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A NATURAL LINEAR EQUATION IN AFFINE GEOMETRY:

THE AFFINE QUASI-EINSTEIN EQUATION

MIGUEL BROZOS-VÁZQUEZ, EDUARDO GARCÍA-RÍO, PETER GILKEY,
AND XABIER VALLE-REGUEIRO

(Communicated by Lei Ni)

Abstract. We study the affine quasi-Einstein equation, a second-order linear
homogeneous equation, which is invariantly defined on any affine manifold.
We prove that the space of solutions is finite dimensional and its dimension is

a strongly projective invariant. Moreover, the maximal dimension is shown to
be achieved if and only if the manifold is strongly projectively flat.

1. Introduction

An affine manifold is a pair M = (M,∇), where M is a smooth manifold of
dimension m and ∇ is a torsion-free connection on the tangent bundle of M . Adopt
the Einstein convention and sum over repeated indices. Expand ∇∂xi∂xj = Γij

k∂xk

in a system of local coordinates �x = (x1, . . . , xm) to define the Christoffel symbols of
the connection Γ = (Γij

k); the condition that ∇ is torsion-free is then equivalent to
the symmetry Γij

k = Γji
k. If f ∈ C∞(M), then the Hessian H∇f is the symmetric

(0, 2)-tensor defined by setting

H∇f := ∇2f = (∂xi∂xjf − Γij
k∂xkf) dxi ⊗ dxj .

Let ρ∇(x, y) := Tr{z → R∇(z, x)y} be the Ricci tensor. Since in general this need
not be a symmetric 2-tensor, we introduce the symmetric and antisymmetric Ricci
tensors:

ρs,∇(x, y) := 1
2{ρ∇(x, y) + ρ∇(y, x)},

ρa,∇(x, y) := 1
2{ρ∇(x, y)− ρ∇(y, x)} .

1.1. The affine quasi-Einstein equation. The affine quasi-Einstein operator
Qμ,∇ is the linear second-order partial differential operator

(1.a) Qμ,∇f := H∇f − μfρs,∇ mapping C∞(M) to C∞(S2M),

where the eigenvalue μ is a parameter of the theory. For fixed μ, this operator is
natural in the category of affine manifolds and this family of operators parametrizes,
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modulo scaling, all the natural second order differential operators from C∞(M) to
C∞(S2M). We study the affine quasi-Einstein equation Qμ,∇f = 0, i.e.,

(1.b) H∇f = μfρs,∇ .

We denote the space of all solutions to Equation (1.b) by

E(μ,∇) := ker(Qμ,∇) = {f ∈ C2(M) : H∇f = μfρs,∇} .

Similarly, if P ∈ M , let E(P, μ,∇) be the linear space of all germs of smooth
functions based at P satisfying (1.b). Note that if ρs,∇ = 0, then E(μ,∇) = E(0,∇)
for any μ. Also observe that E(0,∇) is the space of affine Yamabe solitons [3].

The operatorQμ,∇ of (1.a) and the associated affine quasi-Einstein equation (1.b)
are of sufficient interest in their own right in affine geometry to justify a founda-
tional paper of this nature. However (1.b) also appears in the study of the pseudo-
Riemannian quasi–Einstein equation using the Riemannian extension; we postpone
until the end of the introduction a further discussion of this context to avoid inter-
rupting the flow of our present discussion and to establish the necessary notational
conventions.

1.2. Foundational results. We will establish the following result in Section 2.

Theorem 1.1. Let M = (M,∇) be an affine manifold. Let f ∈ E(P, μ,∇).

(1) One has f ∈ C∞(M). If M is real analytic, then f is real analytic.
(2) If X is the germ of an affine Killing vector field based at P , then Xf ∈

E(P, μ,∇).
(3) If f(P ) = 0, and if df(P ) = 0, then f ≡ 0 near P .
(4) One has dim{E(P, μ,∇)} ≤ m+ 1.
(5) If M is simply connected and if dim{E(P, μ,∇)} is constant on M , then f

extends uniquely to an element of E(μ,∇).

1.3. Projective equivalence.

Definition 1.2. We say that ∇ and ∇̃ are projectively equivalent if there exists a
1-form ω so that ∇XY = ∇̃XY +ω(X)Y +ω(Y )X for all X and Y . In this setting,

we say that ω provides a projective equivalence from ∇ to ∇̃; −ω then provides a
projective equivalence from ∇̃ to ∇. If ω is closed, we say that ∇ and ∇̃ are strongly
projectively equivalent.

If two projectively equivalent connections have symmetric Ricci tensors, then the
1-form ω giving the projective equivalence is closed and the two connections are, in
fact, strongly projectively equivalent (see [8, 14, 17] for more information).

We say that ∇ is projectively flat if ∇ is projectively equivalent to a flat con-
nection. Note that ∇ is projectively flat if and only if it is possible to choose a
coordinate system so that the unparametrized geodesics of ∇ are straight lines.
Strongly projectively flat surfaces are characterized as follows (see [8, 14]).

Lemma 1.3. Let M be an affine surface.

(1) Let ω provide a projective equivalence between ∇ and a flat connection.
(a) If ρa,∇ = 0, then dω = 0 so ∇ is strongly projectively flat.
(b) If dω = 0, then ρ∇ and ∇ρ∇ are totally symmetric.

(2) If ρ∇ and ∇ρ∇ are totally symmetric, then ∇ is strongly projectively flat.
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Two projectively equivalent connections are said to be Liouville projectively
equivalent if their Ricci tensors coincide (see, for example, [11, 14]). We will es-
tablish the following result in Section 3.1. It shows that dim{E(− 1

m−1 ,∇)} is a

strong projective invariant and that dim{E(μ,∇)} for arbitrary μ is a strong Liou-
ville projective invariant.

Theorem 1.4. Let M be an affine manifold of dimension m. Let μm = − 1
m−1 .

Let ω = dg provide a strong projective equivalence from ∇ to ∇̃.

(1) The map f → egf is an isomorphism from E(P, μm,∇) to E(P, μm, ∇̃).
(2) The following assertions are equivalent:

(a) ρs,∇̃ = ρs,∇.

(b) H∇g − dg ⊗ dg = 0.
(c) e−g ∈ E(P, 0,∇).

(3) If any of the assertions in (2) hold, then the map f → egf is an isomor-

phism from E(P, μ,∇) to E(P, μ, ∇̃) for any μ.

Remark 1.5. If ∇ and ∇̃ are strongly projectively equivalent, then the alternat-
ing Ricci tensors coincide, i.e., ρa,∇̃ = ρa,∇ (see [17]). However, if ∇ and ∇̃ are
only projectively equivalent, then the alternating Ricci tensors can differ and Theo-
rem 1.4 can fail. Let ∇ be the usual flat connection on R

2 and let ω = x2dx1 define
a projective equivalence from ∇ to ∇̃. It is a straightforward computation to see
that dim{E(P,−1,∇)} = 3 and dim{E(P,−1, ∇̃)} = 0. Thus Theorem 1.4 fails if
we replace strong projective equivalence by projective equivalence. Although the
geodesic structure is unchanged, ρa,∇̃ �= 0 in this instance, and consequently the
alternating Ricci tensor is not preserved by projective equivalence either.

We can say more about the geometry if dim{E(P, μ,∇)} = m+1 is extremal for
some μ. The eigenvalue μm := − 1

m−1 plays a distinguished role. We will establish
the following result in Section 3.2.

Theorem 1.6. Let M be an affine manifold of dimension m. Let μm := − 1
m−1 .

(1) M is strongly projectively flat if and only if dim{E(μm,∇)} = m+ 1.
(2) If dim{E(μ,∇)} = m+ 1 for any μ, then M is strongly projectively flat.
(3) If dim{E(μ,∇)} = m+ 1 for μ �= μm, then M is Ricci flat.
(4) Suppose dim{E(P, μm,∇)} = m+1. One may choose a basis {φ0, . . . , φm}

for E(P, μm,∇) so that φ0(P ) �= 0 and so that φi(P ) = 0 for i > 0. Set
zi := φi/φ0. Then �z = (z1, . . . , zm) is a system of coordinates defined near
P such that the unparametrized geodesics of M are straight lines.

Remark 1.7. The coordinates of assertion (4) are very much in the spirit of the
Weierstrass preparation theorem for minimal surfaces; geometrically meaningful
local coordinates arise from the underlying analysis.

We will prove the following result in Section 3.3.

Theorem 1.8. Let M be an affine manifold of dimension m. Let μm := − 1
m−1 .

(1) If M is strongly projectively equivalent to a connection ∇̃ with ρs,∇̃ = 0,

then E(μm,∇) �= 0.
(2) If there exists f ∈ E(P, μm,∇) with f(P ) �= 0, then M is strongly projec-

tively equivalent to a connection ∇̃ with ρs,∇̃ = 0 near P .
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Surface geometry is particularly tractable since the geometry is carried by the
Ricci tensor. In this setting, μ2 = −1 and one has the following theorem.

Theorem 1.9. Let M be an affine surface. Then dim{E(−1,∇)} �= 2.

In the appendix, we will discuss some results concerning surface geometry in
more detail. We will use Theorem A.7 to show there are affine connections ∇i on
R

+ × R such that

dim{E(−1,∇1)} = 0, dim{E(−1,∇2)} = 1, dim{E(−1,∇3)} = 3 .

Thus the remaining values can all be attained. In Example A.5, we will discuss
a family of 3-dimensional affine manifolds where dim{E(− 1

2 ,∇)} can be 0, 1, 2,
and 4 but is never 3. This suggests that for general m one could show that
dim{E(P,− 1

m−1 ,∇)} �= m, so this value is forbidden. Our research continues
on this problem.

1.4. Riemannian extensions. The Riemannian extension provides a procedure
to transfer information from affine geometry into neutral signature geometry in a
natural way. Let M = (M,∇) be an affine manifold. If (x1, . . . , xm) are local
coordinates on M , let (y1, . . . , ym) be the corresponding dual coordinates on the
cotangent bundle T ∗M ; if ω is a 1-form, we can express ω = yidx

i. Let Φ be an
auxiliary symmetric (0, 2)-tensor field in M . Let Γij

k be the Christoffel symbols
of the connection ∇. The deformed Riemannian extension is the neutral signature
metric on T ∗M which is defined by setting [1, 16]:

(1.c) g∇,Φ = dxi ⊗ dyi + dyi ⊗ dxi +
{
Φij − 2yk Γij

k
}
dxi ⊗ dxj .

This is invariantly defined [2]. Let π be the canonical projection from T ∗M to M .
If f ∈ C∞(M), then

Hg∇,Φ
π∗f = π∗H∇f, ρg∇,Φ

= 2π∗ρs,∇, ‖dπ∗f‖2g∇,Φ
= 0 .

Let N := (N, gN ,Ψ, μ), where (N, gN ) is a pseudo-Riemannian manifold of di-
mension n, where Ψ ∈ C∞(N), and where μ ∈ R. We say that N is a quasi-Einstein
manifold if

(1.d) HgNΨ+ ρgN − μ dΨ⊗ dΨ = λ gN for some λ ∈ R .

One has the following link between deformed Riemannian extensions and quasi-
Einstein structures [4].

Theorem 1.10.

(1) Let M = (M,∇) be an affine surface, let ψ ∈ C∞(M), and let μ ∈ R.
If H∇ψ + 2ρs,∇ − μ dψ ⊗ dψ = 0, then (T ∗M, g∇,Φ, π

∗ψ, μ) is a self-dual
quasi-Einstein manifold with ‖dπ∗ψ‖2g∇,Φ

= 0 and λ = 0, for any Φ.

(2) Let (N, gN ,Ψ, μ) be a self-dual quasi-Einstein manifold of signature (2, 2)
with μ �= − 1

2 and ‖dΨ‖2gN = 0 which is not Ricci flat. Then λ = 0 and
(N, gN ,Ψ, μ) is locally isometric to a manifold which has the form given in
assertion (1).

We suppose μ �= 0 and make the change of variables f = e−
1
2μψ. The equation

H∇ψ + 2ρs,∇ − μ dψ ⊗ dψ = 0 then becomes H∇f = μ f ρs,∇. This is the affine
quasi-Einstein equation given in (1.b). Let f > 0 be a smooth function on M .
Express π∗f = e−μF for some F ∈ C∞(T ∗M) and μ �= 0. Then F solves (1.d) in
(T ∗M, g∇,Φ) if and only if f ∈ E(2μ,∇).
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Remark 1.11. The eigenvalue μm = − 1
m−1 , which plays a role in the projective

structure of (M,∇), is linked to some geometric properties of the deformed Rie-
mannian extensions N := (T ∗M, g∇,Φ): if dim{E(μm,∇)} ≥ 1, then N is confor-
mally Einstein [4].

Afifi [1] showed that if a deformed Riemannian extension g∇,Φ given by (1.c) is
locally conformally flat, then ∇ is projectively flat with symmetric Ricci tensor.
Theorem A.7 shows the existence of surfaces with dim{E(−1,∇)} = 1. The cor-
responding deformed Riemannian extensions (T ∗M, g∇,Φ) are conformally Einstein
but not conformally flat for any deformation tensor Φ by Theorem 1.6.

Remark 1.12. Two metrics in the same conformal class are said to be Liouville
equivalent if their Ricci tensors coincide (see [10–12]). Let ∇ and ∇dg be strongly
projectively equivalent connections. Then the corresponding Riemannian exten-
sions g∇ and g∇dg are conformally equivalent (just considering the transformation
(xk, yk) �→ (xk, e2gyk)). Moreover, g∇ and g∇dg are Liouville equivalent if and only
if H∇g = dg ⊗ dg. Therefore, from the pseudo-Riemannian point of view, affine
Yamabe solitons φ ∈ E(0,∇) determine Liouville transformations of the Riemann-
ian extension g∇ (see assertion (2) in Theorem 1.4).

The projective deformations in Examples A.2 and A.3 induce Liouville equivalent
Riemannian extensions [11]. Therefore it follows from [12, Corollary 2] that none
of the Riemannian extensions g∇ and g∇ω are geodesically complete.

Remark 1.13. There is a close connection between quasi-Einstein structures and
warped product Einstein metrics (see [4] and the references therein). The warping
function of any Einstein warped product is a solution of (1.d) with μ = 1

k , k ∈ N.

Conversely, if f ∈ E( 1
2k ,∇) for some positive integer k and if E is a Ricci flat

manifold of dimension k, then the warped product N ×π∗f E with base manifold
N := (T ∗M, g∇,Φ) is Ricci flat. Theorems A.1(3) and A.8 show that there exist
homogeneous surfaces with dim{E(μ,∇)} ≥ 1 for arbitrary μ = 1

2k .

2. The proof of Theorem 1.1

We establish the assertions of Theorem 1.1 seriatim.

2.1. Smoothness properties of solutions to (1.b). Introduce local coordinates
�x = (x1, . . . , xm). Let Qμ,∇,ij be the components of the quasi-Einstein operator of
(1.a). Let

Dμ := Tr{Qμ,∇} =

m∑
i=1

Qμ,∇,ii =

m∑
i=1

∂xixi +

m∑
i=1

m∑
j=1

Γii
j∂xj − μ

m∑
i=1

ρii .

The operator Dμ is then an elliptic second-order partial differential operator. Let
f ∈ C2(M) satisfy Qμ,∇f = 0. One then has Dμf = 0, and standard elliptic
theory shows f ∈ C∞(M). Suppose in addition that the underlying structure is
real analytic. It then follows that Dμ is analytic-hypoelliptic, and hence Dμf = 0
implies f is real analytic; see, for example, the discussions in [6, 18].

2.2. Affine Killing vector fields. Let ΦX
t be the 1-parameter flow associated

with an affine Killing vector field X. Then ΦX
t commutes with ∇ and hence with

Qμ,∇ for all t. Thus if f ∈ E(μ,∇), then (ΦX
t )∗f ∈ E(μ,∇) for any t. Differenti-

ating this relation with respect to t and setting t = 0 then shows Xf ∈ E(μ,∇), as
desired.
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2.3. Initial conditions. We wish to show that if f ∈ E(P, μ,∇), if f(P ) = 0, and
if df(P ) = 0, then f ≡ 0. In the real analytic category, this is immediate as we can
use (1.b) to show all the higher derivatives vanish. Our task is to give a different
derivation in the C∞ context. To simplify the discussion, we shall assume m = 2.
We introduce local coordinates (x1, x2) on M centered at P . Let Bε(0) be the ball
of radius ε about the origin. Assume that f ∈ E(P, μ,∇) satisfies f(0) = df(0) = 0.
We will show there exists ε > 0 so that f ≡ 0 on Bε(0). Choose T and ε so that

(2.a) 1
3 < T, |Γij

k(x)| ≤ T, |μ ρs,∇,ij(x)| ≤ T for all x ∈ Bε(0), ε < 1
12T .

Let
‖f‖1 := sup

x∈Bε(0)

{|∂x1f(x)|, |∂x2f(x)|, |f(x)|} .

Let �x = (a, b) ∈ Bε(0) and let γ(t) = t�x. We use (2.a) to estimate

|∂t∂x1f | (t�x) = |a∂x1x1f + b∂x1x2f | (t�x) ≤ |a∂x1x1f | (t�x) + |b∂x1x2f | (t�x)
= |a| ·

∣∣Γ11
1∂x1f + Γ11

2∂x2f + fμρs∇,11

∣∣ (t�x)
+|b| ·

∣∣Γ12
1∂x1f + Γ12

2∂x2f + fμρs∇,12

∣∣ (t�x)
≤ 3(|a|+ |b|)T‖f‖1 ≤ 6 ε T‖f‖1 .

As ∂x1f(0) = 0, we may use the Fundamental Theorem of Calculus to estimate

|∂x1f(�x)| ≤
∫ 1

t=0

|∂t∂x1f(t�x)| dt ≤
∫ 1

t=0

6 ε T ‖f‖1dt = 6 ε T‖f‖1 .

We show similarly that |∂x2f(�x)| ≤ 6 ε T‖f1‖. Finally, since 1
3 < T and since

f(0) = 0, we estimate

|f(�x)| ≤
∫ 1

t=0

|∂tf(t�x)| dt ≤
∫ 1

t=0

(|a|+ |b|)‖f‖1dt ≤ 2 ε ‖f‖1 ≤ 6 ε T‖f‖1 .

Consequently, ‖f‖1 ≤ 6 ε T‖f‖1. Since 6 ε T < 1
2 , ‖f‖1 ≤ 1

2‖f‖1. This implies
‖f‖1 = 0 on Bε(0) and proves Theorem 1.1(3).

2.4. Estimating the dimension of E(P, μ,∇). Let f ∈ E(P, μ,∇). By Theo-
rem 1.1(3), f is determined by f(P ) and df(P ). Assertion (4) now follows.

2.5. Extending solutions to (1.b). The final assertion of Theorem 1.1 follows
by using exactly the same arguments of “analytic continuation” that were used
to prove similar assertions for Killing vector fields or affine Killing vector fields
(see [13]). �

3. Projective equivalence

In what follows, it will be convenient to work with just one component. Suppose
that Φ is a symmetric (0, 2)-tensor defined on some vector space V and suppose
that one could show that Φ11 = 0 relative to any basis. It then follows that Φ = 0;
this process is called polarization. If M = (M,∇) is an affine manifold, then

R∇,ijk
l = ∂xiΓjk

l − ∂xjΓik
l + Γin

lΓjk
n − Γjn

lΓik
n,

ρ∇,jk = ∂xiΓjk
i − ∂xjΓik

i + Γin
iΓjk

n − Γjn
iΓik

n .

Lemma 3.1. Let ω = dg provide a strong projective equivalence from ∇ to ∇̃.

(1) ρs,∇̃ = ρs,∇ − (m− 1){H∇g − dg ⊗ dg}.
(2) If μ = − 1

m−1 or if H∇g − dg ⊗ dg = 0, then Qμ,∇ = e−g Qμ,∇̃ eg.
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Proof. Assume ∇̃XY = ∇XY + dg(X)Y + dg(Y )X, i.e.,

Γ̃ij
k = Γij

k + δki ∂xjg + δkj ∂xig .

Fix a point P of M . Since we are working in the category of connections without
torsion, we can choose a coordinate system so Γ(P ) = 0. We compute at the point
P and set Γij

k(P ) = 0 to see

ρ∇̃,11(P ) = {∂xi Γ̃11
i − ∂x1 Γ̃i1

i + Γ̃in
iΓ̃11

n − Γ̃1n
iΓ̃i1

n}(P )

= {∂xiΓ11
i − ∂x1Γi1

i + (1−m)∂x1x1g

+ 2(m+ 1)(∂x1g)2 − (m+ 3)(∂x1g)2}(P )

= {ρ∇,11 + (m− 1)((∂x1g)2 − ∂x1x1g)}(P )

= {ρ∇ − (m− 1)(H∇g − dg ⊗ dg)}11(P ) .

Polarizing this identity establishes assertion (1). To prove assertion (2), we examine
Qμ,∇,11 and {e−g Qμ,∇̃ eg}11 at P . We compute

{e−gH∇̃,11e
gf}(P ) = {e−g∂x1x1(feg)− Γ̃11

ke−g∂xk(feg)}(P )

= {∂x1x1f + 2∂x1f∂x1g + f∂x1x1g + f(∂x1g)2 − 2∂x1g(∂x1f + f∂x1g)}(P )

= {H∇,11f + f(∂x1x1g − (∂x1g)2)}(P ).

We complete the proof by polarizing the resulting identity:

{e−gQμ,∇̃ egf −Qμ,∇f}11(P )

= {e−g(H∇̃egf − μρs,∇̃egf)11 − (H∇f − μρs,∇f)11}(P )

= {f(1 + (m− 1)μ)(∂x1x1g − (∂x1g)2)}(P ). �

3.1. Proof of Theorem 1.4. Theorem 1.4(1) is immediate from the intertwining
relation of Lemma 3.1(2). The equivalence of assertions (2a) and (2b) follows from
Lemma 3.1(1). The equivalence of assertions (2b) and (2c) follows by noting

Q0,∇(e−g) = H∇(e−g) = −e−g{H∇(g)− dg ⊗ dg} .

Assertion (3) now follows from assertion (2b) and Lemma 3.1(2). �

3.2. Proof of Theorem 1.6. Let μm := − 1
m−1 . To prove assertion (1), we sup-

pose that M is strongly projectively flat, i.e., ∇ is strongly projectively equivalent
to a flat connection ∇̃. Under this assumption, there are local coordinates around
P ∈ M so that the Christoffel symbols Γ̃ij

k vanish identically. Thus,

E(P, μm, ∇̃) = Span{1, x1, . . . , xm} .

Consequently, by Theorem 1.4, dim{E(μm,∇)} = dim{E(μm, ∇̃)} = m+ 1. Next,
assume that dim{E(P, μ,∇)} = m+ 1 for some μ. If φ ∈ E(P, μ,∇), let

Θ(φ) := (φ, ∂x1φ, . . . , ∂xmφ)(P ) ∈ R
m+1 .

This vanishes if and only if φ ≡ 0. For dimensional reasons, Θ must be an iso-
morphism. Let ei be the standard basis for R

m+1 and let φi = Θ−1(ei) be the
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corresponding basis for E(P, μ,∇). Since Θ(φi) = ei, we have

φ0(P ) = 1, ∂x1φ0(P ) = 0, ∂x2φ0(P ) = 0, . . . , ∂xmφ0(P ) = 0,
φ1(P ) = 0, ∂x1φ1(P ) = 1, ∂x2φ1(P ) = 0, . . . , ∂xmφ1(P ) = 0,
φ2(P ) = 0, ∂x1φ2(P ) = 0, ∂x2φ2(P ) = 1, . . . , ∂xmφ2(P ) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
φm(P ) = 0, ∂x1φm(P ) = 0, ∂x2φm(P ) = 0, . . . , ∂xmφm(P ) = 1.

Set z1 := φ1/φ0, . . . , z
m := φm/φ0. We then have

z1(P ) = 0, ∂x1z1(P ) = 1, ∂x2z1(P ) = 0, . . . , ∂xmz1(P ) = 0,
z2(P ) = 0, ∂x1z2(P ) = 0, ∂x2z2(P ) = 1, . . . , ∂xmz2(P ) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
zm(P ) = 0, ∂x1zm(P ) = 0, ∂x2zm(P ) = 0, . . . , ∂xmzm(P ) = 1.

Thus �z(P ) = 0 and d�z(P ) = id. Hence this is an admissible change of coordinates
centered at P . Set g = log(φ0). We then obtain

(3.a) E(P, μ,∇) = eg Span{1, z1, . . . , zm} .
We have that

Qμ,∇(eg) = Qμ,∇(φ0) = 0 and Qμ,∇(zkeg) = Qμ,∇(φk) = 0 .

We set e−g{zkQμ,∇(eg) − Qμ,∇(zkeg)} = 0 and examine the resulting relations.
Fix i, j, and k. We compute

e−g
{
∂zi∂zj (zkeg)− zk∂zi∂zj (eg)

}
= δkj ∂zig + δki ∂zjg,

−e−gΓij
�
{
∂z�(zkeg)− zk∂z�(eg)

}
= −Γij

k,

e−g
{
μρs,∇(zkeg)− zkμρs,∇eg

}
= 0,

0 = eg
{
Qμ,∇(zkeg)− zkQμ,∇(eg)

}
ij
= δkj ∂zig + δki ∂zjg − Γij

k.

Let Γ̃ij
k = 0 define a flat connection ∇̃. We have Γij

k = Γ̃ij
k + δkj ∂zig + δki ∂zjg,

so dg provides a strong projective equivalence from ∇̃ to ∇. Consequently, ∇ is
strongly projectively flat. This establishes assertions (1) and (2).

Furthermore, by Theorem 1.4, f̃ → eg f̃ is an isomorphism from E(P, μm, ∇̃) to

E(P, μm,∇). Since 1 ∈ E(P, μm, ∇̃), eg ∈ E(P, μm,∇). By (3.a), eg ∈ E(P, μ,∇).
This means H∇eg = egμmρs,∇ and H∇eg = egμρs,∇. Since μ �= μm, this implies

ρs,∇ = 0. Since ∇̃ is flat, ρa,∇̃ = 0. By Remark 1.5, the alternating Ricci tensor is
preserved by strong projective equivalence. Consequently, ρa,∇ = 0 as well. This
implies ∇ is Ricci flat, which establishes assertion (3). Assertion (4) follows from
the discussion given above. �

3.3. The proof of Theorem 1.8. Suppose dg provides a strong projective equiv-
alence from ∇ to a connection ∇̃ with ρs,∇̃ = 0. We use Lemma 3.1 to see that

H∇g − dg ⊗ dg = 1
m−1ρs,∇. Set f = e−g. Then

H∇f = e−g{−H∇g + dg ⊗ dg} = − 1
m−1fρs,∇,

so f ∈ E(μm,∇) is nontrivial. This establishes assertion (1) of Theorem 1.8. Con-
versely, of course, if f ∈ E(P, μm,∇) satisfies f(P ) �= 0, then we may assume
f(P ) > 0 and set g = − log(f). Reversing the argument then establishes asser-
tion (2) of Theorem 1.8. �
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3.4. The proof of Theorem 1.9. Let m = 2 and let μ2 = −1. Suppose to
the contrary that dim{E(P,−1,∇)} = 2; we argue for a contradiction. Suppose
first that f(P ) > 0 for some f ∈ E(P,−1,∇). Express f = eg near P . Let −dg

provide a strong projective equivalence from ∇ to ∇̃. By Theorem 1.4, 1 = e−gf ∈
E(P,−1, ∇̃). It now follows that ρs,∇̃ = 0. By Remark 1.5, ρa,∇ = ρa,∇̃. Thus if

ρa,∇ = 0, then ∇̃ is Ricci flat, and hence, since m = 2, ∇̃ is flat. Consequently, we
apply Theorem 1.6 to conclude dim{E(P,−1,∇)} = 3, contrary to our assumption.

We suppose therefore that ρa,∇̃ = ρa,∇ is nontrivial and ρs,∇̃ = 0. Hence ρa,∇̃
defines a nonzero 2-form, which shows that the curvature tensor is recurrent. Thus
(M, ∇̃) is locally described by the work of Wong [19, Theorem 4.2]. Recently,
Derdzinski [7, Theorem 6.1] has shown that local coordinates can be specialized so
that the only nonzero Christoffel symbols are Γ11

1 = −∂x1φ and Γ22
2 = ∂x2φ. We

have E(P, μ2, ∇̃) = ker(H∇̃). Since this is, by assumption, 2-dimensional, we can

apply Theorem 1.1 to choose f̃ ∈ ker(H∇̃) so that df̃(P ) �= 0. We compute

0 = H∇̃,11f̃ = ∂x1x1 f̃ + ∂x1φ ∂x1 f̃ , 0 = H∇̃,22f̃ = ∂x2x2 f̃−∂x2φ ∂x2 f̃ ,

0 = H∇̃,12f̃ = ∂x1x2 f̃ .

The relation ∂x1x2 f̃ = 0 implies f̃(x1, x2) = a(x1) + b(x2). Differentiating the
remaining relations with respect to x2 and x1, respectively, yields

∂x1x2φ a′(x1) = 0 and − ∂x1x2φ b′(x2) = 0 .

By assumption, df̃(P ) �= 0 and thus (a′(0), b′(0)) �= (0, 0). Thus ∂x1x2φ vanishes
identically at P . This implies the geometry is flat and ρa,∇̃ = 0, contrary to our
assumption.

Suppose f(P ) = 0 for every f ∈ E(P,−1,∇) and dim{E(P,−1,∇)} = 2. Let
{f1, f2} be a basis for E(P,−1,∇). Since fi(P ) = 0, we may apply Theorem 1.1
to see that df1(P ) and df2(P ) are linearly independent. Thus we can choose local
coordinates centered at P so that E(P,−1,∇) = Span{x1, x2}. If Q �= P , then
dim{E(Q,−1,∇)} ≥ 2 and there exists a nonvanishing element fQ of E(Q,−1,∇)
with fQ(Q) �= 0. The argument given above shows that dim{E(Q,−1,∇)} = 3.
Thus ∇ is strongly projectively flat near Q, so by Lemma 1.3(1), ρ∇ and ∇ρ∇
are totally symmetric at Q. Thus, by continuity, the same holds at P . Thus by
Lemma 1.3(2), we can conclude that ∇ is strongly projectively flat on a neighbor-
hood of P and dim{E(P,−1,∇)} = 3, contrary to our assumption.

Appendix A. Locally homogeneous affine surfaces

We say that M = (M,∇) is locally homogeneous if, given any two points of M ,
there is the germ of a diffeomorphism T taking one point to another with T ∗∇ = ∇.
Locally homogeneous affine surfaces have been classified by Opozda [15]. Let M be
a locally homogeneous affine surface which is not flat, i.e., has nonvanishing Ricci
tensor. Then at least one of the following three possibilities holds, which are not
exclusive, and which describe the local geometry:

Type A: There exist local coordinates (x1, x2) so that Γij
k are constant.

Type B: There exist local coordinates (x1, x2) so that Γij
k = (x1)−1Cij

k, where
Cij

k are constant.

Type C: ∇ is the Levi–Civita connection of a metric of constant sectional curvature.
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In Sections A.1 and A.2, we present 2- and 3-dimensional solutions to the affine
quasi-Einstein equation (1.b) which are Types A and B geometries. Our account
here is purely expository to illustrate some of the phenomena which occur; we shall
postpone the proofs of these results for a subsequent paper [5]. In each case we
consider the essentially different eigenvalues μ = 0, μm = − 1

m−1 , and μ �= 0,− 1
m−1

separately.

A.1. Type A surfaces. Let M = (R2,∇) be a Type A surface model which is
not flat; the Christoffel symbols satisfy Γij

k = Γji
k ∈ R. Any Type A surface is

projectively flat with symmetric Ricci tensor [3], and is thus strongly projectively
flat.

Theorem A.1. Let M be a Type A surface model.

(1) Let μ = 0. Then E(0,∇) = Span{1} or, up to linear equivalence, one of
the following holds:

(a) Γ11
1 = 1, Γ12

1 = 0, Γ22
1 = 0, and E(0,∇) = Span{1, ex1}.

(b) Γ11
1 = Γ12

1 = Γ22
1 = 0 and E(0,∇) = Span{1, x1}.

(2) Let μ = −1. Then dim{E(−1,∇)} = 3.

(3) Let μ �= 0,−1. Then dim{E(μ,∇)} =

{
2 if Rank{ρ∇} = 1
0 if Rank{ρ∇} = 2

}
.

We can use Theorem 1.4 to construct nontrivial projective deformations.

Example A.2. We set Γ11
1 = 1, Γ12

1 = 0, and Γ22
1 = 0 as in Theorem A.1 (1)(a).

Then φ(x1, x2) = a+ex
1 ∈ E(0,∇). Following Theorem 1.4, set g = − log φ(x1, x2)

and consider the strongly projectively equivalent connection ∇̃ determined by the 1-
form ω = dg. We have ρ∇ = ρ∇̃ = ρ∇,11dx

1⊗dx1; both∇ρ∇ and ∇̃ρ∇̃ are multiples

of dx1⊗dx1⊗dx1. Thus α := ∇ρ2111 ·ρ−3
11 is an affine invariant (see [3]) and we have

α∇ = 4(Γ12
2 − (Γ12

2)2 + Γ11
2Γ22

2)−1 and α∇̃ = α∇ · (a− ex
1

)2(a+ ex
1

)−2. Since
α∇̃ is nonconstant for a �= 0, we are getting affine inequivalent surfaces which are
strongly Liouville equivalent. If a = 0, we obtain an isomorphic Type A structure.

Example A.3. We set Γ11
1 = 0, Γ12

1 = 0, and Γ22
1 = 0 as in Theorem A.1(1)(b).

We then have ρ∇ = {Γ11
2Γ22

2 − (Γ12
2)2}dx1 ⊗ dx1 and ∇ρ∇ = 0. Since x1 ∈

E(0,∇), we follow Theorem 1.4 and consider the strongly Liouville equivalent con-

nection ∇̃ determined by the 1-form ω = −d log x1. We verify that

ρ∇̃ = ρ∇ and ∇̃ρ∇̃ = 4(x1)−1ρ∇,11dx
1 ⊗ dx1 ⊗ dx1,

so this is not a symmetric space if we choose Γ11
2Γ22

2 − (Γ12
2)2 �= 0. Hence ∇ is

not locally isomorphic to ∇̃.

A.1.1. Higher-dimensional examples of Type A. Let M = (R3,∇) be a Type A
geometry, so the Christoffel symbols Γij

k are constant [9]. We shall only list the
nonzero Christoffel symbols in what follows and omit the details of the computation.
Here μ3 = − 1

2 . The following is an example where ρ is nondegenerate and μ �= − 1
2 .

Example A.4. Set the nonzero Christoffel symbols Γ12
3 = 1, Γ13

1 = 3, Γ23
2 = 4,

and Γ33
3 = 5. Then ρ∇ = 5dx1 ⊗ dx2 + 5dx2 ⊗ dx1 + 10dx3 ⊗ dx3. We have

E(μ,∇) =

⎧⎨
⎩

Span{e3x3

, x1e3x
3} if μ = − 3

5
Span{1} if μ = 0
{0} otherwise

⎫⎬
⎭ .
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The Ricci tensor in the following example is degenerate, but nonzero, and there
are an infinite number of nontrivial eigenvalues; this is a genuinely new phenomena
not present for Type A surface models.

Example A.5. Let Mx,y,z,w := (R3,∇) be a 3-dimensional Type A model where
the (possibly) nonzero Christoffel symbols are

Γ11
1 = z, Γ12

1 = 1, Γ13
1 = x, Γ22

2 = 1, Γ23
1 = x, Γ33

2 = y, Γ33
3 = w.

The Ricci tensor is

ρ∇ =

⎛
⎝ 0 0 0

0 0 x(z − 1)
0 x(z − 1) wx− x2 + 2y

⎞
⎠ .

Depending on the values of x, y, z, and w, dim{E(− 1
2 ,∇)} is as follows:

(1) dim{E(− 1
2 ,∇)} = 0 if and only if x �= 0 and either z = 0 or z /∈ {0, 1} and

w �= x+2xz−xz2

2z .

(2) dim{E(− 1
2 ,∇)} = 1 if and only if x �= 0, z /∈ {0, 1} and w = x+2xz−xz2

2z .

(3) dim{E(− 1
2 ,∇)} = 2 if and only if x �= 0, z = 1, w �= x.

(4) dim{E(− 1
2 ,∇)} = 4 if and only if x = 0 or w = x and z = 1.

A.2. Type B surface models. Let M = (R+ ×R,∇) be a Type B affine surface
model; the Christoffel symbols are given by Γij

k = (x1)−1Cij
k, where Cij

k are
constant. We assume ρ∇ �= 0 to ensure the geometry is not flat. We have that M
is also Type A if and only if (C12

1, C22
1, C22

2) = (0, 0, 0); the Ricci tensor has rank
1 in this instance (see [3]). We will first examine the Yamabe solitons, working
modulo linear equivalence.

Theorem A.6. Let M be a Type B surface. Then E(0,∇) = Span{1} except in
the following cases where we also require ρ∇ �= 0:

(1) (C11
1, C12

1, C22
1) = (−1, 0, 0), and E(0,∇) = Span{1, log(x1)}.

(2) (C11
1, C12

1, C22
1) = κ(−1, 0, 0), E(0,∇) = Span{1, (x1)C11

1+1} and κ �= 1.

(3) (C11
2, C12

2, C22
2) = (0, 0, 0), and E(0,∇) = Span{1, x2}.

(4) (C11
1, C12

1, C22
1) = c(C11

2, C12
2, C22

2), and E(0,∇) = Span{1, x1 − cx2}.
Any Type B surface which is also Type A is strongly projectively flat. There

are, however, strongly projectively flat surfaces of Type B which are not of Type A.
Moreover, there exist Type B surfaces where dim{E(−1,∇)} = 1.

Theorem A.7. Let M be a Type B surface. Let μ = −1. Then one of the following
holds:

(1) dim{E(−1,∇)} = 1 if and only if M is linearly equivalent to:
(a) C22

1 = 0, C22
2 = C12

1 �= 0 or
(b) C22

1 = ±1, C12
1 = 0, C22

2 = ±2C11
2 �= 0, C11

1 = 1+2C12
2±(C11

2)2.
(2) dim{E(−1,∇)} = 3 if and only if M is strongly projectively flat. In this

case M is linearly equivalent to one of the following surfaces:
(a) C12

1 = C22
1 = C22

2 = 0 (i.e., M is also of Type A).
(b) C11

1 = 1+2C12
2, C11

2 = 0, C12
1 = 0, C12

2 �= 0, C22
1 = ±1, C22

2 = 0.

Let μ �= 0 and μ �= −1. In the Type A setting, Theorem A.1 shows that
dim{E(μ,∇)} = 0 or dim{E(μ,∇)} = 2. The situation is quite different in the
Type B setting as there are examples where dim{E(μ,∇)} = 1.
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Theorem A.8. Let M be a Type B model which is not of Type A with ρs,∇ �= 0
and let μ �= 0,−1.

(1) dim{E(μ,∇)} ≥ 1 if and only if M is linearly equivalent to a surface given
by C22

1 = ±1 , C12
1 = 0 , and C22

2 = ±2C11
2 , where μ is determined by

μ = Δ−2{1+2C12
2±2(C11

2)2−(C11
1−C12

2)2}, for Δ := 1−C11
1+C12

2 �=
0.

(2) dim{E(μ,∇)} = 2 if and only if M is linearly equivalent to one of the
following two surfaces:
(a) C11

1 = −1 + C12
2 , C11

2 = 0 , C12
1 = 0 , C22

1 = ±1 , and C22
2 = 0 ,

where μ = 1
2C12

2 �= 0.

(b) C11
1 = − 1

2 (5 ± 16(C11
2)2) , C12

1 = 0 , C12
2 = − 1

2 (3 ± 8(C11
2)2) ,

C22
1 = ±1 , and C22

2 = ±2C11
2 , where μ = − 3±8(C11

2)2

4±8(C11
2)2 and where

C11
2 �= 0,± 1√

2
.

Remark A.9. The existence of examples where dim{E(0,∇)} is either 0, 1, or
2 was shown in Theorem A.6. The surfaces of Theorem A.7 provided examples
where one has dim{E(−1,∇)} = 1 and dim{E(−1,∇)} = 3. In Theorem A.8,
we gave examples of homogeneous affine surfaces where dim{E(μ,∇)} = 1 and
dim{E(μ,∇)} = 2, for arbitrary μ �= 0,−1. Thus all values for dim{E(μ,∇)} are
permissible.
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