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ON THE EXISTENCE OF PERIODIC SOLUTIONS

FOR A FRACTIONAL SCHRÖDINGER EQUATION

VINCENZO AMBROSIO

(Communicated by Joachim Krieger)

Abstract. We present an elementary proof of the existence of a nontrivial
weak periodic solution for a nonlinear fractional problem driven by a rela-
tivistic Schrödinger operator with periodic boundary conditions and involv-
ing a periodic continuous subcritical nonlinearity satisfying a more general
Ambrosetti-Rabinowitz condition.

1. Introduction

In this note we deal with the existence of nontrivial weak periodic solutions for
the following nonlinear fractional problem:

(1.1)

{
[(−Δ+m2)s −m2s + μ]u = f(x, u) in (−π, π)N ,
u(x+ 2πei) = u(x) for all x ∈ R

N , i = 1, . . . , N,

where m > 0, μ > 0, s ∈ (0, 1), N > 2s, and f : RN × R → R is a continuous
function with f(·, 0) = 0 and satisfying suitable growth assumptions.

Here, the fractional Schrödinger operator (−Δ + m2)s is a nonlocal operator

which can be defined for any u =
∑

k∈ZN ck
eık·x

(2π)
N
2

∈ C∞
2π(R

N ), that is, u is infinitely

differentiable in R
N and 2π-periodic in each variable, by setting

(1.2) (−Δ+m2)su(x) =
∑
k∈ZN

ck(|k|2 +m2)s
eık·x

(2π)
N
2

,

where ck := 1

(2π)
N
2

∫
(−π,π)N

u(x)e−ık·xdx (k ∈ Z
N ) are the Fourier coefficients of

the function u.
This operator can be extended by density on the Hilbert space

H
s
2π :=

{
u =

∑
k∈ZN

ck
eık·x

(2π)
N
2

∈ L2(−π, π)N :
∑
k∈ZN

(|k|2 +m2)s |ck|2 < +∞
}

endowed with the norm |u|Hs
2π

:=
(∑

k∈ZN (|k|2 +m2)s|ck|2
)1/2

.
When m = 0, the operator in (1.2) arises in models with periodic boundary

conditions; see [11, 12, 17]. In R
N , one of the reasons for studying the operator

(−Δ+m2)s is related to its physical meaning. Indeed, when s = 1/2, the operator
(−Δ + m2)1/2 − m corresponds to the free Hamiltonian of a relativistic particle
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with mass m; see [18]. There is also a deep connection between (−Δ+m2)s −m2s

and the theory of Lévy processes; such operator is the infinitesimal generator of a
relativistic 2s-stable process {Xm

t }t≥0, that is, a Lévy process with characteristic
function given by

E(eiξ·X
m
t ) := e−t[(m2+|ξ|2)s−m2s] (ξ ∈ R

N );

further details can be found in [7]. However, as observed in [25], the operators
(−Δ+m2)s on R

N and (1.2) are not the same, but coincide in the case in which
the domain is a torus.

More generally, the study of fractional and nonlocal operators has received a
lot of interest in the last decade in both pure and applied mathematical research.
In fact, these operators appear in several concrete real-world applications, such
as phase transitions, flames propagation, chemical reaction in liquids, population
dynamics, American options in finance, and crystal dislocation; see [13, 19].

Nonlinear problems involving nonlocal operators are currently actively studied.
Servadei and Valdinoci in [24] investigated the existence of nontrivial solutions
for equations driven by a nonlocal integro-differential operator with homogeneous
Dirichlet boundary conditions and in the presence of a subcritical nonlinearity sat-
isfying the Ambrosetti-Rabinowitz condition. Felmer et al. [15] proved existence,
regularity, and symmetry properties of positive solutions for a fractional Schrödinger
equation in R

N with a subcritical nonlinearity. Barrios et al. [6] dealt with the
existence of positive solutions for a critical problem under the effect of lower order
perturbations and involving the spectral Laplacian in a bounded domain. Dipierro
et al. [14] considered a fractional evolution equation arising in the Peierls-Nabarro
model for crystal dislocation. Pucci et al. [20] studied the existence of multi-
ple solutions for nonhomogeneous fractional p-Laplacian equations of Schrödinger-
Kirchhoff type with a nonlinearity verifying the Ambrosetti-Rabinowitz condition.
Roncal and Stinga [22, 23] established Harnack’s inequalities, regularity estimates,
and pointwise formulas for the fractional Laplacian on a torus. In [2–4], the author
obtained some existence results for superlinear fractional equations with periodic
boundary conditions via suitable versions of the Linking Theorem. We also mention
[5], in which the author and Molica Bisci proved the existence of multiple periodic
solutions for a nonlocal periodic problem by combining a variant of the Mountain
Pass Theorem and a local minimum result for differentiable functionals.

Motivated by the interest shared by the mathematical community in this topic,
the main goal of this paper is to investigate the existence of nontrivial periodic
solutions to (1.1) under the assumptions that the nonlinear term f satisfies growth
hypotheses weaker than those commonly used in the literature. More precisely,
we suppose that f(x, t) : RN × R → R is a continuous function, 2π-periodic in x,
f(·, 0) = 0, and verifies the following conditions:

(f1) There exist M > 0 and q ∈ (2, 2∗s) with 2∗s := 2N
N−2s , such that

|f(x, t)| ≤ M(1 + |t|q−1) for any x ∈ (−π, π)N and for all t ∈ R.

(f2) lim
t→0

F+(x, t)

|t|2 = 0 uniformly for x ∈ [−π, π]N , where F (x, t) =

∫ t

0

f(x, τ ) dτ

and F+ := max{F, 0}.
(f3) There is a compact set K ⊂ (−π, π)N with nonempty interior such that F

is bounded below on K × [0,∞), and there exists a sequence tn → ∞ such
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that

lim
n→∞

F (x, tn)

t2n
= ∞ for a.e. x ∈ K.

(f4) f(x, t)t ≥ 2F (x, t).
(f5) There are a constant α > 2 and a function σ ∈ L1(−π, π)N such that

f(x, t)t ≥ αF (x, t)

whenever F (x, t) ≥ σ(x).
Condition (f5) was first introduced in [21] to study the existence of nontrivial
solutions for semilinear elliptic problems with homogeneous Dirichlet boundary
conditions.

Let us point out that the standard Ambrosetti-Rabinowitz condition [1]

(1.3) f(·, t)t ≥ αF (·, t) if |t| ≥ R

with α > 2 and R ≥ 0 is a special case of assumption (f5) when σ is constant.
Indeed, it implies (f5) with any σ > max|t|≤R,x∈[−π,π]N F (x, t). We also note
that (f5) is more general than (1.3), even when σ is constant. For instance, if we

consider the function F̃ (τ ) = τ6
(
sin

(
1
τ2

)
+ 1

)
+ τ4, and we define the function

F (x, t) := F̃ (xt) for (x, t) ∈ (−π, π) × R, then F satisfies conditions (f2), (f3),

(f4), and (f5) with α = 3 and any large constant σ such that F̃ (τ ) ≥ σ implies

that F̃ ′(τ )τ ≥ 3F̃ (τ ). On the other hand, (1.3) fails for every α > 2 and R ≥ 0.
Now we state our main result.

Theorem 1. Let f : RN ×R → R be a continuous function, 2π-periodic in x, with
f(·, 0) = 0 and verifying the assumptions (f1)-(f5). Then there exists a nontrivial
weak periodic solution u ∈ H

s
2π to (1.1).

As customary in many fractional problems set in R
N or in bounded domain (see

[8–10,26]), we will work in an extended space, which reduces the fractional operator
to a local one, confining the nonlocal feature to a boundary reaction problem. As
proved in [2,3] (see also [22,26]), such a procedure works also in a periodic setting.

Therefore, instead of (1.1), we investigate the following degenerate elliptic prob-
lem:

(1.4)

⎧⎪⎨
⎪⎩

− div(y1−2s∇U) +m2y1−2sU = 0 in S2π,
U|{xi=−π} = U|{xi=π} on ∂LS2π,

∂1−2s
ν U = κs[m

2sU − μU + f(x, U)] on ∂0S2π,

where

κs = 21−2sΓ(1− s)

Γ(s)
and ∂1−2s

ν U := − lim
y→0+

y1−2s ∂U

∂y
(x, y)

is the conormal exterior derivative of U .
Taking into account the variational structure of (1.4), we seek critical points of

the energy functional J given by

J (U) =
1

2

[
‖U‖2

X
s
2π

− (m2s − μ)κs|Tr(U)|2L2(−π,π)N

]
− κs

∫
∂0S2π

F (x,Tr(U)) dx,
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defined on the Hilbert space X
s
2π, which is the closure of the set C∞

2π(R
N+1
+ ) of

smooth and 2π-periodic (in x) functions in R
N+1
+ with respect to the norm

‖U‖Xs
2π

:=
(∫∫

S2π

y1−2s(|∇U |2 +m2sU2) dxdy
)1/2

.

In order to prove the existence of a nontrivial weak solution to (1.4), we first verify
that J satisfies the assumptions of an abstract critical point result [21] (see also
[16, 27]), which guarantees the existence of a bounded Palais-Smale sequence (Un)
for functionals having a mountain pass geometry, and then we show that, up to a
subsequence, (Un) converges to a nontrivial solution U of (1.4).

The structure of the paper is the following: Section 2 contains some preliminary
results concerning the fractional periodic Sobolev spaces and the extension method
in a periodic setting, and in Section 3 we give the proof of Theorem 1.

2. Preliminaries

Throughout this paper, we denote the upper half-space in R
N+1 by

R
N+1
+ = {(x, y) ∈ R

N+1 : x ∈ R
N , y > 0}.

With S2π := (−π, π)N × (0,∞) we denote the half-cylinder in R
N+1
+ with basis

∂0S2π := (−π, π)N × {0} and lateral boundary ∂LS2π := ∂(−π, π)N × [0,+∞).
We also use the notation |u|r to denote the norm of any function u : RN → R in
Lr(−π, π)N .

Now, we recall the following fundamental results concerning the spaces Xs
2π and

H
s
2π.

Theorem 2 ([2,3]). There exists a surjective linear operator Tr : Xs
2π → H

s
2π such

that:

(i) Tr(U) = U |∂0S2π
for all U ∈ C∞

2π(R
N+1
+ ) ∩ X

s
2π;

(ii) Tr is bounded and

(2.1)
√
κs|Tr(U)|Hs

2π
≤ ‖U‖Xs

2π
,

for every U ∈ X
s
2π. In particular, equality holds in (2.1) for some v ∈ X

s
2π

if and only if v weakly solves the equation

− div(y1−2s∇U) +m2y1−2sU = 0 in S2π.

Theorem 3 ([2, 3]). Let N > 2s. Then Tr(Xs
2π) is continuously embedded in

Lq(−π, π)N for any 1 ≤ q ≤ 2�s. Moreover, Tr(Xs
2π) is compactly embedded in

Lq(−π, π)N for any 1 ≤ q < 2�s.

Taking into account Theorems 2 and 3, it is possible to introduce the notion of
extension for a function u ∈ H

s
2π. More precisely, we have the following result.

Theorem 4 ([2, 3]). Let u ∈ H
s
2π. Then, there exists a unique U ∈ X

s
2π such that⎧⎨

⎩
− div(y1−2s∇U) +m2y1−2sU = 0 in S2π,
U|{xi=−π} = U|{xi=π} on ∂LS2π,
U(·, 0) = u on ∂0S2π,

and

− lim
y→0+

y1−2s ∂U

∂y
(x, y) = κs(−Δ+m2)su(x) in H

−s
2π .
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We call U ∈ X
s
2π the extension of u ∈ H

s
2π, and we denote it by Ext(u). Moreover,

Ext(u) satisfies the following properties:

(i) Ext(u) is smooth for y > 0 and 2π-periodic in x;
(ii) ‖Ext(u)‖Xs

2π
≤ ‖V ‖Xs

2π
for any V ∈ X

s
2π such that Tr(V ) = u;

(iii) ‖Ext(u)‖Xs
2π

=
√
κs|u|Hs

2π
.

Therefore, we can reformulate the nonlocal problem (1.1) with periodic boundary
conditions in a local way according to the following definition.

Definition 1. We say that u ∈ H
s
2π is a weak solution to (1.1) if and only if

u = Tr(U) and U ∈ X
s
2π satisfies∫∫

S2π

y1−2s(∇U∇V +m2UV ) dxdy

= κs

∫
(−π,π)N

[(m2s − λ)Tr(U) + f(x,Tr(U))]Tr(V ) dx

for every V ∈ X
s
2π.

Remark 1. For simplicity, we will assume that κs = 1. Moreover, with abuse of
notation, we denote the trace of a function U : RN+1

+ → R by u; that is, u = Tr(U).

3. Periodic solutions to (1.4)

In this section we provide the proof of Theorem 1. To do this, we will exploit
the following useful result:

Theorem 5 ([21]). Let X be a Banach space, let Φ : X → R, and let Ψ : X → R

be C1-functionals. Set

J (U) = Φ(U)−Ψ(U) for all U ∈ X.

Assume that
(i) Φ is homogeneous of degree p > 1;
(ii) there exist U1, U2 ∈ X such that

max{J (U1),J (U2)} < c := inf
γ∈Γ

max
t∈[0,1]

J (γ(t)),

where Γ = {γ ∈ C0([0, 1], X) : γ(0) = U1, γ(1) = U2};
(iii) lim

‖u‖→+∞
Φ(U) = ∞;

(iv) Ψ′(U)U − pΨ(U) ≥ 0 for every u ∈ X;
(v) lim

Ψ(U)→∞
Ψ′(U)U − pΨ(U) = ∞.

Then J possesses a bounded Palais-Smale sequence at level c.

Let us introduce the functional J : Xs
2π → R defined by setting

J (U) := Φ(U)−Ψ(U) for all U ∈ X
s
2π

where

Φ(U) :=
1

2

[
‖U‖2

X
s
2π

− (m2s − μ)|u|22
]

and Ψ(U) :=

∫
(−π,π)N

F (x, u)dx.

In view of Theorem 3 and the assumptions on f , it is easy to see that Φ,Ψ ∈
C1(Xs

2π,R). Clearly Φ is homogeneous of degree 2. Moreover ‖U‖2
X

s
2π
−(m2s−μ)|u|22

is an equivalent norm to ‖ · ‖Xs
2π
.
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Indeed, by using ‖U‖2
X

s
2π

≥ m2s|u|22 for any U ∈ X
s
2π (see (2.1)), we have

min
{ μ

m2s
, 1
}
‖U‖2

X
s
2π

≤ ‖U‖2
X

s
2π

− (m2s − μ)|u|22 ≤ max
{ μ

m2s
, 1
}
‖U‖2

X
s
2π
,(3.1)

so we can define

‖U‖2e := ‖U‖2
X

s
2π

− (m2s − μ)|u|22.
Our claim is to prove that Φ and Ψ satisfy the assumptions of Theorem 5. Obviously
(i), (iii) are verified, and (iv) is satisfied in view of (f4). We check that condition
(ii) holds. Firstly, we note that by using (f1), we have

(3.2) 0 ≤ F+(x, t) ≤ M(|t|+ |t|q) for any x ∈ (−π, π)N , t ∈ R;

that is, the Nemytskii operator F+(·, u) maps Xs
2π into L1(−π, π)N .

Now, we show that there exists δ > 0 such that

(3.3) J (U) ≥ δ‖U‖2
X

s
2π

for U in some neighborhood of zero in X
s
2π. Since J (0) = 0 and

J (U) ≥ J+(U) :=
1

2
‖U‖2e −

∫
(−π,π)N

F+(x, u) dx,

we can prove (3.3) for J+ instead of J . By using (f1), (f2), (3.1), (3.2), and
Theorem 3, we deduce that for any ε > 0 there exists Cε > 0 such that

J+(U) =
1

2
‖U‖2e −

∫
Ω

F+(x, u) dx

≥ B‖U‖2
X

s
2π

− ε|u|22 − Cε|u|qq
≥ B‖U‖2

X
s
2π

−Aε‖U‖2
X

s
2π

−ACε‖U‖q
X

s
2π

= ‖U‖2
X

s
2π

[
(B −Aε)−ACε‖U‖q−2

X
s
2π

]
,

where 2B = min{ μ
m2s , 1} > 0 and A is a positive constant depending only on q, s,

N , and m.
Choosing ε= B

4A , we can deduce that J+(U)≥ B
4 ‖U‖2

X
s
2π

provided that ‖U‖Xs
2π
<

(B/2AC B
4A

)
1

q−2 .

This completes the proof of relation (3.3). Now, we fix ϕ ∈ C∞
2π(R

N ) such that
0 ≤ ϕ ≤ 1, suppϕ ⊂ K, and ϕ = 1 on Ω1, where Ω1 is some nonempty open subset
of the interior of K, and we take η ∈ C∞(R+) such that 0 ≤ η ≤ 1, η = 1 in [0, 1],
and η = 0 in [2,∞). Then V (x, y) := ϕ(x)η(y) ∈ X

s
2π and Tr(V ) = ϕ. Therefore,

we have the estimate

Ψ(tnV ) =

∫
Ω1

F (x, tnv) dx+

∫
K\Ω1

F (x, tnv) dx ≥
∫
Ω1

F (x, tn) dx+ λ|K \ Ω1|,

where λ is a lower bound for F on K× [0,∞), and the sequence {tn} ⊂ R is defined
as in (f3). Since |Ω1| > 0 and t−2

n F (x, tn) → +∞ a.e. on Ω1, by Fatou’s Lemma it

follows that limn→∞
Ψ(tnV )

t2n
= +∞.

As a consequence

Φ(tnV )−Ψ(tnV ) = t2n

[
‖V ‖2e
2

− t−2
n Ψ(tnV )

]
< 0(3.4)

for n big enough.
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In view of (3.3) and (3.4), and taking U1 = 0 and U2 = tn̄V (with n̄ large
enough), we can infer that condition (ii) is satisfied.

At this point, we only need to check (v). Let {Un} ⊂ X
s
2π be a sequence such

that limn→∞ Ψ(Un) = +∞.
Since

Ψ(Un) =

∫
{F (x,un)<σ(x)}

F (x, un) dx+

∫
{F (x,un)≥σ(x)}

F (x, un) dx

≤ |σ|1 +
∫
{F (x,un)≥σ(x)}

F (x, un) dx

we get

(3.5) lim
n→∞

∫
{F (x,un)≥σ(x)}

F (x, un) dx = +∞.

Taking into account (f4) and (f5), we obtain

Ψ′(Un)Un − 2Ψ(Un) =

∫
{F (x,un)<σ(x)}

[f(x, un)un − 2F (x, un)] dx

+

∫
{F (x,un)≥σ(x)}

[f(x, un)un − 2F (x, un)] dx

≥ (α− 2)

∫
{F (x,un)≥σ(x)}

F (x, un) dx,(3.6)

which together with (3.5) yields

lim
n→∞

Ψ′(Un)Un − 2Ψ(Un) = +∞

being α > 2.
Now, we are in the position to apply Theorem 5. Thus there exists a bounded

Palais-Smale sequence {Un} ⊂ X
s
2π such that

J (Un) → c > 0 and J ′(Un) → 0 as n → ∞,

where

c := inf
γ∈Γ

max
t∈[0,1]

J (γ(t)) and Γ := {γ ∈ C0([0, 1],Xs
2π) : γ(0) = 0, γ(1) = tn̄V }.

Since {Un} is bounded in X
s
2π, from Theorem 3 we may assume that as n → ∞,

Un ⇀ U in X
s
2π,

un → u in Lq(−π, π)N ,

un → u a.e. in (−π, π)N .

(3.7)

By using the continuity of f , (f1), (3.7), and the Dominated Convergence Theorem
we get ∫

(−π,π)N
f(x, un)un dx →

∫
(−π,π)N

f(x, u)u dx as n → ∞

and ∫
(−π,π)N

f(x, un)u dx →
∫
(−π,π)N

f(x, u)u dx as n → ∞,
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which imply that ∫
(−π,π)N

f(x, un)(un − u) dx → 0 as n → ∞.(3.8)

Putting together J ′(Un) → 0, {Un} is bounded, (3.7), and (3.8), we deduce that
‖Un‖Xs

2π
→ ‖U‖Xs

2π
as n → ∞. This, together with (3.7) and the fact that X

s
2π

is a Hilbert space, gives that Un → U in X
s
2π as n → ∞. Then we can infer that

J (U) = c and J ′(U) = 0; that is, U is a nontrivial weak solution to (1.4). This
concludes the proof of Theorem 1.
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[16] Louis Jeanjean, On the existence of bounded Palais-Smale sequences and application to a

Landesman-Lazer-type problem set on RN , Proc. Roy. Soc. Edinburgh Sect. A 129 (1999),
no. 4, 787–809. MR1718530

[17] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative
quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445–453. MR2276260

[18] Elliott H. Lieb and Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14, Amer-
ican Mathematical Society, Providence, RI, 1997. MR1415616

[19] Giovanni Molica Bisci, Vicentiu D. Radulescu, and Raffaella Servadei, Variational methods for

nonlocal fractional problems, with a foreword by Jean Mawhin, Encyclopedia of Mathematics
and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016. MR3445279

[20] Patrizia Pucci, Mingqi Xiang, and Binlin Zhang, Multiple solutions for nonhomogeneous
Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in R

N , Calc. Var.
Partial Differential Equations 54 (2015), no. 3, 2785–2806. MR3412392

[21] Patrick J. Rabier, Bounded Palais-Smale sequences for functionals with a mountain pass
geometry, Arch. Math. (Basel) 88 (2007), no. 2, 143–152. MR2299037
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