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ON PRODUCT OF DIFFERENCE SETS FOR SETS

OF POSITIVE DENSITY
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(Communicated by Alexander Iosevich)

Abstract. In this paper we prove that given two sets E1, E2 ⊂ Z of positive
density, there exists k ≥ 1 which is bounded by a number depending only
on the densities of E1 and E2 such that kZ ⊂ (E1 − E1) · (E2 − E2). As a
corollary of the main theorem we deduce that if α, β > 0, then there exist
N0 and d0 which depend only on α and β such that for every N ≥ N0 and
E1, E2 ⊂ ZN with |E1| ≥ αN, |E2| ≥ βN there exists d ≤ d0 a divisor of N
satisfying dZN ⊂ (E1 − E1) · (E2 − E2).

1. Introduction

One of the main themes of additive combinatorics is sum-product estimates. It
goes back to Erdös and Szemerédi [3], who conjectured that for any finite set A ⊂ Z

(or in R), for every ε > 0 we have

|A+A|+ |A ·A| � |A|2−ε,

where the A+A = {a+ b | a, b ∈ A} and A ·A = {ab | a, b ∈ A}. Currently the best
known estimate is due to Konyagin-Shkredov [6] and it is based on the beautiful
previous breakthrough work by Solymosi [7]:

|A+A|+ |A ·A| � |A|4/3+c,

for any c < 5/9813.
In this paper we study a slightly twisted, but nevertheless related, sum-product

phenomenon. Namely, we address the following:

Question 1. For a given infinite set E ⊂ Z, how much structure does the set
(E − E) · (E − E) possess?

We will restrict our attention to sets having positive density; see the definition
below.

Furstenberg [5] noticed an intimate connection between difference sets for sets of
positive density and the sets of return times of a set of positive measure in measure-
preserving systems. In this paper we will establish an arithmetic richness of a set
of return times of a set of a positive measure to itself within a measure-preserving
system. Recall that a triple (X,μ, T ) is a measure-preserving system if X is a
compact metric space, μ is a probability measure on the Borel σ-algebra of X, and
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T : X → X is a bi-measurable map which preserves μ. For a measurable set A ⊂ X
with μ(A) > 0 the set of return times from A to itself is

R(A) = {n ∈ Z |μ(A ∩ TnA) > 0}.

We will denote by E2 = {e2 |e ∈ E} the set of squares of E ⊂ Z. It has been
proved by Björklund and the author [2] that for any three sets of positive measure
A,B, and C in measure-preserving systems there exists k ≥ 1 (depending on the
sets A,B, and C) such that kZ ⊂ R(A) ·R(B)−R(C)2. One of the motivations for
this work was to show that k in the latter statement depends only on the measures
of the sets A,B, and C. We prove the latter, and even more surprisingly, we show
that R(C) can be omitted. We have

Theorem 1.1. Let (X,μ, T ) and (Y, ν, S) be measure-preserving systems, and let
A ⊂ X,B ⊂ Y be measurable sets with μ(A) > 0 and ν(B) > 0. Then there exist
k0 depending only on μ(A) and ν(B) and k ≤ k0 such that kZ ⊂ R(A) ·R(B).

This result has a few combinatorial consequences. To state the first application,
we recall that the upper Banach density of a set E ⊂ Z is defined by

d∗(E) = lim sup
N→∞

sup
a∈Z

|E ∩ {a, a+ 1, . . . , a+ (N − 1)}|
N

.

Through Furstenberg’s correspondence principle [5], we obtain

Corollary 1.1. Let E1, E2 ⊂ Z be sets of positive upper Banach density. Then
there exist k0 depending only on the densities of E1 and E2 and k ≤ k0 such that

k Z ⊂ (E1 − E1) · (E2 − E2).

Another application of Theorem 1.1 is the following result.

Corollary 1.2. For any α, β > 0 there exist N0 and d0, depending only on α and
β, such that for every N ≥ N0 and E1, E2 ⊂ ZN with |E1| ≥ αN, |E2| ≥ βN there
exist d ≤ d0 which is a divisor of N and dZN ⊂ (E1 − E1) · (E2 − E2).

Corollary 1.2 implies also that if p is a large enough prime and E1, E2 ⊂ Zp satisfy
|E1| ≥ αp, |E2| ≥ βp, then (E1 − E1) · (E2 − E2) = Zp. This also follows from a
result by Hart-Iosevich-Solymosi [4], who proved that if E ⊂ Fq (where Fq is a field

with q elements) with |E| ≥ q3/4+ε, then for q large enough (E−E) · (E−E) = Fq.

2. Proof of Theorem 1.1

Let us assume that (X,μ, T ) is a measure-preserving system, and let A ⊂ X be
a measurable set with μ(A) > 0. Recall that the set of return times of A is defined
by

R(A) = {n ∈ Z |μ(A ∩ TnA) > 0}.
The theorem will follow from the following statement.

Lemma 2.1. For every L ≥ 1 and every b ∈ Z \ {0} there exists m ≤ 	 1
μ(A)L 
+ 1

such that

{mb, 2mb, . . . , Lmb} ⊂ R(A).
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Indeed, let R(A) and R(B) be sets of return times for measurable sets A and
B of positive measures. Then choose N = 	 1

ν(B)
 + 1. Then for every b ∈ Z \ {0}
there exist 1 ≤ i < j ≤ N such that ν((Sb)iB ∩ (Sb)jB) > 0. Then by S-invariance
of ν it follows that there exists 1 ≤ m ≤ N (m = j − i) such that mb ∈ R(B).

Let us define L = N !. By Lemma 2.1 there exists n = n(L, μ(A)) such that for
every b ∈ Z \ {0} there exists m ≤ n with {mb, 2mb, . . . , Lmb} ⊂ R(A).

Let us define k = L · n!. Take any b ∈ Z \ {0}. By the choice of n, there exists
m ≤ n such that {mb, 2mb, . . . , Lmb} ⊂ R(A). By the choice of N it follows that
there exists 1 ≤ j ≤ N such that j · k

Lm ∈ R(B). Also, L
j is an integer less than

or equal to L; therefore Lm
j b ∈ R(A). Thus kb = Lm

j b · j k
Lm ∈ R(A) · R(B). This

finishes the proof of Theorem 1.1.

Proof of Lemma 2.1. 1 Let (X,μ, T ) be a measure-preserving system, and let A ⊂
X be a measurable set, and let b ∈ Z \ {0}. We introduce a new product system

Z =
∏L

i=1 X with the transformation S =
∏L

i=1 T
ib and the product measure

ν =
∏L

i=1 μ. Then (Z, ν, S) is a measure-preserving system, and the set Ã =
∏L

i=1 A
has measure

ν
(
Ã
)
= μ(A)L > 0.

Then by the Poincaré lemma there exists m ≤ 	 1
μ(A)L 
+ 1 such that

ν(Ã ∩ SmÃ) > 0.

The latter means that for every 1 ≤ i ≤ L we have

μ(A ∩ T ibmA) > 0.

Therefore, we have {bm, 2bm, . . . , Lbm} ∈ R(A) for m ≤ 	 1
μ(A)L 
+ 1. �

3. Proofs of Corollaries 1.1 and 1.2

Furstenberg [5] in his seminal work on Szemerédi’s theorem showed:

Correspondence principle. Given a set E ⊂ Z there exists a measure-preserving
system (X,μ, T ) and a measurable set A ⊂ X such that for all n ∈ Z we have

d∗ (E ∩ (E + n)) ≥ μ(A ∩ TnA)

and

d∗(E) = μ(A).

Proof of Corollary 1.1. Let E1, E2 ⊂ Z be sets of positive densities. Then by
Furstenberg’s correspondence principle there exist measure-preserving systems
(X,μ, T ) and (Y, ν, S) and measurable sets A ⊂ X, B ⊂ Y that satisfy

μ(A) = d∗(E1), ν(B) = d∗(E2),

and

R(A) ⊂ E1 − E1, R(B) ⊂ E2 − E2.

By Theorem 1.1 there exist k(μ(A), ν(B)) and k ≤ k(μ(A), ν(B)) such that kZ ⊂
R(A) ·R(B). The latter statement implies the conclusion of the corollary. �

1This proof has been proposed to the author by I. Shkredov. The original proof used Sze-
merédi’s theorem and provided a much worse bound on m.
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Proof of Corollary 1.2. Let α > 0 and β > 0, and let E1, E2 ⊂ ZN with |E1| ≥ αN
and |E2| ≥ βN . It is clear thatX = ZN with the shift map Tx = x+1(mod N) and

the uniform measure μ on X defined by μ(E) = |E|
N for any E ⊂ X is a measure-

preserving system. It is also clear that for (X,μ, T ) and the sets E1, E2 ⊂ X we
have2 R(E1) = (E1 −E1) +N Z and R(E2) = (E2 −E2) +N Z. Then by Theorem
1.1 it follows that if N ≥ N0, where N0 depends only on α and β, there exist k(α, β)
and k ≤ k(α, β) such that k Z ⊂ R(E1) · R(E2). Then by the Chinese Remainder
Theorem for d = gcd (k,N) ≤ k we have dZ ⊂ (E1 − E1) · (E2 −E2) +NZ, which
implies the statement of the corollary. �

4. Further problems

To formulate the first problem, we mention a recent result by Björklund-Bulinski
[1], who proved, in particular, that for any E ⊂ Z

3 of positive density there exists
k ≥ 1, depending on the set E and not only on its density, such that

kZ ⊂ {x2 − y2 − z2 | (x, y, z) ∈ E − E}.
Recall the definition of the upper Banach density of a set E ⊂ Z

2:

d∗(E) = lim sup
b−a→∞,d−c→∞

|E ∩ [a, b)× [c, d)|
(b− a)(d− c)

.

Problem 1. Is it true that given E1, E2 ⊂ Z of positive density there exist k0,
which depends only on d∗(E1) and d∗(E2), and k ≤ k0 such that kZ ⊂ (E1−E1)

2−
(E2 − E2)

2? If yes, can we show that for any set E ⊂ Z
2 of positive density there

exist k0, which depends only on d∗(E), and k ≤ k0 such that kZ ⊂ {x2−y2 | (x, y) ∈
E − E}?

The next two problems arise naturally by Theorem 1.1 and the following result
proved by Björklund and the author in [2]:

Theorem 4.1. Let E ⊂ Mat0d(Z) = {(aij) ∈ Z
d×d | tr(aij) = 0} be a set of positive

density. Then there exists k ≥ 1 (which a priori depends on the set E and not only
on its density) such that for any matrix A ∈ k·Mat0d(Z) there exists B ∈ E−E such
that the characteristic polynomial of B coincides with the characteristic polynomial
of A.

Problem 2. Is it true that given E ⊂ Z
2 of positive upper Banach density, there

exist k0 depending only on d∗(E) and k ≤ k0 such that

k Z ⊂ {xy | (x, y) ∈ E − E}?

We also would like to establish the quantitative version of Theorem 4.1:

Problem 3. Is it true that the parameter k in Theorem 4.1 depends only on the
density of the set E ⊂ Mat0d(Z)?

In view of Corollary 1.2 we believe that a similar statement holds true for any
finite commutative ring.

Conjecture 1. Let α > 0. Then there exist N and k depending only on α such
that for any finite commutative ring R with |R| ≥ N and any set E ⊂ R satisfying
|E| ≥ α|R| the set (E−E) · (E−E) contains a subring R0 such that |R|/|R0| ≤ k.

2We identify here the ring ZN with the set {0, 1, . . . , N − 1}.
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