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BRILL–NOETHER LOCI OF RANK 2 VECTOR BUNDLES ON A

GENERAL ν-GONAL CURVE

YOUNGOOK CHOI, FLAMINIO FLAMINI, AND SEONJA KIM

(Communicated by Jerzy M. Weyman)

Abstract. In this paper we study the Brill Noether locus of rank 2,
(semi)stable vector bundles with at least two sections and of suitable degrees
on a general ν-gonal curve. We classify its reduced components whose di-
mensions are at least the corresponding Brill–Noether number. We moreover
describe the general member F of such components only in terms of extensions
of line bundles with suitable minimality properties, providing information on

the birational geometry of such components as well as on the very ampleness
of F .

1. Introduction

Let C denote a smooth, irreducible, complex projective curve of genus g ≥ 2.
As in the statement of [10, Theorem] (cf. also Theorem 1.1 below), C is said to
be general if C is a curve with general moduli (cf., e.g., [2], pp. 214–215). Let
UC(n, d) be the moduli space of semistable, degree d, rank n vector bundles on C
and let Us

C(n, d) be the open dense subset of stable bundles (when d is odd, more
precisely one has UC(n, d) = Us

C(n, d)). Let Bk
n,d ⊆ UC(n, d) be the Brill–Noether

locus which consists of vector bundles F having h0(F) ≥ k, for a positive integer k.

Traditionally, we denote by W k
d the Brill–Noether locus Bk+1

1,d of line bundles

L ∈ Picd(C) having h0(L) ≥ k+1, for a nonnegative integer k. With little abuse of
notation, we will sometimes identify line bundles with corresponding divisor classes,
interchangeably using multiplicative and additive notation.

For the case of rank 2 vector bundles, we simply put Bk
d := Bk

2,d, for which it

is well known that the dimension of Bk
d ∩ Us

C(2, d) is at least the Brill–Noether
number ρkd := 4g − 3 − ik, where i := k + 2g − 2 − d (cf. [9]). This is no longer
true for possible components of Bk

d in UC(2, d)\Us
C(2, d), i.e., not containing stable

points, which can occur only for d even (cf. [3, Remark 3.3] for more explanations
and details).
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In the range 0 ≤ d ≤ 2g−2, B1
d has been deeply studied on any curve C by several

authors (cf. [6, 9]). Concerning B2
d , using a degeneration argument, N. Sundaram

[9] proved that B2
d is nonempty for any C and for odd d such that g ≤ d ≤ 2g − 3.

M. Teixidor I Bigas generalizes Sundaram’s result as follows.

Theorem 1.1 ([10]). Given a nonsingular curve C and a d, 3 ≤ d ≤ 2g − 1,
B2

d ∩ Us
C(2, d) has a component of dimension ρ2d = 2d − 3 and a generic point

on it corresponds to a vector bundle whose space of sections has dimension 2 and
the generic section has no zeroes. If C is general, this is the only component of
B2

d ∩ Us
C(2, d). Moreover, B2

d ∩ Us
C(2, d) has extra components if and only if W 1

n is
nonempty and dimW 1

n ≥ d+ 2n− 2g − 1 for some n with 2n < d.

Inspired by Theorem 1.1, in this paper we focus on B2
d for C a general ν-gonal

curve of genus g, i.e., C corresponds to a general point of the ν-gonal stratum
M1

g,ν ⊂ Mg. Precisely, we prove the following.

Theorem 1.2. Let C be a general ν-gonal (3 ≤ ν ≤ g+8
4 ) curve of genus g and let

A be the unique line bundle of degree ν and h0(A) = 2. For any positive integer d
with 2 + 2ν ≤ d ≤ g − 3, the reduced components of B2

d having dimension at least
ρ2d are only two, which we denote by Breg and Bsup:

(i) Breg is generically smooth, of dimension ρ2d = 2d − 3 (regular for short).
Moreover, F general in Breg is stable, fitting in an exact sequence

0 → OC(p) → F → L → 0,

where p ∈ C and L ∈ W 0
d−1 are general and where h0(F) = 2.

(ii) Bsup is generically smooth, of dimension d+2g− 2ν − 2 > ρ2d (superabun-
dant for short). Moreover, F general in Bsup is stable, fitting in an exact
sequence

0 → A → F → L → 0,

where L is a general line bundle of degree d− ν and h0(F) = 2.

A more precise statement of this result is given in Theorem 3.1 for its residual

version (i.e., concerning the isomorphic Brill–Noether locus B2g−d
4g−4−d). Indeed, for

any nonnegative integer i, if one sets ki := d− 2g + 2 + i and

Bki

d := {F ∈ UC(2, d) | h0(F) ≥ ki} = {F ∈ UC(2, d) | h1(F) ≥ i},

one has natural isomorphisms Bki

d 	 Bi
4g−4−d, arising from the correspondence

F → ωC ⊗ F∗, Serre duality, and semistability (cf. Section 2.2). The key ingredi-
ents of our approach are the geometric theory of extensions introduced by Atiyah,
Newstead, Lange-Narasimhan et al. (cf., e.g., [5]), Theorem 2.3 below, and suitable
parametric computations involving special and effective quotient line bundles and
related families of sections of ruled surfaces, which make sense in the setup of The-
orem 3.1. Finally, by Theorems 1.1 and 1.2, we can also see that a general vector
bundle in Breg admits a special section whose zero locus is of degree one while its
general section has no zeros (cf. the proof of [10, Theorem] and Remark 3.14(ii)
below).

For standard terminology, we refer the reader to [4].
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2. Preliminaries

2.1. Preliminary results on general ν-gonal curves. In this section we will
review some results concerning line bundles on general ν-gonal curves, which will
be used in the paper.

Lemma 2.1 (cf. [7, Corollary 1]). On a general ν-gonal curve of genus g ≥ 2ν−2,
with ν ≥ 3, there does not exist a grν−2+2r with ν − 2 + 2r ≤ g − 1, r ≥ 2.

The Clifford index of a line bundle L on a curve C is defined by

Cliff(L) := deg(L)− 2(h0(L)− 1).

Theorem 2.2 ([8], Theorem 2.1). Let C be a general ν-gonal curve of genus g ≥ 4,
let ν ≥ 4, and let g1ν be the unique pencil of degree ν on C. If C has a line bundle
L with Cliff(L) ≤ g−4

2 and degL ≤ g − 1, then |L| = (dim |L|)g1ν + B, for some
effective divisor B.

2.2. Segre invariant and semistable vector bundles. Given a rank 2 vector
bundle F on C, the Segre invariant s1(F) ∈ Z of F is defined by

s1(F) = min
N⊂F

{degF − 2 degN} ,

where N runs through all the subline bundles of F . It easily follows from the
definition that s1(F) = s1(F ⊗ L), for any line bundle L, and s1(F) = s1(F∗),
where F∗ denotes the dual bundle of F . A subline bundle N ⊂ F is called a
maximal subline bundle of F if degN is maximal among all subline bundles of F .
In such a case F/N is a minimal quotient line bundle of F , i.e., is of minimal degree
among quotient line bundles of F . In particular, F is semistable (resp., stable) if
and only if s1(F) ≥ 0 (resp., s1(F) > 0).

2.3. Extensions, secant varieties, and semistable vector bundles. Let δ be
a positive integer. Consider L ∈ Picδ(C) and N ∈ Picd−δ(C). The extension
space Ext1(L,N) parametrizes isomorphism classes of extensions, and any element
u ∈ Ext1(L,N) gives rise to a degree d, rank 2 vector bundle Fu, fitting in an exact
sequence

(2.1) (u) : 0 → N → Fu → L → 0.

We fix once and for all the following notation:

j := h1(L), l := h0(L) = δ − g + 1 + j,(2.2)

r := h1(N), n := h0(N) = d− δ − g + 1 + r.

In order to get Fu semistable, a necessary condition is

(2.3) 2δ − d ≥ s1(Fu) ≥ 0.

In such a case, the Riemann–Roch theorem gives

(2.4) dim(Ext1(L,N)) =

{
2δ − d+ g − 1 if L � N,

g if L ∼= N.

Since we deal with special vector bundles, i.e., h1(Fu) > 0, they always admit a
special quotient line bundle. Recall the following theorem.
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Theorem 2.3 ([3], Lemma 4.1). Let F be a semistable, special, rank 2 vector
bundle on C of degree d ≥ 2g − 2. Then there exist a special, effective line bundle
L on C of degree δ ≤ d, N ∈ Picd−δ(C), and u ∈ Ext1(L,N) such that F = Fu as
in Subsection 2.1.

Tensor (2.1) by N−1 and consider Ge := Fu ⊗N−1, which fits in

(e) : 0 → OC → Ge → L−N → 0,

where e ∈ Ext1(L−N,OC), so deg(Ge) = 2δ−d. Then (u) and (e) define the same
point in P := P(H0(KC + L−N)∗). When the map ϕ := ϕ|KC+L−N | : C → P is a
morphism, set X := ϕ(C) ⊂ P. For any positive integer h denote by Sech(X) the
hst-secant variety of X, defined as the closure of the union of all linear subspaces
〈ϕ(D)〉 ⊂ P, for general divisors D of degree h on C. One has

dim(Sech(X)) = min{dim(P), 2h− 1}.

Theorem 2.4 ([5, Proposition 1.1]). Let 2δ − d ≥ 2; then ϕ is a morphism and,
for any integer s ≡ 2δ − d (mod 2) such that 4 + d− 2δ ≤ s ≤ 2δ − d, one has

s1(Ee) ≥ s ⇔ e /∈ Sec 1
2 (2δ−d+s−2)(X).

3. The main result

In this section C will denote a general ν-gonal curve of genus g ≥ 4 and A the
unique line bundle of degree ν with h0(A) = 2. As explained in the Introduction,
from now on we will be concerned with the residual version of Theorem 1.2; therefore
we set

3 ≤ ν ≤ g + 8

4
and 3g − 1 ≤ d ≤ 4g − 6− 2ν,(3.1)

where d is an integer. For suitable line bundles L and N on C, we consider rank 2
vector bundles F arising as extensions. We will give conditions on L and N under
which F is general in a certain component of the Brill–Noether locus Bk2

d , where
k2 = d− 2g + 4 as in the Introduction. We moreover show that L is a quotient of
F with suitable minimality properties. Finally, we prove the following theorem.

Theorem 3.1. The reduced components of Bk2

d having dimension at least ρk2

d are
only two, which we denote by Breg and Bsup:

(i) The component Breg is regular, i.e., generically smooth and of dimension

ρk2

d = 8g − 2d − 11. A general element F of Breg is stable, fitting in an
exact sequence

(3.2) 0 → KC −D → F → KC − p → 0,

where p ∈ C and D ∈ C(4g−5−d) are general. Specifically, s1(F) ≥ 1 (resp.,
2) if d is odd (resp., even). Moreover, KC − p is minimal among special
quotient line bundles of F , and F is very ample for ν ≥ 4.

(ii) The component Bsup is generically smooth, of dimension 6g− d− 2ν − 6 >

ρk2

d , i.e., Bsup is superabundant. A general element F of Bsup is stable,
very ample, and fitting in an exact sequence

(3.3) 0 → N → F → KC −A → 0,

for N ∈ Picd−2g+2+ν(C) general. Moreover, s1(F) = 4g − 4 − d − 2ν and
KC −A is a minimal quotient of F .
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Proof. In Sections 3.1 and 3.2 we will construct the components Bsup and Breg,
respectively, and prove all the statements in Theorem 3.1 except for the minimality
property of KC−p in (i) and the uniqueness of Bsup and Breg, which will be proved
in Section 3.3. �

Remark 3.2.
(i) As explained in the Introduction, Theorem 3.1 and the natural isomorphism

Bk2

d 	 B2
4g−4−d also give a proof of Theorem 1.2.

(ii) It is well known how the study of rank 2 vector bundles on curves is related to
that of (surface) scrolls in projective space. Therefore, the very ampleness condition
in Theorem 3.1 is a key for the study of components of Hilbert schemes of smooth
scrolls, in a suitable projective space, dominating M1

g,ν . This will be the subject
of a forthcoming paper.

3.1. The superabundant component Bsup. In this section we first construct the
component Bsup as in Theorem 3.1. We consider the line bundle L := KC − A ∈
W g−ν

2g−2−ν and a general N ∈ Picd−2g+2+ν(C); since d− 2g+2+ ν ≥ g+1+ ν from

(3.1), in particular h1(N) = 0. We first need the following preliminary result.

Lemma 3.3. Let N ∈ Picd−2g+2+ν(C) be general. Then, for a general u ∈
Ext1(KC −A,N), the corresponding rank 2 vector bundle Fu is stable with:

(a) h1(Fu) = h1(KC −A) = 2;
(b) s1(Fu) = 4g − 4 − 2ν − d; more precisely, KC − A is a minimal quotient

line bundle of Fu;
(c) Fu is very ample.

Proof. To ease notation, set L = KC−A and δ := degL. To show that Fu is stable,
note that the upper bound on d in (3.1) implies 2δ − d = 2(2g − 2− ν)− d ≥ 2; so
we are in a position to apply Theorem 2.4. We consider the natural morphism

ϕ := ϕ|KC+L−N | : C−→P := P(Ext1(L,N)).

Set X := ϕ(C). Let s be an integer such that s ≡ 2δ−d (mod 2) and 0 < s ≤ 2δ−d.
Since s ≤ 2δ − d = 4g − 4− 2ν − d < g − 3, we have

dim
(
Sec 1

2 (2δ−d+s−2)(X)
)
= 2δ − d+ s− 3 < 2δ − d+ g − 2 = dim(P),

where the last equality follows from (2.4) and L � N . One can therefore take
s = 2δ − d so that the general Fu arising from (3.3) is of degree d, with h1(Fu) =
h1(L) = 2, and it is stable, since s1(Fu) = 2δ−d = 4g−4−2ν−d ≥ 2; the equality
s1(Fu) = 2δ−d follows from Theorem 2.4 and from (3.3). This proves the stability
of Fu together with (a) and (b).

Finally, to prove (c), observe first that KC −A is very ample: indeed, if KC −A
is not very ample, by the Riemann–Roch theorem there exists a g2ν+2 on C. This

is contrary to Lemma 2.1, since the hypothesis 3 ≤ ν ≤ g+8
4 implies g ≥ 2ν − 2 +

(2ν−6) ≥ 2ν−2. At the same time, since deg(N) = d−2g+2+ν ≥ g+4 by (3.1),
a general N is also very ample. Thus any Fu as in (3.3) is very ample, too. �

We now want to show that vector bundles constructed in Lemma 3.3 fill up the
component Bsup, as N varies in Picd−2g+2+ν(C). To do this, we need to consider
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a parameter space of rank 2 vector bundles on C, arising as extensions of KC − A
by N , as N varies. If N → Picd−2g+2+ν(C)×C is a Poincaré line bundle, we have
the following diagram:

Picd−2g+2+ν(C) C

Picd−2g+2+ν(C)× C
�

�
�

��

�
�
�

��

N

�

p1 p2

KC −A
�

�
��

Set Ed,ν := R1p1∗(N ⊗p∗2(A−KC)). By [2, pp. 166–167], Ed,ν is a vector bundle on

a suitable open, dense subset S ⊆ Picd−2g+2+ν(C) of rank dimExt1(KC −A,N) =
5g − 5 − 2ν − d as in (2.4), since KC − A � N . Consider the projective bundle

P(Ed,ν) → S, which is the family of P
(
Ext1(KC −A,N)

)
’s as N varies in S. One

has

dimP(Ed,ν) = g + (5g − 5− 2ν − d)− 1 = 6g − 6− 2ν − d.

Consider the natural (rational) map

P(Ed,ν)
πd,ν��� UC(2, d),

(N, u) → Fu;

from Lemma 3.3 we know that im(πd,ν) ⊆ Bk2

d ∩ Us
C(2, d).

Proposition 3.4. The closure Bsup of im(πd,ν) in UC(2, d) is a generically smooth

component of Bk2

d , having dimension 6g− 6− 2ν − d. In particular, Bsup is super-
abundant.

Proof. The result will follow once we prove that

dimTF (B
k2

d ) = dimBsup,

for a general F in im(πd,ν). First we claim that dimBsup = 6g−6−2ν−d. Indeed,
let Γ ⊂ F = P(Fu) be the section corresponding to the quotient Fu →→ KC − A.
Its normal bundle is NΓ/F 	 KC − A − N (cf. [4, Sect. V, Prop. 2.9]). Since N

is general of degree at least g + 4 by (3.1), we have h0(KC − A − N) = 0; in
other words Γ is an algebraically isolated section of F . This guarantees that πd,ν

is generically finite (for more details see the proof of [3, Lemma 6.2] and apply the
same arguments). Hence we get dim im(πd,ν) = 6g − 6− 2ν − d.

Now we prove that dimTF (B
k2

d ) = 6g − 6 − 2ν − d. To show this, consider the
Petri map of a general F ∈ im(πd,ν):

μF : H0(F)⊗H0(ωC ⊗F∗) → H0(ωC ⊗F ⊗ F∗).

By (3.3) and h1(N) = 0, we have

H0(F) 	 H0(N)⊕H0(KC − A) and H0(ωC ⊗F∗) 	 H0(A).

Thus μF reads as(
H0(N)⊕H0(KC −A)

)
⊗ H0(A)

μF−→ H0(ωC ⊗F ⊗ F∗).
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Consider the following natural multiplication maps:

μA,N : H0(N)⊗H0(A) → H0(N +A),(3.4)

μ0,A : H0(KC −A)⊗H0(A) → H0(KC).(3.5)

Claim 3.5. ker(μF ) 	 ker(μ0,A)⊕ ker(μA,N ).

Proof of Claim 3.5. Consider the exact diagram

0 0 0

↓ ↓ ↓
0 → N +A−KC → F ⊗ (A−KC) → OC → 0

↓ ↓ ↓
0 → N ⊗F∗ → F ⊗F∗ → (KC −A)⊗ F ∗ → 0

↓ ↓ ↓
0 → OC → F ⊗N−1 → (KC −A)⊗N−1 → 0

↓ ↓ ↓
0 0 0

which arises from (3.3) and its dual sequence 0 → A − KC → F∗ 	
F(A − KC − N) → N−1 → 0. If we tensor the column in the middle by ωC ,
we get H0(F ⊗A) ↪→ H0(ωC ⊗ F ⊗ F∗).

Observe, moreover, that H0(N + A) ⊕ H0(KC) 	 H0(F ⊗ A), which follows
from (3.3) tensored by A and the fact that h1(N + A) = 0. Therefore, there is no
intersection between im(μ0,A) and im(μA,N ), and the statement is proved. �

By Claim 3.5,

dimTF (B
k2

d ) = 4g − 3− h0(F)h1(F) + dim(kerμF )

= 4g − 3− 2(d− 2g + 4) + dim(ker(μ0(A))) + dim(ker(μA,N )).

From (3.4) and (3.5), we have

ker(μ0,A) 	 H0(KC − 2A) ∼= H1(2A)∗ and ker(μA,N ) 	 H0(N −A),

as it follows from the basepoint-free pencil trick. Under the numerical assumption
ν ≤ g+8

4 , from Theorem 2.2 we have h0(2A) = 3, which implies h1(2A) = g+2−2ν.
The inequality degN ≥ g + 1+ ν given by (3.1) and the generality of N show that
h1(N −A) = 0, which yields h0(N −A) = d− 3g + 3. So we have

dimTF (B
k2

d ) = 4g − 3− 2(d− 2g + 4) + (g + 2− 2ν) + (d− 3g + 3)

= 6g − 6− 2ν − d = dimBsup.

To complete the proof, it suffices to observe that ρk2

d = 8g−11−2d ≤ 5g−10−d <
6g − 6− 2ν − d, as it follows by (3.1). �

3.2. The regular component Breg. In this subsection we construct the regular
component Breg as in Theorem 3.1. In what follows, we use notation as in (2.2),
i.e., l = h0(L), j = h1(L), r = h1(N), which will be considered all positive (cf.
Theorem 2.3 for L). For any exact sequence (u) as in (2.1), let ∂u : H0(L) → H1(N)
be the corresponding coboundary map. For any integer t > 0, consider

(3.6) Wt := {u ∈ Ext1(L,N) | corank(∂u) ≥ t} ⊆ Ext1(L,N),
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which has a natural structure of determinantal scheme; its expected codimension
is t(l − r + t) (cf. [3, Sect. 5.2]). In this setup, one has the following theorem.

Theorem 3.6 ([3, Theorem 5.8 and Corollary 5.9]). Let C be a smooth curve of
genus g ≥ 3. Let

r = h1(N) ≥ 1, l = h0(L) ≥ max{1, r − 1}, m := dim(Ext1(L,N)) ≥ l + 1.

Then, we have:

(i) l − r + 1 ≥ 0.
(ii) W1 is irreducible of (expected) dimension m− (l − r + 1).
(iii) if l ≥ r, then W1 ⊂ Ext1(L,N). Moreover for general u ∈ Ext1(L,N), ∂u

is surjective, whereas for general w ∈ W1, corank(∂w) = 1.

To construct Breg, observe first that by (3.1) W 0
4g−5−d is not empty or irre-

ducible and that h0(D) = 1, for general D ∈ W 0
4g−5−d. We will prove the following

preliminary result.

Lemma 3.7. Let both D ∈ W 0
4g−5−d and p ∈ C be general and let W1 ⊆

Ext1(KC −p,KC −D) be as in (3.6). Then, for u ∈ W1 general, the corresponding
rank 2 vector bundle Fu is stable, with:

(a) h1(Fu) = 2;
(b) s1(F) ≥ 1 (resp., 2) if d is odd (resp., even);
(c) Fu is very ample when ν ≥ 4.

Proof. From the assumptions we have

(3.7)

(u): 0 → KC −D → F → KC − p → 0

deg d− 2g + 3 d 2g − 3

h0 d− 3g + 5 g − 1

h1 1 1

By (3.1) degD = 4g − d − 5 ≥ 2ν + 1; therefore KC −D � KC − p. Thus, using
(2.4) and notation as in Theorem 3.6, one has

l = g − 1, r = 1 and m = dimExt1(KC − p,KC −D) = 5g − 7− d.

By (3.1) one has d ≤ 4g− 7, so m ≥ l+1 = g. Hence we can apply Theorem 3.6 to

W1 = {u ∈ Ext1(KC − p,KC −D) | corank(∂u) ≥ 1},
which therefore is irreducible, of (expected) dimension dimW1 = m−1(l−r+1) =
4g − 6 − d. Moreover, by Theorem 3.6(iii) and formula (3.7), for general u ∈ W1

one has h1(Fu) = 2, which proves (a).
We now want to show that Fu also satisfies (b), for u ∈ W1 general; in particular,

it is stable. To do this, set P := P
(
Ext1(KC − p,KC −D)

)
and consider the

projective scheme Ŵ1 := P(W1) ⊂ P, which therefore has dimension 4g − 7 − d.
Posing δ := 2g−3 and considering (3.1), one has 2δ−d ≥ 2ν ≥ 6. We are therefore

in a position to apply Theorem 2.4. We consider the natural morphism C
ϕ−→ P,

given by the complete linear system |KC+D−p|. Set X = ϕ (C), as in the proof of
Lemma 3.3. Let s be an integer such that s ≡ 2δ − d (mod 2) and 0 ≤ s ≤ 2δ − d.
Then we have

dimSec 1
2 (2δ−d+s−2)(X) = 2δ − d+ s− 3 = 4g − 9− d+ s ≤ 4g − 7− d = dim Ŵ1
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if and only if s ≤ 2, where the equality holds if and only if s = 2.
Therefore, for d odd, by Theorem 2.4 one has s1(Fu) ≥ 1 for u ∈ W1 general; in

particular, Fu is stable and (b) is proved in this case.
For d even, if one dualizes the exact sequence (3.2) and tensors via ωC , one gets

(e) : 0 → p → Ee := F∗
u ⊗ ωC → D → 0,

where (e) defines the same point as (u) in the projective space P; in particular,
s1(Fu) = s1(Ee) (cf. Section 2.2) and h0(Ee) = 2, by Serre duality and the fact

that (u) ∈ Ŵ1. Following the same strategy as in the first part of the proof of
[10, Theorem], one deduces that (e) belongs to the linear span 〈ϕ(D)〉 ⊂ P. On the
other hand, any point x ∈ 〈ϕ(D)〉 gives rise to an extension,

(x) : 0 → p → Ex → D → 0,

which belongs to Ŵ1, since h
0(Ex) = 2 (cf. diagram (2) and the subsequent details in

the proof of [10, Theorem]). Thus 〈ϕ(D)〉 ⊆ Ŵ1. By the Riemann–Roch theorem,

dim〈ϕ(D)〉 = h0(KC +D − p)− h0(KC − p)− 1 = 4g − 7− d = dim Ŵ1.

Since they are both closed and irreducible, one gets Ŵ1 = 〈ϕ(D)〉. On the other
hand,

Sec 1
2 (2δ−d+2−2)(X) = Sec 1

2 (4g−6−d)(X),

which is of dimension 4g− 7− d, too, is nondegenerate in P as X ⊂ P is not. Thus,

we conclude that Ŵ1 �= Sec 1
2 (4g−6−d)(X). In particular, from Theorem 2.4, for a

general u ∈ Ŵ1 one has s1(Fu) ≥ 2, so Fu is stable and (b) is also proved in this
case.

To prove (c) observe first that, since ν ≥ 4 by assumption, KC −p is very ample,
as it follows by the Riemann–Roch theorem. Now we have the following claim.

Claim 3.8. For general D ∈ W 0
4g−5−d, KC −D is very ample if ν ≥ 4.

Proof of Claim 3.8. Assume by contradiction that KC − D is not very ample for
general D ∈ W 0

4g−5−d. For a nonnegative integer τ , define the following:

Ξτ := {(D, p+ q) ∈ W 0
4g−5−d ×W 0

2 | h0(D + p+ q) = τ + 1}.
If Ξτ �= ∅, then we have the diagram

W 0
4g−5−d W τ

4g−3−d

Ξτ

�
�

�
��

�
�
�
��

πτ ℘τ

which is given by πτ (D, p+q) := D and ℘τ (D, p+q) := D+p+q. The assumption
implies that, for some τ ∈ {1, 2}, the image of πτ is dense in W 0

4g−5−d. Considering
the map ℘τ , we get dimΞτ ≤ dimW τ

4g−3−d + τ . By Martens’s and Mumford’s

theorems (cf. [2, Thm. (5.1), (5.2)]), we have dimW τ
4g−3−d ≤ 4g − 5 − d − 2τ ,

since C is a general ν-gonal curve with ν ≥ 4 and 4g − 3 − d ≤ g − 2 by (3.1). In
summation, it turns out that

dimW 0
4g−5−d ≤ dimΞr ≤ 4g − 5− d− τ,

which cannot occur. This completes the proof of the claim. �
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The above arguments prove (c) and complete the proof of the lemma. �

To construct the component Breg notice that, as in Section 3.1, one has a pro-
jective bundle P(Ed) → S, where S ⊆ W 0

4g−5−d×C is a suitable open dense subset:

P(Ed) is the family of P(Ext1(KC − p,KC −D))’s as (D, p) ∈ S varies. Since, for

any such (D, p) ∈ S, Ŵ1 is irreducible of constant dimension 4g− 7− d, one has an

irreducible subscheme ŴTot
1 ⊂ P(Ed) which therefore has dimension

dim ŴTot
1 = dimS + 4g − 7− d = 4g − d− 4 + 4g − 7− d = 8g − 2d− 11 = ρk2

d .

From Lemma 3.7, one has the natural (rational) map

ŴTot
1

π��� UC(d),
(D, p, u) −→ Fu,

and im(π) ⊂ Bk2

d ∩ Us
C(2, d).

Proposition 3.9. The closure Breg of im(π) in UC(2, d) is a generically smooth

component of Bk2

d with dimension ρk2

d = 8g − 11− 2d, i.e., Breg is regular.

Proof. From the fact that im(π) contains stable bundles, any component of Bk2

d

containing it has dimension at least ρk2

d . We concentrate in computing dimTF (B
k2

d ),
for general F ∈ im(π). Consider the Petri map

μF : H0(F)⊗H0(ωC ⊗F∗) → H0(ωC ⊗F ⊗ F∗)

for a general F ∈ im(π). From diagram (3.7) and the fact that F = Fu, for some

u in some fiber Ŵ1 of ŴTot
1 , one has that the corresponding coboundary map ∂u

is the zero-map; in other words,

H0(F) ∼= H0(KC −D)⊕H0(KC −p) and H1(F) ∼= H1(KC −D)⊕H1(KC −p).

This means that, for any such bundle, the domain of the Petri map μF coincides
with that of μF0

, where F0 := (KC −D)⊕ (KC − p) corresponds to the zero vector
in W1 ⊂ Ext1(KC − p,KC −D). We will concentrate on μF0

; observe that

H0(F0)⊗H0(ωC ⊗F∗
0 )

∼=
(
H0(KC −D)⊗H0(D)

)
⊕
(
H0(KC −D)⊗H0(p)

)
⊕
(
H0(KC − p)⊗H0(D)

)
⊕
(
H0(KC − p)⊗H0(p)

)
.

Moreover,

ωC ⊗F0 ⊗F∗
0
∼= KC ⊕ (KC + p−D)⊕ (KC +D − p)⊕KC .

Therefore, for Chern classes reason,

μF0
= μ0,D ⊕ μKC−D,p ⊕ μKC−p,D ⊕ μ0,p,

where the maps

μ0,D : H0(D)⊗H0(KC −D) → H0(KC),

μKC−D,p : H0(KC −D)⊗H0(p) → H0(KC −D + p),

μKC−p,D : H0(KC − p)⊗H0(D) → H0(KC +D − p),

μ0,p : H0(p)⊗H0(KC − p) → H0(KC)

are natural multiplication maps. Since h0(D)=h0(p)=1, the maps μ0,D, μKC−D,p,
μKC−p,D μ0,p are all injective and so is μF0

. By semicontinuity on W1, one has

that μF is injective, for F general in Ŵ1.
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The previous argument shows that a general F ∈ im(π) is contained in only one

irreducible component, say Breg, of B
k2

d for which

dimBreg = dimTF (Breg) = 4g − 3− h0(F)h1(F)

= 4g − 3− 2(d− 2g + 4) = 8g − 11− 2d,

i.e., Breg is generically smooth and of dimension ρk2

d .
To conclude that Breg is the closure of im(π), it suffices to show that the rational

map π is generically finite onto its image. To do this, let F = P(Fu) be the ruled

surface, for general Fu ∈ ŴTot
1 , and let Γ be the section corresponding to the

quotient Fu →→ KC − p. Then its normal bundle is NΓ/F 	 D − p, which has no
sections. Thus, one deduces the generic finiteness of π by reasoning as in the proof
of Proposition 3.4. �

3.3. No other reduced components of dimension at least ρk2

d . In this section,

we will show that no other reduced components of Bk2

d , having dimension at least

ρk2

d = 8g − 11 − 2d, exist except for Breg and Bsup constructed in the previous
sections.

Let B ⊂ Bk2

d be any reduced component with dimB ≥ ρk2

d = 8g−11−2d. From
Theorem 2.3, F ∈ B general fits in an exact sequence of the form

(3.8) 0 → N → F → L → 0,

where L is a special, effective line bundle of degree δ ≤ d, i.e., l, j > 0 and
h1(F) ≥ 2.

We first focus on the case of h1(F) = 2. We start with the following proposition.

Proposition 3.10. Let B be any reduced component of Bk2

d , with dimB ≥ ρk2

d .
For F general in B, assume that it fits in an exact sequence like (3.8), with h1(F) =
h1(L) = 2. Then, B coincides with the component Bsup as in Section 3.1.

Proof. Since F is semistable, from (2.3) and (3.1) one has degL ≥ 3g−1
2 . Moreover,

since C is a general ν-gonal curve and h1(L) = 2, from [1, Theorem 2.6] we have
|ωC⊗L−1| = g1ν+Bb, where Bb is a base locus of degree b. Hence L 	 KC−A−Bb,
where b ≤ g−3

2 − ν. For simplicity, put δ := degL = 2g− 2− ν− b so degN = d− δ.
Since B is reduced, one must have

dimB = dimTFB

for general F ∈ B. We will prove the proposition by showing that dimB = dimTFB
can occur only if L = KC −A and N is nonspecial, general of its degree.

Claim 3.11. dimB ≤
{
6g − d− 2ν − 6− b if h1(N) = 0,

9g − 2d− 3ν − 2r − 2b− 7 if h1(N) ≥ 1.

Proof of Claim 3.11. We will use notation as in (2.2). Since B is irreducible, all
integers in (2.2) are constant for a general F ∈ B. From (3.8) combined with
L = KC−A−Bb, it follows there exists an open dense subset S of a closed subvariety
of Picd−δ ×C(b) and a projective bundle P → S, whose general fiber identifies with
P = P(H0(KC +L−N)∗) = P(Ext1(L,N)) ∼= Pm−1, where m := dim(Ext1(L,N)).
Since h1(F) = h1(L), as in [3, Sect. 6], the component B has to be the image of P
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via a dominant rational map

P π��� B ⊂ Bk2

d

↓
S

(cf. [3, Sect. 6] for details). Therefore we obtain dimB ≤ dimP = dimS +m − 1
since P is a projective bundle over S whose general fiber is (m − 1)-dimensional.

Specifically, if r ≥ 1, then S is a subset of W d−δ−g+r
d−δ × C(b), the latter being

equivalent to W r−1
2g−2+δ−d×C(b) by Serre duality, and dimW r−1

2g−2+δ−d ≤ 2g−2+δ−
d−2(r−1) by using Martens’s theorem (cf. [2, Theorem 5.1]) for r ≥ 2. Therefore,
we get

dimS ≤
{
g + b if r = 0,

2g − 2 + δ − d− 2r + 2 + b if r ≥ 1.

This inequality, combined with (2.4), gives

dimB ≤
{
(g + b) + 2δ − d+ g − 2 if r = 0,

(2g − 2 + δ − d− 2r + 2 + b) + 2δ − d+ g − 1 if r ≥ 1,

since a nonspecial line bundle cannot be isomorphic to a special one. By substituting
δ = 2g − 2− ν − b, we get the conclusion of Claim 3.11. �

Claim 3.12. dimTF (B) ≥ 6g − d− 2ν − 2r − 6.

Proof of Claim 3.12. The tangent space TF (B) is the orthogonal space to the image
of the Petri map:

μF : H0(F)⊗H0(ωC ⊗F∗) → H0(ωC ⊗F∗ ⊗F),

so dimTF (B) = dim(im(μF)
⊥) = h0(KC ⊗ F ∗ ⊗ F )− h0(F)h1(F) + dimkerμF .

From the exact sequence (3.8), we get H0(F) 	 H0(N) ⊕ W , where W :=
im(H0(F) → H0(L)). Since H1(F) 	 H1(L), the connecting homomorphism in
(3.8) is surjective, hence dimW = l− r = h0(L)−h1(N). Let μN,ωC⊗L−1 and μ0,W

be the maps defined as follows:

μN,ωC⊗L−1 : H0(N)⊗H0(ωC ⊗ L−1) → H0(N ⊗ ωC ⊗ L−1),

μ0,W : W ⊗H0(ωC ⊗ L−1) ↪→ H0(L)⊗H0(ωC ⊗ L−1) → H0(ωC).

Then we have

(3.9) dim kerμF ≥ dimkerμN,ωC⊗L−1 + dimkerμ0,W

by the following commutative diagram:

H0(F)⊗H0(ωC ⊗F∗) �μF
H0(ωC ⊗ F ⊗ F∗)

�‖

(H0(N)⊕W )⊗H0(ωC⊗L−1) (H0(N)⊗H0(ωC ⊗ L−1))⊕ (W ⊗H0(ωC ⊗ L−1))�

H0(ωC)H0(ωC ⊗ L−1 ⊗N)

μN,ωC⊗L−1 μ0,W� �

� �
α β

∼=
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where the map β comes from the trivial section of H0(F ⊗ F∗) after tensoring
via ωC . To explain the map α, if one takes the diagram determined by the exact
sequence (3.8) and its dual sequence and tensors it by ωC , one gets

0 0 0

↓ ↓ ↓
0 → ωC ⊗N ⊗ L−1 → ωC ⊗F ⊗ L−1 → ωC → 0

↓ ↓ ↓
0 → ωC ⊗N ⊗F∗ → ωC ⊗F ⊗ F∗ → ωC ⊗ L⊗F∗ → 0

↓ ↓ ↓
0 → ωC → ωC ⊗F ⊗N−1 → ωC ⊗ L⊗N−1 → 0

↓ ↓ ↓
0 0 0

The map α is the composition of the two injections

H0(ωC ⊗N ⊗ L−1) ↪→ H0(ωC ⊗F ⊗ L−1) ↪→ H0(ωC ⊗F ⊗ F∗).

Since KC − L = A+Bb, by the basepoint-free pencil trick, we have

dimkerμN,ωC⊗L−1 = h0(N − A) = degN − degA− g + h0(KC −N +A) + 1

≥ d− δ − ν − g + 1 = d− 3g + 3 + b.

From dimW = h0(L)− r, it follows that dimkerμ0,W ≥ dimkerμ0(L)− 2r, where

μ0(L) : H
0(L)⊗H0(KC − L) → H0(KC).

To compute dim kerμ0(L), we apply once again the basepoint-free pencil trick which
gives

dim kerμ0(L) = h0(L−A) = h0(KC − 2A−Bb)

= 2g − 2− 2ν − b− g + h0(2A+Bb) + 1

≥ g − 2ν − b+ 2,

the latter inequality following from the fact that h0(2A + Bb) ≥ 3. Hence, from
(3.9), one has

dim kerμF ≥ d− 3g + 3 + b+ g − 2ν − b+ 2− 2r

= d− 2g − 2ν − 2r + 5.

The previous inequality gives dimTF (B) ≥ 6g − d − 2ν − 2r − 6, proving Claim
3.12. �

Assume that h1(N) ≥ 1. Then, Claims 3.11 and 3.12 and (3.1) imply that

dimTFB − dimB ≥ d− 3g + ν + 2b+ 1 ≥ ν + 2b.

Thus the equality dimB = dimTFB cannot occur for h1(N) ≥ 1; therefore, N
must be nonspecial. In this case, dimB = dimTFB holds if and only if b = 0 and
N is general of its degree. Consequently, the proposition is proved. �

Thus, the only remaining case is the following proposition.



3246 YOUNGOOK CHOI, FLAMINIO FLAMINI, AND SEONJA KIM

Proposition 3.13. Let B be any reduced component of Bk2

d , with dimB ≥ ρk2

d .
Assume that a general element F of B fits in the following exact sequence:

(3.10) 0 → N → F → L → 0,

where h1(F) = 2 and h1(L) = 1. Then, B coincides with the component Breg as in
Section 3.2.

Proof. We will use notation as in (2.2). Since B is irreducible, all integers in (2.2)
are constant for a general F ∈ B. Then 3g−1

2 ≤ δ ≤ 2g − 2, since L is special and
F is semistable. Hence

(3.11) g − 1 ≤ degN = d− δ ≤ d/2 ≤ 2g − 3ν.

By (3.10), the line bundle N is special and the corresponding coboundary map ∂ is
of corank one. As in the proof of Proposition 3.10, for a suitable open dense subset
S of W r−1

2g−2+δ−d ×C(2g−2−δ), one has a projective bundle P(E) → S whose general

fiber is Ŵ1 := P(W1), where W1 := {u ∈ Ext1(L,N) | corank(∂u) ≥ 1}. Then

the component B is the image of P via a dominant rational map P π��� B ⊂ Bk2

d

(cf. [3, Sect. 6] for details). Hence

dimB ≤ dimW r−1
2g−2−d+δ + 2g − 2− δ + dim Ŵ1.

Since from (3.11) deg(KC −N) ≤ g − 1, by Martens’s theorem [2, Thm. (5.1)] we
obtain

dimW r−1
2g−2+δ−d ≤

{
2g − 2− d+ δ = deg(KC −N) if r = 1,

2g − 2− d+ δ − 2r + 1 if r ≥ 2.

Note that m ≥ g+2δ−d−1 by (2.4), where m := dim(Ext1(L,N)). Thus it follows

that l ≥ r and m ≥ l+1 since l = h0(L) = δ−g+2 ≥ g+3
2 and r−1 ≤ deg(KC−N)

2 .

Applying Theorem 3.6, we get dim Ŵ1 = m− l+ r− 2 = m− δ+ g+ r− 4, whence

dimB ≤ dimW r−1
2g−2−d+δ + (2g − 2− δ) +m− δ + g + r − 4

≤
{
5g − d− δ − 7 +m if r = 1,

5g − d− δ − r − 7 +m if r ≥ 2.

Assume that r ≥ 2; this implies that N cannot be isomorphic to L. Therefore
(2.4) gives m = 2δ − d+ g − 1. Thus we have

ρk2

d ≤ dimB ≤ 6g − 2d+ δ − r − 8,

which cannot occur since ρk2

d = 8g − 2d − 11 and δ ≤ 2g − 2. Therefore, we must
have r = 1. Then by (2.4) we get

(3.12) dimB ≤
{

(5g − d− δ − 7) + 2δ − d+ g − 1 if L � N,

(5g − d− δ − 7) + g if L ∼= N.

If L ∼= N , then we have 8g − 2d − 11 ≤ dimB ≤ 6g − d − δ − 7, which yields
degN = d − δ ≥ 2g − 4. This is a contradiction to (3.11). Accordingly, we have
L � N , and hence by (3.12),

8g − 2d− 11 ≤ dimB ≤ 6g − 2d+ δ − 8,

which implies δ ≥ 2g − 3. Since L is a special line bundle, it turns out that either
L 	 KC or L 	 KC(−p) for some p ∈ C.
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If L 	 KC , let Γ be the section of the ruled surface F = P(F) corresponding
to the quotient F →→ KC ; then dim |OF (Γ)| = 1 by [3, (2.6)] and the fact that
h1(F) = 2. By [3, Prop. 2.12] any such F admits; therefore KC − p as a quotient
line bundle, for some p ∈ C. This completes the proof since N is special. �
Remark 3.14.

(i) From the proof of Proposition 3.13, it also follows that KC − p is minimal
among special quotient line bundles for F general in the component Breg, completely
proving Theorem 3.1(i).

(ii) Notice moreover that, from the same proof, F general in Breg also admits
a presentation via a canonical quotient, i.e., 0 → KC − D − p → F → KC → 0,
which on the other hand is not via a quotient line bundle of F of minimal degree
among special quotients and whose residual presentation coincides with that in
the proof of [10, Theorem], i.e., 0 → OC → E → L → 0, where E = ωC ⊗ F∗

and L = OC(D + p). In other words, the component Breg coincides with that in
[10, Theorem]; the minimality of KC − p for F reflects in our Theorem 1.2(i) via a
special section of E whose zero locus is of degree one.

We now consider the case h1(F) = i ≥ 3.

Proposition 3.15. There is no reduced component of Bk2

d whose general member
F is of speciality i ≥ 3.

Proof. If F ∈ Bk2

d is such that h1(F) = i ≥ 3, then by the Riemann–Roch theorem

h0(F) = d−2g+2+i = k2+(i−2) = ki > k2. Thus F ∈ Sing(Bk2

d ) (cf. [2, p. 189]).
Therefore the statement follows. �
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