# BRILL-NOETHER LOCI OF RANK 2 VECTOR BUNDLES ON A GENERAL $\nu$-GONAL CURVE 

YOUNGOOK CHOI, FLAMINIO FLAMINI, AND SEONJA KIM

(Communicated by Jerzy M. Weyman)


#### Abstract

In this paper we study the Brill Noether locus of rank 2, (semi)stable vector bundles with at least two sections and of suitable degrees on a general $\nu$-gonal curve. We classify its reduced components whose dimensions are at least the corresponding Brill-Noether number. We moreover describe the general member $\mathcal{F}$ of such components only in terms of extensions of line bundles with suitable minimality properties, providing information on the birational geometry of such components as well as on the very ampleness of $\mathcal{F}$.


## 1. Introduction

Let $C$ denote a smooth, irreducible, complex projective curve of genus $g \geq 2$. As in the statement of [10, Theorem] (cf. also Theorem 1.1 below), $C$ is said to be general if $C$ is a curve with general moduli (cf., e.g., [2], pp. 214-215). Let $U_{C}(n, d)$ be the moduli space of semistable, degree $d$, rank $n$ vector bundles on $C$ and let $U_{C}^{s}(n, d)$ be the open dense subset of stable bundles (when $d$ is odd, more precisely one has $\left.U_{C}(n, d)=U_{C}^{s}(n, d)\right)$. Let $B_{n, d}^{k} \subseteq U_{C}(n, d)$ be the Brill-Noether locus which consists of vector bundles $\mathcal{F}$ having $h^{0}(\mathcal{F}) \geq k$, for a positive integer $k$.

Traditionally, we denote by $W_{d}^{k}$ the Brill-Noether locus $B_{1, d}^{k+1}$ of line bundles $L \in \operatorname{Pic}^{d}(C)$ having $h^{0}(L) \geq k+1$, for a nonnegative integer $k$. With little abuse of notation, we will sometimes identify line bundles with corresponding divisor classes, interchangeably using multiplicative and additive notation.

For the case of rank 2 vector bundles, we simply put $B_{d}^{k}:=B_{2, d}^{k}$, for which it is well known that the dimension of $B_{d}^{k} \cap U_{C}^{s}(2, d)$ is at least the Brill-Noether number $\rho_{d}^{k}:=4 g-3-i k$, where $i:=k+2 g-2-d$ (cf. [9). This is no longer true for possible components of $B_{d}^{k}$ in $U_{C}(2, d) \backslash U_{C}^{s}(2, d)$, i.e., not containing stable points, which can occur only for $d$ even (cf. [3, Remark 3.3] for more explanations and details).

Received by the editors February 3, 2017, and, in revised form, June 29, 2017, and September 15, 2017.

2010 Mathematics Subject Classification. Primary 14H60, 14D20, 14J26.
Key words and phrases. Stable rank-2 vector bundles, Brill-Noether loci, general $\nu$-gonal curves.

The first author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2016R1D1A3B03933342).

The third author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2016R1D1A1B03930844).

In the range $0 \leq d \leq 2 g-2, B_{d}^{1}$ has been deeply studied on any curve $C$ by several authors (cf. [6, 9]). Concerning $B_{d}^{2}$, using a degeneration argument, N. Sundaram [9] proved that $B_{d}^{2}$ is nonempty for any $C$ and for odd $d$ such that $g \leq d \leq 2 g-3$. M. Teixidor I Bigas generalizes Sundaram's result as follows.

Theorem 1.1 ([10]). Given a nonsingular curve $C$ and a $d, 3 \leq d \leq 2 g-1$, $B_{d}^{2} \cap U_{C}^{s}(2, d)$ has a component of dimension $\rho_{d}^{2}=2 d-3$ and a generic point on it corresponds to a vector bundle whose space of sections has dimension 2 and the generic section has no zeroes. If $C$ is general, this is the only component of $B_{d}^{2} \cap U_{C}^{s}(2, d)$. Moreover, $B_{d}^{2} \cap U_{C}^{s}(2, d)$ has extra components if and only if $W_{n}^{1}$ is nonempty and $\operatorname{dim} W_{n}^{1} \geq d+2 n-2 g-1$ for some $n$ with $2 n<d$.

Inspired by Theorem 1.1, in this paper we focus on $B_{d}^{2}$ for $C$ a general $\nu$-gonal curve of genus $g$, i.e., $C$ corresponds to a general point of the $\nu$-gonal stratum $\mathcal{M}_{g, \nu}^{1} \subset \mathcal{M}_{g}$. Precisely, we prove the following.

Theorem 1.2. Let $C$ be a general $\nu$-gonal $\left(3 \leq \nu \leq \frac{g+8}{4}\right)$ curve of genus $g$ and let $A$ be the unique line bundle of degree $\nu$ and $h^{0}(A)=2$. For any positive integer $d$ with $2+2 \nu \leq d \leq g-3$, the reduced components of $B_{d}^{2}$ having dimension at least $\rho_{d}^{2}$ are only two, which we denote by $B_{\mathrm{reg}}$ and $B_{\text {sup }}$ :
(i) $B_{\mathrm{reg}}$ is generically smooth, of dimension $\rho_{d}^{2}=2 d-3$ (regular for short). Moreover, $\mathcal{F}$ general in $B_{\mathrm{reg}}$ is stable, fitting in an exact sequence

$$
0 \rightarrow \mathcal{O}_{C}(p) \rightarrow \mathcal{F} \rightarrow L \rightarrow 0
$$

where $p \in C$ and $L \in W_{d-1}^{0}$ are general and where $h^{0}(\mathcal{F})=2$.
(ii) $B_{\text {sup }}$ is generically smooth, of dimension $d+2 g-2 \nu-2>\rho_{d}^{2}$ (superabundant for short). Moreover, $\mathcal{F}$ general in $B_{\text {sup }}$ is stable, fitting in an exact sequence

$$
0 \rightarrow A \rightarrow \mathcal{F} \rightarrow L \rightarrow 0
$$

where $L$ is a general line bundle of degree $d-\nu$ and $h^{0}(\mathcal{F})=2$.
A more precise statement of this result is given in Theorem 3.1 for its residual version (i.e., concerning the isomorphic Brill-Noether locus $\left.B_{4 g-4-d}^{2 g-d}\right)$. Indeed, for any nonnegative integer $i$, if one sets $k_{i}:=d-2 g+2+i$ and

$$
B_{d}^{k_{i}}:=\left\{\mathcal{F} \in U_{C}(2, d) \mid h^{0}(\mathcal{F}) \geq k_{i}\right\}=\left\{\mathcal{F} \in U_{C}(2, d) \mid h^{1}(\mathcal{F}) \geq i\right\}
$$

one has natural isomorphisms $B_{d}^{k_{i}} \simeq B_{4 g-4-d}^{i}$, arising from the correspondence $\mathcal{F} \rightarrow \omega_{C} \otimes \mathcal{F}^{*}$, Serre duality, and semistability (cf. Section [2.2). The key ingredients of our approach are the geometric theory of extensions introduced by Atiyah, Newstead, Lange-Narasimhan et al. (cf., e.g., [5]), Theorem 2.3 below, and suitable parametric computations involving special and effective quotient line bundles and related families of sections of ruled surfaces, which make sense in the setup of Theorem 3.1. Finally, by Theorems 1.1 and 1.2, we can also see that a general vector bundle in $B_{\text {reg }}$ admits a special section whose zero locus is of degree one while its general section has no zeros (cf. the proof of [10, Theorem] and Remark 3.14(ii) below).

For standard terminology, we refer the reader to [4].

## 2. Preliminaries

2.1. Preliminary results on general $\nu$-gonal curves. In this section we will review some results concerning line bundles on general $\nu$-gonal curves, which will be used in the paper.

Lemma 2.1 (cf. [7, Corollary 1]). On a general $\nu$-gonal curve of genus $g \geq 2 \nu-2$, with $\nu \geq 3$, there does not exist a $g_{\nu-2+2 r}^{r}$ with $\nu-2+2 r \leq g-1, r \geq 2$.

The Clifford index of a line bundle $L$ on a curve $C$ is defined by

$$
\operatorname{Cliff}(L):=\operatorname{deg}(L)-2\left(h^{0}(L)-1\right)
$$

Theorem 2.2 ( 8 , Theorem 2.1). Let $C$ be a general $\nu$-gonal curve of genus $g \geq 4$, let $\nu \geq 4$, and let $g_{\nu}^{1}$ be the unique pencil of degree $\nu$ on $C$. If $C$ has a line bundle $L$ with $\operatorname{Cliff}(L) \leq \frac{g-4}{2}$ and $\operatorname{deg} L \leq g-1$, then $|L|=(\operatorname{dim}|L|) g_{\nu}^{1}+B$, for some effective divisor $B$.
2.2. Segre invariant and semistable vector bundles. Given a rank 2 vector bundle $\mathcal{F}$ on $C$, the Segre invariant $s_{1}(\mathcal{F}) \in \mathbb{Z}$ of $\mathcal{F}$ is defined by

$$
s_{1}(\mathcal{F})=\min _{N \subset \mathcal{F}}\{\operatorname{deg} \mathcal{F}-2 \operatorname{deg} N\}
$$

where $N$ runs through all the subline bundles of $\mathcal{F}$. It easily follows from the definition that $s_{1}(\mathcal{F})=s_{1}(\mathcal{F} \otimes L)$, for any line bundle $L$, and $s_{1}(\mathcal{F})=s_{1}\left(\mathcal{F}^{*}\right)$, where $\mathcal{F}^{*}$ denotes the dual bundle of $\mathcal{F}$. A subline bundle $N \subset \mathcal{F}$ is called a maximal subline bundle of $\mathcal{F}$ if $\operatorname{deg} N$ is maximal among all subline bundles of $\mathcal{F}$. In such a case $\mathcal{F} / N$ is a minimal quotient line bundle of $\mathcal{F}$, i.e., is of minimal degree among quotient line bundles of $\mathcal{F}$. In particular, $\mathcal{F}$ is semistable (resp., stable) if and only if $s_{1}(\mathcal{F}) \geq 0$ (resp., $s_{1}(\mathcal{F})>0$ ).
2.3. Extensions, secant varieties, and semistable vector bundles. Let $\delta$ be a positive integer. Consider $L \in \operatorname{Pic}^{\delta}(C)$ and $N \in \operatorname{Pic}^{d-\delta}(C)$. The extension space $\operatorname{Ext}^{1}(L, N)$ parametrizes isomorphism classes of extensions, and any element $u \in \operatorname{Ext}^{1}(L, N)$ gives rise to a degree $d$, rank 2 vector bundle $\mathcal{F}_{u}$, fitting in an exact sequence

$$
\begin{equation*}
(u): \quad 0 \rightarrow N \rightarrow \mathcal{F}_{u} \rightarrow L \rightarrow 0 \tag{2.1}
\end{equation*}
$$

We fix once and for all the following notation:

$$
\begin{gather*}
j:=h^{1}(L), \quad l:=h^{0}(L)=\delta-g+1+j,  \tag{2.2}\\
r:=h^{1}(N), \quad n:=h^{0}(N)=d-\delta-g+1+r .
\end{gather*}
$$

In order to get $\mathcal{F}_{u}$ semistable, a necessary condition is

$$
\begin{equation*}
2 \delta-d \geq s_{1}\left(\mathcal{F}_{u}\right) \geq 0 \tag{2.3}
\end{equation*}
$$

In such a case, the Riemann-Roch theorem gives

$$
\operatorname{dim}\left(\operatorname{Ext}^{1}(L, N)\right)= \begin{cases}2 \delta-d+g-1 & \text { if } L \nsupseteq N  \tag{2.4}\\ g & \text { if } L \cong N\end{cases}
$$

Since we deal with special vector bundles, i.e., $h^{1}\left(\mathcal{F}_{u}\right)>0$, they always admit a special quotient line bundle. Recall the following theorem.

Theorem 2.3 ([3], Lemma 4.1). Let $\mathcal{F}$ be a semistable, special, rank 2 vector bundle on $C$ of degree $d \geq 2 g-2$. Then there exist a special, effective line bundle $L$ on $C$ of degree $\delta \leq d, N \in \operatorname{Pic}^{d-\delta}(C)$, and $u \in \operatorname{Ext}^{1}(L, N)$ such that $\mathcal{F}=\mathcal{F}_{u}$ as in Subsection 2.1.

Tensor (2.1) by $N^{-1}$ and consider $\mathcal{G}_{e}:=\mathcal{F}_{u} \otimes N^{-1}$, which fits in

$$
(e): \quad 0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{G}_{e} \rightarrow L-N \rightarrow 0,
$$

where $e \in \operatorname{Ext}^{1}\left(L-N, \mathcal{O}_{C}\right)$, so $\operatorname{deg}\left(\mathcal{G}_{e}\right)=2 \delta-d$. Then $(u)$ and (e) define the same point in $\mathbb{P}:=\mathbb{P}\left(H^{0}\left(K_{C}+L-N\right)^{*}\right)$. When the map $\varphi:=\varphi_{\left|K_{C}+L-N\right|}: C \rightarrow \mathbb{P}$ is a morphism, set $X:=\varphi(C) \subset \mathbb{P}$. For any positive integer $h$ denote by $\operatorname{Sec}_{h}(X)$ the $h^{s t}$-secant variety of $X$, defined as the closure of the union of all linear subspaces $\langle\varphi(D)\rangle \subset \mathbb{P}$, for general divisors $D$ of degree $h$ on $C$. One has

$$
\operatorname{dim}\left(\operatorname{Sec}_{h}(X)\right)=\min \{\operatorname{dim}(\mathbb{P}), 2 h-1\} .
$$

Theorem 2.4 ([5, Proposition 1.1]). Let $2 \delta-d \geq 2$; then $\varphi$ is a morphism and, for any integer $s \equiv 2 \delta-d(\bmod 2)$ such that $4+d-2 \delta \leq s \leq 2 \delta-d$, one has

$$
s_{1}\left(\mathcal{E}_{e}\right) \geq s \Leftrightarrow e \notin \operatorname{Sec}_{\frac{1}{2}(2 \delta-d+s-2)}(X) .
$$

## 3. The main Result

In this section $C$ will denote a general $\nu$-gonal curve of genus $g \geq 4$ and $A$ the unique line bundle of degree $\nu$ with $h^{0}(A)=2$. As explained in the Introduction, from now on we will be concerned with the residual version of Theorem 1.2 therefore we set

$$
\begin{equation*}
3 \leq \nu \leq \frac{g+8}{4} \text { and } 3 g-1 \leq d \leq 4 g-6-2 \nu \tag{3.1}
\end{equation*}
$$

where $d$ is an integer. For suitable line bundles $L$ and $N$ on $C$, we consider rank 2 vector bundles $\mathcal{F}$ arising as extensions. We will give conditions on $L$ and $N$ under which $\mathcal{F}$ is general in a certain component of the Brill-Noether locus $B_{d}^{k_{2}}$, where $k_{2}=d-2 g+4$ as in the Introduction. We moreover show that $L$ is a quotient of $\mathcal{F}$ with suitable minimality properties. Finally, we prove the following theorem.

Theorem 3.1. The reduced components of $B_{d}^{k_{2}}$ having dimension at least $\rho_{d}^{k_{2}}$ are only two, which we denote by $B_{\text {reg }}$ and $B_{\text {sup }}$ :
(i) The component $B_{\mathrm{reg}}$ is regular, i.e., generically smooth and of dimension $\rho_{d}^{k_{2}}=8 g-2 d-11$. A general element $\mathcal{F}$ of $B_{\text {reg }}$ is stable, fitting in an exact sequence

$$
\begin{equation*}
0 \rightarrow K_{C}-D \rightarrow \mathcal{F} \rightarrow K_{C}-p \rightarrow 0 \tag{3.2}
\end{equation*}
$$

where $p \in C$ and $D \in C^{(4 g-5-d)}$ are general. Specifically, $s_{1}(\mathcal{F}) \geq 1$ (resp., 2) if $d$ is odd (resp., even). Moreover, $K_{C}-p$ is minimal among special quotient line bundles of $\mathcal{F}$, and $\mathcal{F}$ is very ample for $\nu \geq 4$.
(ii) The component $B_{\text {sup }}$ is generically smooth, of dimension $6 g-d-2 \nu-6>$ $\rho_{d}^{k_{2}}$, i.e., $B_{\text {sup }}$ is superabundant. A general element $\mathcal{F}$ of $B_{\text {sup }}$ is stable, very ample, and fitting in an exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow \mathcal{F} \rightarrow K_{C}-A \rightarrow 0, \tag{3.3}
\end{equation*}
$$

for $N \in \operatorname{Pic}^{d-2 g+2+\nu}(C)$ general. Moreover, $s_{1}(\mathcal{F})=4 g-4-d-2 \nu$ and $K_{C}-A$ is a minimal quotient of $\mathcal{F}$.

Proof. In Sections 3.1 and 3.2 we will construct the components $B_{\text {sup }}$ and $B_{\text {reg }}$, respectively, and prove all the statements in Theorem 3.1 except for the minimality property of $K_{C}-p$ in (i) and the uniqueness of $B_{\text {sup }}$ and $B_{\text {reg }}$, which will be proved in Section 3.3.

Remark 3.2.
(i) As explained in the Introduction, Theorem 3.1 and the natural isomorphism $B_{d}^{k_{2}} \simeq B_{4 g-4-d}^{2}$ also give a proof of Theorem 1.2 .
(ii) It is well known how the study of rank 2 vector bundles on curves is related to that of (surface) scrolls in projective space. Therefore, the very ampleness condition in Theorem 3.1 is a key for the study of components of Hilbert schemes of smooth scrolls, in a suitable projective space, dominating $\mathcal{M}_{g, \nu}^{1}$. This will be the subject of a forthcoming paper.
3.1. The superabundant component $B_{\text {sup }}$. In this section we first construct the component $B_{\text {sup }}$ as in Theorem 3.1. We consider the line bundle $L:=K_{C}-A \in$ $W_{2 g-2-\nu}^{g-\nu}$ and a general $N \in \operatorname{Pic}^{d-2 g+2+\nu}(C)$; since $d-2 g+2+\nu \geq g+1+\nu$ from (3.1), in particular $h^{1}(N)=0$. We first need the following preliminary result.

Lemma 3.3. Let $N \in \operatorname{Pic}^{d-2 g+2+\nu}(C)$ be general. Then, for a general $u \in$ $\operatorname{Ext}^{1}\left(K_{C}-A, N\right)$, the corresponding rank 2 vector bundle $\mathcal{F}_{u}$ is stable with:
(a) $h^{1}\left(\mathcal{F}_{u}\right)=h^{1}\left(K_{C}-A\right)=2$;
(b) $s_{1}\left(\mathcal{F}_{u}\right)=4 g-4-2 \nu-d$; more precisely, $K_{C}-A$ is a minimal quotient line bundle of $\mathcal{F}_{u}$;
(c) $\mathcal{F}_{u}$ is very ample.

Proof. To ease notation, set $L=K_{C}-A$ and $\delta:=\operatorname{deg} L$. To show that $\mathcal{F}_{u}$ is stable, note that the upper bound on $d$ in (3.1) implies $2 \delta-d=2(2 g-2-\nu)-d \geq 2$; so we are in a position to apply Theorem [2.4] We consider the natural morphism

$$
\varphi:=\varphi_{\left|K_{C}+L-N\right|}: C \longrightarrow \mathbb{P}:=\mathbb{P}\left(\operatorname{Ext}^{1}(L, N)\right)
$$

Set $X:=\varphi(C)$. Let $s$ be an integer such that $s \equiv 2 \delta-d(\bmod 2)$ and $0<s \leq 2 \delta-d$. Since $s \leq 2 \delta-d=4 g-4-2 \nu-d<g-3$, we have

$$
\operatorname{dim}\left(\operatorname{Sec}_{\frac{1}{2}(2 \delta-d+s-2)}(X)\right)=2 \delta-d+s-3<2 \delta-d+g-2=\operatorname{dim}(\mathbb{P})
$$

where the last equality follows from (2.4) and $L \nsubseteq N$. One can therefore take $s=2 \delta-d$ so that the general $\mathcal{F}_{u}$ arising from (3.3) is of degree $d$, with $h^{1}\left(\mathcal{F}_{u}\right)=$ $h^{1}(L)=2$, and it is stable, since $s_{1}\left(\mathcal{F}_{u}\right)=2 \delta-d=4 g-4-2 \nu-d \geq 2$; the equality $s_{1}\left(\mathcal{F}_{u}\right)=2 \delta-d$ follows from Theorem (2.4 and from (3.3). This proves the stability of $\mathcal{F}_{u}$ together with (a) and (b).

Finally, to prove (c), observe first that $K_{C}-A$ is very ample: indeed, if $K_{C}-A$ is not very ample, by the Riemann-Roch theorem there exists a $g_{\nu+2}^{2}$ on $C$. This is contrary to Lemma 2.1, since the hypothesis $3 \leq \nu \leq \frac{g+8}{4}$ implies $g \geq 2 \nu-2+$ $(2 \nu-6) \geq 2 \nu-2$. At the same time, since $\operatorname{deg}(N)=d-2 g+2+\nu \geq g+4$ by (3.1), a general $N$ is also very ample. Thus any $\mathcal{F}_{u}$ as in (3.3) is very ample, too.

We now want to show that vector bundles constructed in Lemma 3.3 fill up the component $B_{\text {sup }}$, as $N$ varies in $\operatorname{Pic}^{d-2 g+2+\nu}(C)$. To do this, we need to consider
a parameter space of rank 2 vector bundles on $C$, arising as extensions of $K_{C}-A$ by $N$, as $N$ varies. If $\mathcal{N} \rightarrow \operatorname{Pic}^{d-2 g+2+\nu}(C) \times C$ is a Poincaré line bundle, we have the following diagram:


Set $\mathcal{E}_{d, \nu}:=R^{1} p_{1 *}\left(\mathcal{N} \otimes p_{2}^{*}\left(A-K_{C}\right)\right)$. By [2, pp. 166-167], $\mathcal{E}_{d, \nu}$ is a vector bundle on a suitable open, dense subset $S \subseteq \operatorname{Pic}^{d-2 g+2+\nu}(C)$ of rank dim $\operatorname{Ext}^{1}\left(K_{C}-A, N\right)=$ $5 g-5-2 \nu-d$ as in (2.4), since $K_{C}-A \not \approx N$. Consider the projective bundle $\mathbb{P}\left(\mathcal{E}_{d, \nu}\right) \rightarrow S$, which is the family of $\mathbb{P}\left(\operatorname{Ext}^{1}\left(K_{C}-A, N\right)\right)$ 's as $N$ varies in $S$. One has

$$
\operatorname{dim} \mathbb{P}\left(\mathcal{E}_{d, \nu}\right)=g+(5 g-5-2 \nu-d)-1=6 g-6-2 \nu-d
$$

Consider the natural (rational) map

$$
\begin{array}{cl}
\mathbb{P}\left(\mathcal{E}_{d, \nu}\right) \xrightarrow{\pi_{d, \nu}} & U_{C}(2, d), \\
(N, u) \rightarrow & \mathcal{F}_{u} ;
\end{array}
$$

from Lemma 3.3 we know that $\operatorname{im}\left(\pi_{d, \nu}\right) \subseteq B_{d}^{k_{2}} \cap U_{C}^{s}(2, d)$.
Proposition 3.4. The closure $B_{\text {sup }}$ of $\operatorname{im}\left(\pi_{d, \nu}\right)$ in $U_{C}(2, d)$ is a generically smooth component of $B_{d}^{k_{2}}$, having dimension $6 g-6-2 \nu-d$. In particular, $B_{\text {sup }}$ is superabundant.

Proof. The result will follow once we prove that

$$
\operatorname{dim} T_{\mathcal{F}}\left(B_{d}^{k_{2}}\right)=\operatorname{dim} B_{\text {sup }},
$$

for a general $\mathcal{F}$ in $\operatorname{im}\left(\pi_{d, \nu}\right)$. First we claim that $\operatorname{dim} B_{\text {sup }}=6 g-6-2 \nu-d$. Indeed, let $\Gamma \subset F=\mathbb{P}\left(\mathcal{F}_{u}\right)$ be the section corresponding to the quotient $\mathcal{F}_{u} \rightarrow K_{C}-A$. Its normal bundle is $N_{\Gamma / F} \simeq K_{C}-A-N$ (cf. [4, Sect. V, Prop. 2.9]). Since $N$ is general of degree at least $g+4$ by (3.1), we have $h^{0}\left(K_{C}-A-N\right)=0$; in other words $\Gamma$ is an algebraically isolated section of $F$. This guarantees that $\pi_{d, \nu}$ is generically finite (for more details see the proof of [3, Lemma 6.2] and apply the same arguments). Hence we get $\operatorname{dim} \operatorname{im}\left(\pi_{d, \nu}\right)=6 g-6-2 \nu-d$.

Now we prove that $\operatorname{dim} T_{\mathcal{F}}\left(B_{d}^{k_{2}}\right)=6 g-6-2 \nu-d$. To show this, consider the Petri map of a general $\mathcal{F} \in \operatorname{im}\left(\pi_{d, \nu}\right)$ :

$$
\mu_{\mathcal{F}}: H^{0}(\mathcal{F}) \otimes H^{0}\left(\omega_{C} \otimes \mathcal{F}^{*}\right) \rightarrow H^{0}\left(\omega_{C} \otimes \mathcal{F} \otimes \mathcal{F}^{*}\right) .
$$

By (3.3) and $h^{1}(N)=0$, we have

$$
H^{0}(\mathcal{F}) \simeq H^{0}(N) \oplus H^{0}\left(K_{C}-A\right) \quad \text { and } \quad H^{0}\left(\omega_{C} \otimes \mathcal{F}^{*}\right) \simeq H^{0}(A)
$$

Thus $\mu_{\mathcal{F}}$ reads as

$$
\left(H^{0}(N) \oplus H^{0}\left(K_{C}-A\right)\right) \otimes H^{0}(A) \xrightarrow{\mu_{\mathcal{F}}} H^{0}\left(\omega_{C} \otimes \mathcal{F} \otimes \mathcal{F}^{*}\right) .
$$

Consider the following natural multiplication maps:

$$
\begin{array}{cc}
\mu_{A, N}: & H^{0}(N) \otimes H^{0}(A) \rightarrow H^{0}(N+A), \\
\mu_{0, A}: & H^{0}\left(K_{C}-A\right) \otimes H^{0}(A) \rightarrow H^{0}\left(K_{C}\right) . \tag{3.5}
\end{array}
$$

Claim 3.5. $\operatorname{ker}\left(\mu_{\mathcal{F}}\right) \simeq \operatorname{ker}\left(\mu_{0, A}\right) \oplus \operatorname{ker}\left(\mu_{A, N}\right)$.
Proof of Claim 3.5. Consider the exact diagram

which arises from (3.3) and its dual sequence $0 \rightarrow A-K_{C} \rightarrow \mathcal{F}^{*} \simeq$ $\mathcal{F}\left(A-K_{C}-N\right) \rightarrow N^{-1} \rightarrow 0$. If we tensor the column in the middle by $\omega_{C}$, we get $H^{0}(\mathcal{F} \otimes A) \hookrightarrow H^{0}\left(\omega_{C} \otimes \mathcal{F} \otimes \mathcal{F}^{*}\right)$.

Observe, moreover, that $H^{0}(N+A) \oplus H^{0}\left(K_{C}\right) \simeq H^{0}(\mathcal{F} \otimes A)$, which follows from (3.3) tensored by $A$ and the fact that $h^{1}(N+A)=0$. Therefore, there is no intersection between $\operatorname{im}\left(\mu_{0, A}\right)$ and $\operatorname{im}\left(\mu_{A, N}\right)$, and the statement is proved.

By Claim 3.5,

$$
\begin{aligned}
\operatorname{dim} T_{\mathcal{F}}\left(B_{d}^{k_{2}}\right) & =4 g-3-h^{0}(\mathcal{F}) h^{1}(\mathcal{F})+\operatorname{dim}\left(\operatorname{ker} \mu_{\mathcal{F}}\right) \\
& =4 g-3-2(d-2 g+4)+\operatorname{dim}\left(\operatorname{ker}\left(\mu_{0}(A)\right)\right)+\operatorname{dim}\left(\operatorname{ker}\left(\mu_{A, N}\right)\right)
\end{aligned}
$$

From (3.4) and (3.5), we have

$$
\operatorname{ker}\left(\mu_{0, A}\right) \simeq H^{0}\left(K_{C}-2 A\right) \cong H^{1}(2 A)^{*} \text { and } \operatorname{ker}\left(\mu_{A, N}\right) \simeq H^{0}(N-A)
$$

as it follows from the basepoint-free pencil trick. Under the numerical assumption $\nu \leq \frac{g+8}{4}$, from Theorem 2.2 we have $h^{0}(2 A)=3$, which implies $h^{1}(2 A)=g+2-2 \nu$. The inequality $\operatorname{deg} N \geq g+1+\nu$ given by (3.1) and the generality of $N$ show that $h^{1}(N-A)=0$, which yields $h^{0}(N-A)=d-3 g+3$. So we have

$$
\begin{aligned}
\operatorname{dim} T_{\mathcal{F}}\left(B_{d}^{k_{2}}\right) & =4 g-3-2(d-2 g+4)+(g+2-2 \nu)+(d-3 g+3) \\
& =6 g-6-2 \nu-d=\operatorname{dim} B_{\text {sup }} .
\end{aligned}
$$

To complete the proof, it suffices to observe that $\rho_{d}^{k_{2}}=8 g-11-2 d \leq 5 g-10-d<$ $6 g-6-2 \nu-d$, as it follows by (3.1).
3.2. The regular component $B_{\mathrm{reg}}$. In this subsection we construct the regular component $B_{\mathrm{reg}}$ as in Theorem 3.1 In what follows, we use notation as in (2.2), i.e., $l=h^{0}(L), j=h^{1}(L), r=h^{1}(N)$, which will be considered all positive (cf. Theorem 2.3 for $L$ ). For any exact sequence $(u)$ as in (2.1), let $\partial_{u}: H^{0}(L) \rightarrow H^{1}(N)$ be the corresponding coboundary map. For any integer $t>0$, consider

$$
\begin{equation*}
\mathcal{W}_{t}:=\left\{u \in \operatorname{Ext}^{1}(L, N) \mid \operatorname{corank}\left(\partial_{u}\right) \geq t\right\} \subseteq \operatorname{Ext}^{1}(L, N), \tag{3.6}
\end{equation*}
$$

which has a natural structure of determinantal scheme; its expected codimension is $t(l-r+t)$ (cf. [3, Sect.5.2]). In this setup, one has the following theorem.
Theorem 3.6 (3, Theorem 5.8 and Corollary 5.9]). Let $C$ be a smooth curve of genus $g \geq 3$. Let

$$
r=h^{1}(N) \geq 1, l=h^{0}(L) \geq \max \{1, r-1\}, m:=\operatorname{dim}\left(\operatorname{Ext}^{1}(L, N)\right) \geq l+1
$$

Then, we have:
(i) $l-r+1 \geq 0$.
(ii) $\mathcal{W}_{1}$ is irreducible of (expected) dimension $m-(l-r+1)$.
(iii) if $l \geq r$, then $\mathcal{W}_{1} \subset \operatorname{Ext}^{1}(L, N)$. Moreover for general $u \in \operatorname{Ext}^{1}(L, N), \partial_{u}$ is surjective, whereas for general $w \in \mathcal{W}_{1}, \operatorname{corank}\left(\partial_{w}\right)=1$.
To construct $B_{\text {reg }}$, observe first that by (3.1) $W_{4 g-5-d}^{0}$ is not empty or irreducible and that $h^{0}(D)=1$, for general $D \in W_{4 g-5-d}^{0}$. We will prove the following preliminary result.

Lemma 3.7. Let both $D \in W_{4 g-5-d}^{0}$ and $p \in C$ be general and let $\mathcal{W}_{1} \subseteq$ $\operatorname{Ext}^{1}\left(K_{C}-p, K_{C}-D\right)$ be as in (3.6). Then, for $u \in \mathcal{W}_{1}$ general, the corresponding rank 2 vector bundle $\mathcal{F}_{u}$ is stable, with:
(a) $h^{1}\left(\mathcal{F}_{u}\right)=2$;
(b) $s_{1}(\mathcal{F}) \geq 1$ (resp., 2) if d is odd (resp., even);
(c) $\mathcal{F}_{u}$ is very ample when $\nu \geq 4$.

Proof. From the assumptions we have

$$
\begin{array}{cccc}
(u): 0 \rightarrow K_{C}-D \rightarrow \mathcal{F} \rightarrow & K_{C}-p \rightarrow 0 \\
\operatorname{deg} & d-2 g+3 & d & 2 g-3 \\
h^{0} & d-3 g+5 & & g-1  \tag{3.7}\\
h^{1} & 1 & & 1
\end{array}
$$

By (3.1) $\operatorname{deg} D=4 g-d-5 \geq 2 \nu+1$; therefore $K_{C}-D \nsupseteq K_{C}-p$. Thus, using (2.4) and notation as in Theorem (3.6) one has

$$
l=g-1, r=1 \text { and } m=\operatorname{dim} \operatorname{Ext}^{1}\left(K_{C}-p, K_{C}-D\right)=5 g-7-d .
$$

By (3.1) one has $d \leq 4 g-7$, so $m \geq l+1=g$. Hence we can apply Theorem 3.6 to

$$
\mathcal{W}_{1}=\left\{u \in \operatorname{Ext}^{1}\left(K_{C}-p, K_{C}-D\right) \mid \operatorname{corank}\left(\partial_{u}\right) \geq 1\right\},
$$

which therefore is irreducible, of (expected) dimension $\operatorname{dim} \mathcal{W}_{1}=m-1(l-r+1)=$ $4 g-6-d$. Moreover, by Theorem 3.6(iii) and formula (3.7), for general $u \in \mathcal{W}_{1}$ one has $h^{1}\left(\mathcal{F}_{u}\right)=2$, which proves (a).

We now want to show that $\mathcal{F}_{u}$ also satisfies (b), for $u \in \mathcal{W}_{1}$ general; in particular, it is stable. To do this, set $\mathbb{P}:=\mathbb{P}\left(\operatorname{Ext}^{1}\left(K_{C}-p, K_{C}-D\right)\right)$ and consider the projective scheme $\widehat{\mathcal{W}}_{1}:=\mathbb{P}\left(\mathcal{W}_{1}\right) \subset \mathbb{P}$, which therefore has dimension $4 g-7-d$. Posing $\delta:=2 g-3$ and considering (3.1), one has $2 \delta-d \geq 2 \nu \geq 6$. We are therefore in a position to apply Theorem 2.4 We consider the natural morphism $C \xrightarrow{\varphi} \mathbb{P}$, given by the complete linear system $\left|K_{C}+D-p\right|$. Set $X=\varphi(C)$, as in the proof of Lemma 3.3. Let $s$ be an integer such that $s \equiv 2 \delta-d(\bmod 2)$ and $0 \leq s \leq 2 \delta-d$. Then we have
$\operatorname{dim} \operatorname{Sec}_{\frac{1}{2}(2 \delta-d+s-2)}(X)=2 \delta-d+s-3=4 g-9-d+s \leq 4 g-7-d=\operatorname{dim} \widehat{\mathcal{W}}_{1}$
if and only if $s \leq 2$, where the equality holds if and only if $s=2$.
Therefore, for $d$ odd, by Theorem 2.4 one has $s_{1}\left(\mathcal{F}_{u}\right) \geq 1$ for $u \in \mathcal{W}_{1}$ general; in particular, $\mathcal{F}_{u}$ is stable and (b) is proved in this case.

For $d$ even, if one dualizes the exact sequence (3.2) and tensors via $\omega_{C}$, one gets

$$
(e): 0 \rightarrow p \rightarrow \mathcal{E}_{e}:=\mathcal{F}_{u}^{*} \otimes \omega_{C} \rightarrow D \rightarrow 0,
$$

where (e) defines the same point as $(u)$ in the projective space $\mathbb{P}$; in particular, $s_{1}\left(\mathcal{F}_{u}\right)=s_{1}\left(\mathcal{E}_{e}\right)$ (cf. Section [2.2) and $h^{0}\left(\mathcal{E}_{e}\right)=2$, by Serre duality and the fact that $(u) \in \widehat{\mathcal{W}}_{1}$. Following the same strategy as in the first part of the proof of [10, Theorem], one deduces that $(e)$ belongs to the linear span $\langle\varphi(D)\rangle \subset \mathbb{P}$. On the other hand, any point $x \in\langle\varphi(D)\rangle$ gives rise to an extension,

$$
(x): 0 \rightarrow p \rightarrow \mathcal{E}_{x} \rightarrow D \rightarrow 0,
$$

which belongs to $\widehat{\mathcal{W}}_{1}$, since $h^{0}\left(\mathcal{E}_{x}\right)=2($ cf. diagram (2) and the subsequent details in the proof of [10, Theorem]). Thus $\langle\varphi(D)\rangle \subseteq \widehat{\mathcal{W}}_{1}$. By the Riemann-Roch theorem,

$$
\operatorname{dim}\langle\varphi(D)\rangle=h^{0}\left(K_{C}+D-p\right)-h^{0}\left(K_{C}-p\right)-1=4 g-7-d=\operatorname{dim} \widehat{\mathcal{W}}_{1}
$$

Since they are both closed and irreducible, one gets $\widehat{\mathcal{W}}_{1}=\langle\varphi(D)\rangle$. On the other hand,

$$
\operatorname{Sec}_{\frac{1}{2}(2 \delta-d+2-2)}(X)=\operatorname{Sec}_{\frac{1}{2}(4 g-6-d)}(X),
$$

which is of dimension $4 g-7-d$, too, is nondegenerate in $\mathbb{P}$ as $X \subset \mathbb{P}$ is not. Thus, we conclude that $\widehat{\mathcal{W}}_{1} \neq \operatorname{Sec}_{\frac{1}{2}(4 g-6-d)}(X)$. In particular, from Theorem 2.4, for a general $u \in \widehat{\mathcal{W}}_{1}$ one has $s_{1}\left(\mathcal{F}_{u}\right) \geq 2$, so $\mathcal{F}_{u}$ is stable and (b) is also proved in this case.

To prove (c) observe first that, since $\nu \geq 4$ by assumption, $K_{C}-p$ is very ample, as it follows by the Riemann-Roch theorem. Now we have the following claim.
Claim 3.8. For general $D \in W_{4 g-5-d}^{0}, K_{C}-D$ is very ample if $\nu \geq 4$.
Proof of Claim 3.8. Assume by contradiction that $K_{C}-D$ is not very ample for general $D \in W_{4 g-5-d}^{0}$. For a nonnegative integer $\tau$, define the following:

$$
\Xi_{\tau}:=\left\{(D, p+q) \in W_{4 g-5-d}^{0} \times W_{2}^{0} \mid h^{0}(D+p+q)=\tau+1\right\} .
$$

If $\Xi_{\tau} \neq \emptyset$, then we have the diagram

which is given by $\pi_{\tau}(D, p+q):=D$ and $\wp_{\tau}(D, p+q):=D+p+q$. The assumption implies that, for some $\tau \in\{1,2\}$, the image of $\pi_{\tau}$ is dense in $W_{4 g-5-d}^{0}$. Considering the map $\wp_{\tau}$, we get $\operatorname{dim} \Xi_{\tau} \leq \operatorname{dim} W_{4 g-3-d}^{\tau}+\tau$. By Martens's and Mumford's theorems (cf. [2, Thm. (5.1), (5.2)]), we have $\operatorname{dim} W_{4 g-3-d}^{\tau} \leq 4 g-5-d-2 \tau$, since $C$ is a general $\nu$-gonal curve with $\nu \geq 4$ and $4 g-3-d \leq g-2$ by (3.1). In summation, it turns out that

$$
\operatorname{dim} W_{4 g-5-d}^{0} \leq \operatorname{dim} \Xi_{r} \leq 4 g-5-d-\tau
$$

which cannot occur. This completes the proof of the claim.

The above arguments prove (c) and complete the proof of the lemma.
To construct the component $B_{\text {reg }}$ notice that, as in Section 3.1 one has a projective bundle $\mathbb{P}\left(\mathcal{E}_{d}\right) \rightarrow S$, where $S \subseteq W_{4 g-5-d}^{0} \times C$ is a suitable open dense subset: $\mathbb{P}\left(\mathcal{E}_{d}\right)$ is the family of $\mathbb{P}\left(\operatorname{Ext}^{1}\left(K_{C}-p, K_{C}-D\right)\right)$ 's as $(D, p) \in S$ varies. Since, for any such $(D, p) \in S$, $\widehat{\mathcal{W}}_{1}$ is irreducible of constant dimension $4 g-7-d$, one has an irreducible subscheme $\widehat{\mathcal{W}}_{1}^{\text {Tot }} \subset \mathbb{P}\left(\mathcal{E}_{d}\right)$ which therefore has dimension

$$
\operatorname{dim} \widehat{\mathcal{W}}_{1}^{\text {Tot }}=\operatorname{dim} S+4 g-7-d=4 g-d-4+4 g-7-d=8 g-2 d-11=\rho_{d}^{k_{2}} .
$$

From Lemma 3.7, one has the natural (rational) map

$$
\begin{array}{ccc}
\widehat{\mathcal{W}}_{1}^{\text {oot }} & -{ }_{-} & U_{C}(d), \\
(D, p, u) & \longrightarrow & \mathcal{F}_{u},
\end{array}
$$

and $\operatorname{im}(\pi) \subset B_{d}^{k_{2}} \cap U_{C}^{s}(2, d)$.
Proposition 3.9. The closure $B_{\mathrm{reg}}$ of $\operatorname{im}(\pi)$ in $U_{C}(2, d)$ is a generically smooth component of $B_{d}^{k_{2}}$ with dimension $\rho_{d}^{k_{2}}=8 g-11-2 d$, i.e., $B_{\mathrm{reg}}$ is regular.

Proof. From the fact that $\operatorname{im}(\pi)$ contains stable bundles, any component of $B_{d}^{k_{2}}$ containing it has dimension at least $\rho_{d}^{k_{2}}$. We concentrate in computing $\operatorname{dim} T_{\mathcal{F}}\left(B_{d}^{k_{2}}\right)$, for general $\mathcal{F} \in \operatorname{im}(\pi)$. Consider the Petri map

$$
\mu_{\mathcal{F}}: H^{0}(\mathcal{F}) \otimes H^{0}\left(\omega_{C} \otimes \mathcal{F}^{*}\right) \rightarrow H^{0}\left(\omega_{C} \otimes \mathcal{F} \otimes \mathcal{F}^{*}\right)
$$

for a general $\mathcal{F} \in \operatorname{im}(\pi)$. From diagram (3.7) and the fact that $\mathcal{F}=\mathcal{F}_{u}$, for some $u$ in some fiber $\widehat{\mathcal{W}}_{1}$ of $\widehat{\mathcal{W}}_{1}^{\text {Tot }}$, one has that the corresponding coboundary map $\partial_{u}$ is the zero-map; in other words,
$H^{0}(\mathcal{F}) \cong H^{0}\left(K_{C}-D\right) \oplus H^{0}\left(K_{C}-p\right)$ and $H^{1}(\mathcal{F}) \cong H^{1}\left(K_{C}-D\right) \oplus H^{1}\left(K_{C}-p\right)$.
This means that, for any such bundle, the domain of the Petri map $\mu_{\mathcal{F}}$ coincides with that of $\mu_{\mathcal{F}_{0}}$, where $\mathcal{F}_{0}:=\left(K_{C}-D\right) \oplus\left(K_{C}-p\right)$ corresponds to the zero vector in $\mathcal{W}_{1} \subset \operatorname{Ext}^{1}\left(K_{C}-p, K_{C}-D\right)$. We will concentrate on $\mu_{\mathcal{F}_{0}}$; observe that

$$
\begin{aligned}
H^{0}\left(\mathcal{F}_{0}\right) \otimes H^{0}\left(\omega_{C} \otimes \mathcal{F}_{0}^{*}\right) & \cong\left(H^{0}\left(K_{C}-D\right) \otimes H^{0}(D)\right) \oplus\left(H^{0}\left(K_{C}-D\right) \otimes H^{0}(p)\right) \\
& \oplus\left(H^{0}\left(K_{C}-p\right) \otimes H^{0}(D)\right) \oplus\left(H^{0}\left(K_{C}-p\right) \otimes H^{0}(p)\right)
\end{aligned}
$$

Moreover,

$$
\omega_{C} \otimes \mathcal{F}_{0} \otimes \mathcal{F}_{0}^{*} \cong K_{C} \oplus\left(K_{C}+p-D\right) \oplus\left(K_{C}+D-p\right) \oplus K_{C}
$$

Therefore, for Chern classes reason,

$$
\mu_{\mathcal{F}_{0}}=\mu_{0, D} \oplus \mu_{K_{C}-D, p} \oplus \mu_{K_{C}-p, D} \oplus \mu_{0, p},
$$

where the maps

$$
\begin{array}{rc}
\mu_{0, D}: & H^{0}(D) \otimes H^{0}\left(K_{C}-D\right) \rightarrow H^{0}\left(K_{C}\right), \\
\mu_{K_{C}-D, p}: & H^{0}\left(K_{C}-D\right) \otimes H^{0}(p) \rightarrow H^{0}\left(K_{C}-D+p\right), \\
\mu_{K_{C}-p, D}: & H^{0}\left(K_{C}-p\right) \otimes H^{0}(D) \rightarrow H^{0}\left(K_{C}+D-p\right), \\
\mu_{0, p}: & H^{0}(p) \otimes H^{0}\left(K_{C}-p\right) \rightarrow H^{0}\left(K_{C}\right)
\end{array}
$$

are natural multiplication maps. Since $h^{0}(D)=h^{0}(p)=1$, the maps $\mu_{0, D}, \mu_{K_{C}-D, p}$, $\mu_{K_{C}-p, D} \mu_{0, p}$ are all injective and so is $\mu_{\mathcal{F}_{0}}$. By semicontinuity on $\mathcal{W}_{1}$, one has that $\mu_{\mathcal{F}}$ is injective, for $\mathcal{F}$ general in $\widehat{\mathcal{W}}_{1}$.

The previous argument shows that a general $\mathcal{F} \in \operatorname{im}(\pi)$ is contained in only one irreducible component, say $B_{\mathrm{reg}}$, of $B_{d}^{k_{2}}$ for which

$$
\begin{aligned}
\operatorname{dim} B_{\mathrm{reg}}=\operatorname{dim} T_{\mathcal{F}}\left(B_{\mathrm{reg}}\right) & =4 g-3-h^{0}(\mathcal{F}) h^{1}(\mathcal{F}) \\
& =4 g-3-2(d-2 g+4)=8 g-11-2 d,
\end{aligned}
$$

i.e., $B_{\mathrm{reg}}$ is generically smooth and of dimension $\rho_{d}^{k_{2}}$.

To conclude that $B_{\text {reg }}$ is the closure of $\operatorname{im}(\pi)$, it suffices to show that the rational map $\pi$ is generically finite onto its image. To do this, let $F=\mathbb{P}\left(\mathcal{F}_{u}\right)$ be the ruled surface, for general $\mathcal{F}_{u} \in \widehat{\mathcal{W}}_{1}^{\text {Tot }}$, and let $\Gamma$ be the section corresponding to the quotient $\mathcal{F}_{u} \rightarrow K_{C}-p$. Then its normal bundle is $N_{\Gamma / F} \simeq D-p$, which has no sections. Thus, one deduces the generic finiteness of $\pi$ by reasoning as in the proof of Proposition 3.4
3.3. No other reduced components of dimension at least $\rho_{d}^{k_{2}}$. In this section, we will show that no other reduced components of $B_{d}^{k_{2}}$, having dimension at least $\rho_{d}^{k_{2}}=8 g-11-2 d$, exist except for $B_{\text {reg }}$ and $B_{\text {sup }}$ constructed in the previous sections.

Let $B \subset B_{d}^{k_{2}}$ be any reduced component with $\operatorname{dim} B \geq \rho_{d}^{k_{2}}=8 g-11-2 d$. From Theorem 2.3, $\mathcal{F} \in B$ general fits in an exact sequence of the form

$$
\begin{equation*}
0 \rightarrow N \rightarrow \mathcal{F} \rightarrow L \rightarrow 0 \tag{3.8}
\end{equation*}
$$

where $L$ is a special, effective line bundle of degree $\delta \leq d$, i.e., $l, j>0$ and $h^{1}(\mathcal{F}) \geq 2$.

We first focus on the case of $h^{1}(\mathcal{F})=2$. We start with the following proposition.
Proposition 3.10. Let $B$ be any reduced component of $B_{d}^{k_{2}}$, with $\operatorname{dim} B \geq \rho_{d}^{k_{2}}$. For $\mathcal{F}$ general in $B$, assume that it fits in an exact sequence like (3.8), with $h^{1}(\mathcal{F})=$ $h^{1}(L)=2$. Then, $B$ coincides with the component $B_{\text {sup }}$ as in Section 3.1.

Proof. Since $\mathcal{F}$ is semistable, from (2.3) and (3.1) one has $\operatorname{deg} L \geq \frac{3 g-1}{2}$. Moreover, since $C$ is a general $\nu$-gonal curve and $h^{1}(L)=2$, from [1, Theorem 2.6] we have $\left|\omega_{C} \otimes L^{-1}\right|=g_{\nu}^{1}+B_{b}$, where $B_{b}$ is a base locus of degree $b$. Hence $L \simeq K_{C}-A-B_{b}$, where $b \leq \frac{g-3}{2}-\nu$. For simplicity, put $\delta:=\operatorname{deg} L=2 g-2-\nu-b$ so $\operatorname{deg} N=d-\delta$.

Since $B$ is reduced, one must have

$$
\operatorname{dim} B=\operatorname{dim} T_{\mathcal{F}} B
$$

for general $\mathcal{F} \in B$. We will prove the proposition by showing that $\operatorname{dim} B=\operatorname{dim} T_{\mathcal{F}} B$ can occur only if $L=K_{C}-A$ and $N$ is nonspecial, general of its degree.

Claim 3.11. $\operatorname{dim} B \leq \begin{cases}6 g-d-2 \nu-6-b & \text { if } h^{1}(N)=0, \\ 9 g-2 d-3 \nu-2 r-2 b-7 & \text { if } h^{1}(N) \geq 1 .\end{cases}$
Proof of Claim 3.11. We will use notation as in (2.2). Since $B$ is irreducible, all integers in (2.2) are constant for a general $\mathcal{F} \in B$. From (3.8) combined with $L=K_{C}-A-B_{b}$, it follows there exists an open dense subset $S$ of a closed subvariety of $\operatorname{Pic}^{d-\delta} \times C^{(b)}$ and a projective bundle $\mathcal{P} \rightarrow S$, whose general fiber identifies with $\mathbb{P}=\mathbb{P}\left(H^{0}\left(K_{C}+L-N\right)^{*}\right)=\mathbb{P}\left(\operatorname{Ext}^{1}(L, N)\right) \cong \mathbb{P}^{m-1}$, where $m:=\operatorname{dim}\left(\operatorname{Ext}^{1}(L, N)\right)$. Since $h^{1}(\mathcal{F})=h^{1}(L)$, as in [3, Sect. 6], the component $B$ has to be the image of $\mathcal{P}$
via a dominant rational map

$$
\begin{array}{lll}
\mathcal{P} & \xrightarrow{\pi} & B \subset B_{d}^{k_{2}} \\
\downarrow & & \\
S & &
\end{array}
$$

(cf. [3, Sect. 6] for details). Therefore we obtain $\operatorname{dim} B \leq \operatorname{dim} \mathcal{P}=\operatorname{dim} S+m-1$ since $\mathcal{P}$ is a projective bundle over $S$ whose general fiber is $(m-1)$-dimensional. Specifically, if $r \geq 1$, then $S$ is a subset of $W_{d-\delta}^{d-\delta-g+r} \times C^{(b)}$, the latter being equivalent to $W_{2 g-2+\delta-d}^{r-1} \times C^{(b)}$ by Serre duality, and $\operatorname{dim} W_{2 g-2+\delta-d}^{r-1} \leq 2 g-2+\delta-$ $d-2(r-1)$ by using Martens's theorem (cf. [2, Theorem 5.1]) for $r \geq 2$. Therefore, we get

$$
\operatorname{dim} S \leq \begin{cases}g+b & \text { if } r=0 \\ 2 g-2+\delta-d-2 r+2+b & \text { if } r \geq 1\end{cases}
$$

This inequality, combined with (2.4), gives

$$
\operatorname{dim} B \leq \begin{cases}(g+b)+2 \delta-d+g-2 & \text { if } r=0 \\ (2 g-2+\delta-d-2 r+2+b)+2 \delta-d+g-1 & \text { if } r \geq 1\end{cases}
$$

since a nonspecial line bundle cannot be isomorphic to a special one. By substituting $\delta=2 g-2-\nu-b$, we get the conclusion of Claim 3.11.

Claim 3.12. $\operatorname{dim} T_{\mathcal{F}}(B) \geq 6 g-d-2 \nu-2 r-6$.
Proof of Claim 3.12. The tangent space $T_{\mathcal{F}}(B)$ is the orthogonal space to the image of the Petri map:

$$
\mu_{\mathcal{F}}: H^{0}(\mathcal{F}) \otimes H^{0}\left(\omega_{C} \otimes \mathcal{F}^{*}\right) \rightarrow H^{0}\left(\omega_{C} \otimes \mathcal{F}^{*} \otimes \mathcal{F}\right)
$$

so $\operatorname{dim} T_{\mathcal{F}}(B)=\operatorname{dim}\left(\operatorname{im}\left(\mu_{\mathcal{F}}\right)^{\perp}\right)=h^{0}\left(K_{C} \otimes F^{*} \otimes F\right)-h^{0}(\mathcal{F}) h^{1}(\mathcal{F})+\operatorname{dim} \operatorname{ker} \mu_{\mathcal{F}}$.
From the exact sequence (3.8), we get $H^{0}(\mathcal{F}) \simeq H^{0}(N) \oplus W$, where $W:=$ $\operatorname{im}\left(H^{0}(\mathcal{F}) \rightarrow H^{0}(L)\right)$. Since $H^{1}(\mathcal{F}) \simeq H^{1}(L)$, the connecting homomorphism in (3.8) is surjective, hence $\operatorname{dim} W=l-r=h^{0}(L)-h^{1}(N)$. Let $\mu_{N, \omega_{C} \otimes L^{-1}}$ and $\mu_{0, W}$ be the maps defined as follows:

$$
\begin{aligned}
& \mu_{N, \omega_{C} \otimes L^{-1}}: \\
& H^{0}(N) \otimes H^{0}\left(\omega_{C} \otimes L^{-1}\right) \rightarrow H^{0}\left(N \otimes \omega_{C} \otimes L^{-1}\right), \\
& \mu_{0, W}:
\end{aligned} \quad W \otimes H^{0}\left(\omega_{C} \otimes L^{-1}\right) \hookrightarrow H^{0}(L) \otimes H^{0}\left(\omega_{C} \otimes L^{-1}\right) \rightarrow H^{0}\left(\omega_{C}\right) .
$$

Then we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} \mu_{\mathcal{F}} \geq \operatorname{dim} \operatorname{ker} \mu_{N, \omega_{C} \otimes L^{-1}}+\operatorname{dim} \operatorname{ker} \mu_{0, W} \tag{3.9}
\end{equation*}
$$

by the following commutative diagram:

| $H^{0}(\mathcal{F}) \otimes H^{0}\left(\omega_{C} \otimes \mathcal{F}^{*}\right)$ |  | $\xrightarrow{\mu_{\mathcal{F}}}$ | $H^{0}\left(\omega_{C} \otimes \mathcal{F} \otimes \mathcal{F}^{*}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \uparrow \beta \\ H^{0}\left(\omega_{C}\right) \end{gathered}$ |
|  | $\left(H^{0}(N) \oplus W\right) \otimes H^{0}\left(\omega_{C} \otimes L^{-1}\right)$ |  |  |  |

where the map $\beta$ comes from the trivial section of $H^{0}\left(\mathcal{F} \otimes \mathcal{F}^{*}\right)$ after tensoring via $\omega_{C}$. To explain the map $\alpha$, if one takes the diagram determined by the exact sequence (3.8) and its dual sequence and tensors it by $\omega_{C}$, one gets


The map $\alpha$ is the composition of the two injections

$$
H^{0}\left(\omega_{C} \otimes N \otimes L^{-1}\right) \hookrightarrow H^{0}\left(\omega_{C} \otimes \mathcal{F} \otimes L^{-1}\right) \hookrightarrow H^{0}\left(\omega_{C} \otimes \mathcal{F} \otimes \mathcal{F}^{*}\right)
$$

Since $K_{C}-L=A+B_{b}$, by the basepoint-free pencil trick, we have

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \mu_{N, \omega_{C}} \otimes L^{-1} & =h^{0}(N-A)
\end{aligned}=\operatorname{deg} N-\operatorname{deg} A-g+h^{0}\left(K_{C}-N+A\right)+1 .
$$

From $\operatorname{dim} W=h^{0}(L)-r$, it follows that $\operatorname{dim} \operatorname{ker} \mu_{0, W} \geq \operatorname{dim} \operatorname{ker} \mu_{0}(L)-2 r$, where

$$
\mu_{0}(L): H^{0}(L) \otimes H^{0}\left(K_{C}-L\right) \rightarrow H^{0}\left(K_{C}\right)
$$

To compute dim $\operatorname{ker} \mu_{0}(L)$, we apply once again the basepoint-free pencil trick which gives

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \mu_{0}(L) & =h^{0}(L-A)=h^{0}\left(K_{C}-2 A-B_{b}\right) \\
& =2 g-2-2 \nu-b-g+h^{0}\left(2 A+B_{b}\right)+1 \\
& \geq g-2 \nu-b+2
\end{aligned}
$$

the latter inequality following from the fact that $h^{0}\left(2 A+B_{b}\right) \geq 3$. Hence, from (3.9), one has

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \mu_{\mathcal{F}} & \geq d-3 g+3+b+g-2 \nu-b+2-2 r \\
& =d-2 g-2 \nu-2 r+5
\end{aligned}
$$

The previous inequality gives $\operatorname{dim} T_{\mathcal{F}}(B) \geq 6 g-d-2 \nu-2 r-6$, proving Claim 3.12

Assume that $h^{1}(N) \geq 1$. Then, Claims 3.11 and 3.12 and (3.1) imply that

$$
\operatorname{dim} T_{\mathcal{F}} B-\operatorname{dim} B \geq d-3 g+\nu+2 b+1 \geq \nu+2 b
$$

Thus the equality $\operatorname{dim} B=\operatorname{dim} T_{\mathcal{F}} B$ cannot occur for $h^{1}(N) \geq 1$; therefore, $N$ must be nonspecial. In this case, $\operatorname{dim} B=\operatorname{dim} T_{\mathcal{F}} B$ holds if and only if $b=0$ and $N$ is general of its degree. Consequently, the proposition is proved.

Thus, the only remaining case is the following proposition.

Proposition 3.13. Let $B$ be any reduced component of $B_{d}^{k_{2}}$, with $\operatorname{dim} B \geq \rho_{d}^{k_{2}}$. Assume that a general element $\mathcal{F}$ of $B$ fits in the following exact sequence:

$$
\begin{equation*}
0 \rightarrow N \rightarrow \mathcal{F} \rightarrow L \rightarrow 0 \tag{3.10}
\end{equation*}
$$

where $h^{1}(\mathcal{F})=2$ and $h^{1}(L)=1$. Then, $B$ coincides with the component $B_{\mathrm{reg}}$ as in Section 3.2.

Proof. We will use notation as in (2.2). Since $B$ is irreducible, all integers in (2.2) are constant for a general $\mathcal{F} \in B$. Then $\frac{3 g-1}{2} \leq \delta \leq 2 g-2$, since $L$ is special and $\mathcal{F}$ is semistable. Hence

$$
\begin{equation*}
g-1 \leq \operatorname{deg} N=d-\delta \leq d / 2 \leq 2 g-3 \nu . \tag{3.11}
\end{equation*}
$$

By (3.10), the line bundle $N$ is special and the corresponding coboundary map $\partial$ is of corank one. As in the proof of Proposition 3.10 for a suitable open dense subset $S$ of $W_{2 g-2+\delta-d}^{r-1} \times C^{(2 g-2-\delta)}$, one has a projective bundle $\mathbb{P}(\mathcal{E}) \rightarrow S$ whose general fiber is $\widehat{\mathcal{W}}_{1}:=\mathbb{P}\left(\mathcal{W}_{1}\right)$, where $\mathcal{W}_{1}:=\left\{u \in \operatorname{Ext}^{1}(L, N) \mid \operatorname{corank}\left(\partial_{u}\right) \geq 1\right\}$. Then the component $B$ is the image of $\mathcal{P}$ via a dominant rational map $\mathcal{P} \xrightarrow{\pi} B \subset B_{d}^{k_{2}}$ (cf. [3, Sect. 6] for details). Hence

$$
\operatorname{dim} B \leq \operatorname{dim} W_{2 g-2-d+\delta}^{r-1}+2 g-2-\delta+\operatorname{dim} \widehat{\mathcal{W}}_{1}
$$

Since from (3.11) $\operatorname{deg}\left(K_{C}-N\right) \leq g-1$, by Martens's theorem [2, Thm. (5.1)] we obtain

$$
\operatorname{dim} W_{2 g-2+\delta-d}^{r-1} \leq \begin{cases}2 g-2-d+\delta=\operatorname{deg}\left(K_{C}-N\right) & \text { if } r=1, \\ 2 g-2-d+\delta-2 r+1 & \text { if } r \geq 2\end{cases}
$$

Note that $m \geq g+2 \delta-d-1$ by (2.4), where $m:=\operatorname{dim}\left(\operatorname{Ext}^{1}(L, N)\right)$. Thus it follows that $l \geq r$ and $m \geq l+1$ since $l=h^{0}(L)=\delta-g+2 \geq \frac{g+3}{2}$ and $r-1 \leq \frac{\operatorname{deg}\left(K_{C}-N\right)}{2}$. Applying Theorem 3.6, we get $\operatorname{dim} \widehat{\mathcal{W}}_{1}=m-l+r-2=m-\delta+g+r-4$, whence

$$
\begin{aligned}
\operatorname{dim} B & \leq \operatorname{dim} W_{2 g-2-d+\delta}^{r-1}+(2 g-2-\delta)+m-\delta+g+r-4 \\
& \leq \begin{cases}5 g-d-\delta-7+m & \text { if } r=1, \\
5 g-d-\delta-r-7+m & \text { if } r \geq 2\end{cases}
\end{aligned}
$$

Assume that $r \geq 2$; this implies that $N$ cannot be isomorphic to $L$. Therefore (2.4) gives $m=2 \delta-d+g-1$. Thus we have

$$
\rho_{d}^{k_{2}} \leq \operatorname{dim} B \leq 6 g-2 d+\delta-r-8
$$

which cannot occur since $\rho_{d}^{k_{2}}=8 g-2 d-11$ and $\delta \leq 2 g-2$. Therefore, we must have $r=1$. Then by (2.4) we get

$$
\operatorname{dim} B \leq \begin{cases}(5 g-d-\delta-7)+2 \delta-d+g-1 & \text { if } L \nsubseteq N,  \tag{3.12}\\ (5 g-d-\delta-7)+g & \text { if } L \cong N\end{cases}
$$

If $L \cong N$, then we have $8 g-2 d-11 \leq \operatorname{dim} B \leq 6 g-d-\delta-7$, which yields $\operatorname{deg} N=d-\delta \geq 2 g-4$. This is a contradiction to (3.11). Accordingly, we have $L \nsupseteq N$, and hence by (3.12),

$$
8 g-2 d-11 \leq \operatorname{dim} B \leq 6 g-2 d+\delta-8
$$

which implies $\delta \geq 2 g-3$. Since $L$ is a special line bundle, it turns out that either $L \simeq K_{C}$ or $L \simeq K_{C}(-p)$ for some $p \in C$.

If $L \simeq K_{C}$, let $\Gamma$ be the section of the ruled surface $F=\mathbb{P}(\mathcal{F})$ corresponding to the quotient $\mathcal{F} \rightarrow K_{C}$; then $\operatorname{dim}\left|\mathcal{O}_{F}(\Gamma)\right|=1$ by [3, (2.6)] and the fact that $h^{1}(\mathcal{F})=2$. By [3, Prop. 2.12] any such $\mathcal{F}$ admits; therefore $K_{C}-p$ as a quotient line bundle, for some $p \in C$. This completes the proof since $N$ is special.

Remark 3.14.
(i) From the proof of Proposition 3.13, it also follows that $K_{C}-p$ is minimal among special quotient line bundles for $\mathcal{F}$ general in the component $B_{\text {reg }}$, completely proving Theorem 3.1(i).
(ii) Notice moreover that, from the same proof, $\mathcal{F}$ general in $B_{\text {reg }}$ also admits a presentation via a canonical quotient, i.e., $0 \rightarrow K_{C}-D-p \rightarrow \mathcal{F} \rightarrow K_{C} \rightarrow 0$, which on the other hand is not via a quotient line bundle of $\mathcal{F}$ of minimal degree among special quotients and whose residual presentation coincides with that in the proof of [10, Theorem], i.e., $0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{E} \rightarrow L \rightarrow 0$, where $\mathcal{E}=\omega_{C} \otimes \mathcal{F}^{*}$ and $L=\mathcal{O}_{C}(D+p)$. In other words, the component $B_{\text {reg }}$ coincides with that in [10, Theorem]; the minimality of $K_{C}-p$ for $\mathcal{F}$ reflects in our Theorem 1.2 (i) via a special section of $\mathcal{E}$ whose zero locus is of degree one.

We now consider the case $h^{1}(\mathcal{F})=i \geq 3$.
Proposition 3.15. There is no reduced component of $B_{d}^{k_{2}}$ whose general member $\mathcal{F}$ is of speciality $i \geq 3$.
Proof. If $\mathcal{F} \in B_{d}^{k_{2}}$ is such that $h^{1}(\mathcal{F})=i \geq 3$, then by the Riemann-Roch theorem $h^{0}(\mathcal{F})=d-2 g+2+i=k_{2}+(i-2)=k_{i}>k_{2}$. Thus $\mathcal{F} \in \operatorname{Sing}\left(B_{d}^{k_{2}}\right)($ cf. [2, p. 189]). Therefore the statement follows.

## Acknowledgments

The authors thank KIAS and the Dipartimento di Matematica Universita' di Roma "Tor Vergata" for the warm atmosphere and their hospitality during the collaboration and the preparation of this article.

## References

[1] Enrico Arbarello and Maurizio Cornalba, Footnotes to a paper of Beniamino Segre: "On the modules of polygonal curves and on a complement to the Riemann existence theorem", The number of $g_{d}^{1}$ 's on a general $d$-gonal curve, and the unirationality of the Hurwitz spaces of 4-gonal and 5-gonal curves, (Italian) [Math. Ann. 100 (1928), 537-551; Jbuch 54, 685], Math. Ann. 256 (1981), no. 3, 341-362. MR626954
[2] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR770932
[3] Ciro Ciliberto and Flaminio Flamini, Extensions of line bundles and Brill-Noether loci of rank-two vector bundles on a general curve, Rev. Roumaine Math. Pures Appl. 60 (2015), no. 3, 201-255. MR3436265
[4] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, SpringerVerlag, New York-Heidelberg, 1977. MR 0463157
[5] H. Lange and M. S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983), no. 1, 55-72. MR722927
[6] G. Laumon, Fibrés vectoriels spéciaux (French, with English summary), Bull. Soc. Math. France 119 (1991), no. 1, 97-119. MR 1101941
[7] C. Keem and S. Kim, On the Clifford index of a general ( $e+2$ )-gonal curve, Manuscripta Math. 63 (1989), no. 1, 83-88. MR975470
[8] Seonja Kim, On the Clifford sequence of a general $k$-gonal curve, Indag. Math. (N.S.) 8 (1997), no. 2, 209-216. MR 1621995
[9] Narasimhan Sundaram, Special divisors and vector bundles, Tohoku Math. J. (2) $\mathbf{3 9}$ (1987), no. 2, 175-213. MR887936
[10] Montserrat Teixidor i Bigas, Brill-Noether theory for vector bundles of rank 2, Tohoku Math. J. (2) 43 (1991), no. 1, 123-126. MR 1088719

Department of Mathematics Education, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea

Email address: ychoi824@yu.ac.kr
Dipartimento di Matematica, Universita' degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica-00133 Roma, Italy

Email address: flamini@mat.uniroma2.it
Department of Electronic Engineering, Chungwoon University, Sukgol-ro, Nam-gu, Incheon, 22100, Republic of Korea

Email address: sjkim@chungwoon.ac.kr

