj in the κ(q)-vector space qAq/q

2Aq is linearly in-
dependent for j = 1, . . . , d.
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(3) f, y1, . . . , yd is a system of parameters of A.
(4) (y1, . . . , yd)Aq = qAq.

Proof. (1) and (2): As A is a domain we get that height(f) = 1. Suppose y1, . . . , yj
is already chosen where 0 ≤ j < d. We choose yj+1 as follows:

(a) Set

J =
(
(y1, . . . , yj)Aq + q2Aq

)
∩A.

Then J ⊆ q. We claim that q � J . If this is so we get q = J and therefore

qAq=(y1, . . . , yj)Aq + q
2Aq, and so by Nakayama’s Lemma qAq=(y1, . . . , yj)Aq.

This implies that dimAq ≤ j < d, a contradiction.
(b) Let P1, . . . , Ps be all the minimal primes of (f, y1, . . . , yj) of height j+1. We

claim that q � Pi for all i = 1, . . . , s. We have to consider two cases:

Case (i). j ≤ d− 2. Then as heightPi < d for all i, we get the result.

Case (ii). j = d − 1. If q ⊆ Pi for some i, then as both these prime ideals have
height d we get q = Pi. We then get f ∈ q, a contradiction.

Using (a), (b), and prime avoidance, there exists

yj+1 ∈ q \ J ∪
(

s⋃
i=1

Pi

)
.

Then note that y1, . . . , yj+1 satisfies the conditions of (1) and (2).
(3) This follows since by (1) we have height (f, y1, . . . , yd) = d+ 1 = dimA.
(4) As Aq is a regular local ring of dimension d we get that qAq/q

2Aq is a
d-dimensional κ(q)-vector space. The result follows from (2). �

3. Ranks of modules of derivations

Let T, S be commutative Noetherian rings. Assume S is a T -algebra. Let
DerT (S) denote the set of T -linear derivations on S. The main goal of this section
is to prove Theorem 3.4. As an easy consequence we get proofs of our results The-
orem 1.2, Corollary 1.3, and Corollary 1.5. Our running hypotheses will be as in
Setup 1.1.

We first prove:

Proposition 3.1. Let A,R, and L be as in Setup 1.1. The A-module Derk(A) is
finitely generated with rank = d+ 1.

Proof. By [10, Theorem 30.7], Derk(A) is a finitely generated A-module of rank
≤ d+ 1. Let A = Q/q, where Q = k[[x1, . . . , xn]] and q ⊆ (x1, . . . , xn)

2 is a prime
ideal in Q. Let r = height q. Then n = d+ 1 + r.

Let T be a finitely generated A-module. By equation (6) in the proof of [10,
Theorem 25.2] we get an exact sequence of A-modules:

0 → Derk(A, T ) → Derk(Q, T ) → HomA(q/q
2, T ).
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We note that Derk(Q, T ) ∼= Tn. Set T = A in the above equation:

0 → Derk(A) → An → HomA(q/q
2, A).

We localize the above equation at (0). We note that (q/q2)(0) ∼= qQq/q
2Qq

∼= κ(q)r;
here κ(q) is the residue field ofQq (this is so asQq is a regular local ring of dimension
r). Note that κ(q) is also the quotient field of A. So we have an exact sequence

0 → Derk(A)(0) → κ(q)n → κ(q)r.

Therefore rankDerk(A) ≥ n− r = d+ 1. The result follows. �

To prove Theorem 3.4 we will need the following two easily proved facts:

Fact 3.2. Let K be a field of characteristic zero and let S = K[[X1, . . . , Xn]]. Let
T be an S-module, not necessarily finitely generated, such that T is complete with
respect to (X1, . . . , Xn)-adic topology. Then DerK(S, T ) ∼= Tn.

Fact 3.3. Let R ⊆ S be an inclusion of Noetherian domains. Let I be an ideal in
R such that R is complete with respect to I-adic topology. Let J be an ideal in
S such that S is complete with respect to J-adic topology. Assume IS ⊆ J . Let
{rn} be a convergent sequence in R (in the I-adic topology) with rn → r. Then
{rn} considered as a sequence in S is convergent in the J-adic topology, and {rn}
converges to r in S.

The following is the main result of this section:

Theorem 3.4. Let A,R, and L be as in Setup 1.1. Let T be the subring k[[f ]] of
A. Consider DerT (A). Then

(1) DerT (A) is a finitely generated A-module and rankDerT (A) ≥ d.
(2) DerT (A)f = DerL(R). In particular DerL(R) is finitely generated as an

R-module.
(3) Let n be a maximal ideal of R. Then

(a) DerL(Rn) = (DerL(R))
n
.

(b) DerL(Rn) is a free Rn-module of rank d.
(4) DerL(R) is a projective R-module of rank d.

Proof. (1) Consider the inclusion of rings k ⊆ T ⊆ A. By equation (3) of the proof
of [10, Theorem 25.1], for any A-module W we have the following exact sequence
of A-modules:

(3.4.1) 0 → DerT (A,W ) → Derk(A,W ) → Derk(T,W ).

We now put W = A in (3.4.1). Notice that T ∼= k[[X]]. As A is complete with
respect to m-adic topology it is also complete with respect to (f)-adic topology. So
Derk(T,A) ∼= A; see Fact 3.2. By Proposition 3.1 we get that Derk(A) is finitely
generated as an A-module and rankDerk(A) = d + 1. The result follows from
(3.4.1).

We need some work to prove the remaining assertions:

Claim 1. DerT (A)f ⊆ DerL(R). In particular rankDerL(R) ≥ d. Note that we are
not yet asserting that DerL(R) is finitely generated as an R-module.
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Remark. Let K be the quotient field of R. By the rank of a not-necessarily finitely
generated R-module M , we mean the cardinality of a basis of the K-vector space
M ⊗R K.

It is well-known that DerT (A)f ⊆ DerT (R). Now T = k[[f ]] and f is invertible
in R. Let δ ∈ DerT (R). We assert that it is L = k((f))-linear. To see this let

v =
1

f i
r for some i ≥ 1 and r ∈ R.

Then r = f iv. As δ is T -linear we get δ(r) = f iδ(v). It follows that

δ(v) =
1

f i
δ(r).

Any ξ ∈ L\T is of the form t/f i where t ∈ T and i ≥ 1. By the previous argument
we get that δ(ξr) = ξδ(r) for any r ∈ R. Thus δ is L-linear.

Now let n be a maximal ideal of R. By Proposition 2.2 we get n = qR, where q is
a prime ideal in A of height d and f /∈ q. By Lemma 2.5 there exists y1, . . . , yd ∈ q

such that f, y1, . . . , yd is a system of parameters of A and (y1, . . . , yd)Aq = qAq.
Set

V = k[[f, y1, . . . , yd]] = T [[y1, . . . , yd]]. Note that V ∼= k[[Y0, Y1, . . . , Yd]].

Also note that A is finitely generated as a V -module.

Claim 2. DerL(Rn) is a free Rn-module of rank d. There also exists δi ∈ DerL(Rn)
such that

δi(yj) =

{
1 if i = j,

0 otherwise,
for 1 ≤ i, j ≤ d.

(In particular δ1, . . . , δd generate DerL(Rn) as an Rn-module.)

We note that (DerL(R))n ⊆ DerL(Rn). By Claim 1 we get rankDerL(Rn) ≥ d as
an Rn-module. Using [10, Theorem 30.7] and Lemma 2.4 we get that rankDerL(Rn)
≤ d as an Rn-module. So rankDerL(Rn) = d. Set zi = image of yi in Aq. As
Rn = Aq is regular local and z1, . . . , zd is a regular system of parameters of Aq, by
[10, Theorem 30.6] we get that there also exists δi ∈ DerL(Rn) such that

(3.4.2) δi(zj) =

{
1 if i = j,

0 otherwise,
for 1 ≤ i, j ≤ d.

The result follows since as A is a domain we get A ⊆ Aq.
By an argument similar to that in Claim 1 we get DerT (A)q ⊆ DerL(A)q. More

is true. In fact we show

Claim 3. For i = 1, . . . , d there exists Di ∈ DerT (A) such that δi = Di/si for some
si /∈ q. In particular DerT (A)q = DerL(Aq).

We prove it for i = 1. The argument for i > 1 is similar. Set W = T [y1, . . . , yd].
As δ1 is T -linear and δ1(yj) = 1 if j = 1 and 0 if j > 1 we get that restricted
map (δ1)W ∈ DerT (W ). We note that W ∼= T [Y1, . . . , Yd] and (δ1)W is the usual
differentiation with respect to Y1.
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We now show

Claim 4. δ1(V ) ⊆ V .

Assume the claim for the moment. Now A is finitely generated as a V -module.
Say A = V a1 + · · · + V ac. Say δ1(aj) = uj/tj , where aj , tj ∈ A, and tj /∈ q. Set
D1 = s1δ1, where s1 = t1 · · · tc. Notice that D1(V ) ⊆ A. Also D1 ∈ DerL(Aq).
Notice that D1(A) ⊆ A and D1 is T -linear. Thus (D1)A ∈ DerT (A), and so
D1 = s1δ1 in DerL(Aq). This proves Claim 3.

We now give a proof of Claim 4:
Set K = R/n = κ(q) as the residue field of Aq. Note that the qAq completion of

Aq is Âq = K[[z1, . . . , zd]]. (Recall that zi is the image of yi in Aq.) Furthermore δ1
extends to a K-linear derivation on Âq, and it is in fact differentiation with respect
to z1.

We now note that we have an inclusion of rings V = T [[y1, . . . , yd]] ⊆ Âq.

Furthermore V is complete with respect to I = (y1, . . . , yd) and IÂq = qÂq. Let
ξ ∈ V . Write

ξ =
∑
j≥0

tjy
j
1 where tj ∈ T [[y2, . . . , yd]].

Set

ξn =
n∑

j=0

tjy
j
1.

Notice that ξn ∈ W and ξn → ξ in V (with respect to the I-adic topology on V ).
Set

η =
∑
j≥1

jtjy
j−1
1 and ηn =

n∑
j=1

jtjy
j−1
1 .

We note that ηn → η in V .

By Fact 3.3 we get that ξn → ξ in Âq. As δ1 is continuous with respect to

qÂq-adic topology in Âq we get that δ1(ξn) → δ1(ξ). Notice that δ1(ξn) = ηn. It
follows (using Fact 3.3) that δ1(ξ) = η. Thus δ1(V ) ⊆ V , and we have proved Claim
4.

(2) We have an inclusion of R-modules DerT (A)f ⊆ DerL(R). If n = qR is a
maximal ideal in R (where q is a height d prime ideal in A and f /∈ q), then we
have DerL(R)n ⊆ DerL(Rn). Note that Rn = Aq, and by Claim 3 we have that
DerT (A)q = DerL(Aq). In particular we have (DerT (A)f )n = (DerL(R))n for every
maximal ideal n of R. Therefore DerT (A)f = DerL(R).

(3)(a) This follows from (2) and Claim 3.
(3)(b) This follows from Claim 2 and 3(a).
(4) This follows from (3). �

Finally we give a proof of our results. We first give

Proof of Theorem 1.2. (1) As A is a domain we get that R = Af is a domain.
Furthermore by Proposition 2.2 we get that height n = d for each maximal ideal n
of R.

(2) This follows from Lemma 2.4.
(3) This follows from Theorem 3.4. �

We recall the following result from [12].
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Theorem 3.5. Let R be a regular commutative Noetherian ring with unity that
contains a field F of characteristic 0 satisfying the following conditions:

(1) R is equidimensional of dimension n,
(2) every residual field with respect to a maximal ideal is an algebraic extension

of F ,
(3) DerF (R) is a finitely generated projective R-module of rank n such that

Rm ⊗R DerF (R) = DerF (Rm) for each maximal ideal m of R.

Then, the ring of F -linear differential operators DF (R) is a ring of differentiable
type of weak global dimension equal to dim(R). Moreover, the Bernstein class of
DF (R) is closed under localization at one element of R.

Remark 3.6.

(1) As an immediate corollary of Theorems 3.5 and 1.2 we get Corollary 1.3.
(2) An immediate corollary of Corollary 1.3 is Corollary 1.5. For instance see

section 4 of [12].

4. Examples

In this section we show that for each d ≥ 1 there exist infinitely many examples
of regular rings which satisfy our Setup 1.1. For simplicity we will assume that k
is an algebraically closed field of characteristic zero. The author expects that there
should be many more examples than those described in this section.

Example 4.1. Let Q = k[x1, · · · , xd, xd+1] where d ≥ 2. Set

S = Q̂ = k[[x1, · · · , xd, xd+1]].

Let n ≥ 2 be a positive integer, let ζ be a primitive nth-root of unity, and let
G = 〈ζi : 0 ≤ i ≤ n− 1〉. Then G acts on both Q and S with the action xi �→ ζxi.
Let B = QG and let A = SG. Note that B ∼= Q〈n〉 the nth Veronese subring of Q

and that A = B̂ the completion of B at its irrelevant maximal ideal. As Proj(B) is
smooth we get that A is an isolated singularity. It is well-known that Cl(B), the
class group of B, is Z/nZ (for instance this follows from [15, Theorem 1.6]). As
Proj(B) is smooth and dimB = d+ 1 ≥ 3 we get that B satisfies the R2 property
of Serre. So by a result of Flenner (see [3]) Cl(A) ∼= Cl(B).

Let f = xn
1 + · · · + xn

d+1. As d ≥ 2, it is well-known that f is irreducible in
Q. Note that f ∈ A. Let m be the maximal ideal of S. If T is a quotient ring
of S, then set G(T ) =

⊕
n≥0 m

nT/mn+1T as the associated graded ring of T with

respect to its maximal ideal mT . Note that G(S/fS) ∼= G(S)/fG(S) = Q/fQ,
which is a domain. So S/fS is a domain. In particular fS is a prime ideal in S.
As fA = fS ∩ A we get that fA is a prime ideal in A.

Set Rn,d = Af . By the localization sequence of class groups we have Cl(Rn,d) =
Z/nZ. Also note that dimRn,d = d ≥ 2.

In Example 4.1 we had the restriction that d ≥ 2 and that R is not a UFD.
Next we give infinitely many one-dimensional examples satisfying Setup 1.1. We
also give infinitely many examples satisfying Setup 1.1 of dimension d ≥ 3 which
are also UFD’s. We need to recall the notion of simple singularities.
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4.2. Simple singularities. Let S = k[[x, y, z2, . . . , zd]] with d ≥ 1. Simple singu-
larities are defined by the following equations:

(An) x2 + yn+1 +

d∑
j=2

z2j (n ≥ 1),

(Dn) x2y + yn−1 +
d∑

j=2

z2j (n ≥ 4),

(E6) x3 + y4 +

d∑
j=2

z2j ,

(E7) x3 + xy3 +
d∑

j=2

z2j ,

(E8) x3 + y5 +

d∑
j=2

z2j .

4.3. Let A = S/(f) be a simple singularity. Then A is an isolated singularity. In
particular by a result due to Grothendieck, A is a UFD if dimA ≥ 4. We also note
that if d ≥ 2, then A/(zd) is a simple singularity of the same type.

4.4. Grothendieck groups. Let T be a commutative Noetherian ring and let
mod(T ) denote the category of all finitely generated T -modules. Let U be an
additive subcategory of mod(T ) closed under extensions and let Gr(U) denote the
Grothendieck group of U. We recall the following three facts of Grothendieck groups
that we need.

(1) Let (A,m) be a Cohen-Macaulay local domain. Let C be the additive sub-
category of mod(A) consisting of all maximal Cohen-Macaulay A-modules.
Then
(a) The inclusion i : C → mod(A) induces an isomorphism of Grothendieck

groups Gr(C) and Gr(mod(A)); cf. [16, 13.2].
(b) The map rk: Gr(C) → Z defined by [M ] �→ rank(M) is a well-

defined surjective group homomorphism. We have an isomorphism
Z⊕ ker rk → Gr(C) where (1, 0) �→ [A].

(2) Let T be a regular ring of finite Krull dimension and let K(T ) be its K-
group. Then the natural map K(T ) → Gr(mod(T )) is an isomorphism.

(3) Let f ∈ T . The sequence

Gr(T/(f))
d1−→ Gr(T )

d0−→ Gr(Tf ) → 0

is exact. Here

d1([M ]) = [M ] and d0([N ]) = [Nf ].

Remark 4.5. If f is T -regular, then note that the class of [T/(f)] is zero in Gr(T ).

The reason is that we have an exact sequence 0 → T
f−→ T → T/(f) → 0.
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Remark 4.6. The Grothendieck groups of all simple singularities is known; see
[16, 13.10]. We will only need the following fact: Let A be an An singularity of
dimension l. Then

(1) If n is even, then Gr(A) = Z if l is odd and is equal to Z⊕ Z/(n+ 1)Z if l
is even.

(2) If n is odd, then Gr(A) = Z2 if l is odd and is equal to Z⊕ Z/(n+ 1)Z if l
is even.

Example 4.7. Let S = k[[x, y, z2, . . . , zd]] with d ≥ 2 and let A = S/(f) be an
An-singularity with n even. Note that dimA = d + 1. Set Rn,d = Azd . We note
that if dimA ≥ 4, then A is a UFD and so Rn,d is also a UFD.

Case 1. dimA = d+ 1 is even.

Consider the exact sequence

Gr(A/(zd))
d1−→ Gr(A)

d0−→ Gr(Rn,d) → 0.

Note that A/(zd) is an An singularity of dimension d. Also for all d ≥ 1 the ring
A/(zd) is a domain. By subsection 4.4 and Remark 4.6 we have that Gr(A/(zd)) = Z
and is generated by the class of A/(zd). By subsection 4.4(3) it follows that d1 = 0.
It follows that

Z⊕ Z/(n+ 1) = Gr(A) ∼= Gr(Rn,d) ∼= K(Rn,d).

Case 2. dimA = d+ 1 is odd.

We again consider the exact sequence

Gr(A/(zd))
d1−→ Gr(A)

d0−→ Gr(Rn,d) → 0.

We again assert that d1 = 0. Notice that Gr(A/(zd)) = Z⊕Z/(n+1) and Gr(A) =
Z. Notice that d1(Z/(n + 1)) = 0. By subsection 4.4(1)(b) the element (1, 0)
of Gr(A/(zd)) is generated by the class of A/(zd). By subsection 4.4(3) we get
d1([A/(zd)]) = 0. Thus again d1 = 0. So we have

Z = Gr(A) ∼= Gr(Rn,d) ∼= K(Rn,d).
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