ISOMORPHIC CLASSIFICATION OF $L_{p, q}$-SPACES:
 THE CASE $p=2,1 \leq q<2$

O. SADOVSKAYA AND F. SUKOCHEV

(Communicated by Thomas Schlumprecht)

Abstract

Let $1 \leq q<2$. We prove that the Banach space $l_{2, q}$ (respectively, $L_{2, q}(0, \infty)$) does not isomorphically embed into the space $L_{2, q}(0,1)$ (respectively, $\left.L_{2, q}(0,1) \oplus l_{2, q}\right)$.

1. Introduction

In this paper, we complete the isomorphic classification of $L_{p, q}$-spaces over resonant measure spaces by answering two open questions posed in [7, Section 5.1]. In that paper the authors proved that $l_{p, q}$ does not isomorphically embed into $L_{p, q}(0,1)$ and that the space $L_{p, q}(0,1) \oplus l_{p, q}$ does not contain a closed subspace which is isomorphic to $L_{p, q}(0, \infty)$ for all $1 \leq p, q<\infty, p \neq q, p \neq 1, p \neq 2$, and $p=2, q>2$. The case $p=2,1 \leq q<2$ was not amenable to the techniques employed there and was left open in [7]. We shall use here a rather different approach from that of [7], which is of interest in its own right.

2. Preliminaries

2.1. $L_{p, q}$-spaces. Let m be the Lebesgue measure on $\mathbb{R}^{n}, n=1,2$. Given a measurable real-valued function f defined on a measurable set $B \subset \mathbb{R}^{n}$, we define the distribution function d_{f} (of $|f|$) by setting

$$
d_{f}(t)=m(\{|f|>t\})
$$

and the decreasing rearrangement of $|f|$ by

$$
f^{*}(t)=\inf \left\{s>0: d_{f}(s) \leq t\right\}
$$

For $0<p<\infty$ and $I=[0,1]$, or $I=[0,1]^{2}$, or $[0, \infty)$, the Lorentz function space $L_{p, q}(I)$ is the space (of equivalence classes) of all measurable functions f on I for which $\|f\|_{p, q}<\infty$, where

$$
\begin{equation*}
\|f\|_{p, q}=\left(\int_{I} f^{*}(t)^{q} d\left(t^{q / p}\right)\right)^{1 / q}, \quad q<\infty \tag{1}
\end{equation*}
$$

A symmetric sequence space analogue of $L_{p, q}$ is given by the space $l_{p, q}$ consisting of all scalar sequences $\left(x_{i}\right)_{i=1}^{\infty}$ for which $\left\|\left(x_{i}\right)\right\|_{p, q}<\infty$, where

$$
\begin{equation*}
\left\|\left(x_{i}\right)\right\|_{p, q}=\left\{\sum_{i=1}^{\infty} x_{i}^{* q}\left(i^{q / p}-(i-1)^{q / p}\right)\right\}^{\frac{1}{q}}, \quad q<\infty \tag{2}
\end{equation*}
$$

Received by the editors October 25, 2017, and, in revised form, December 12, 2017.
2010 Mathematics Subject Classification. Primary 46E30.
and where $\left(x_{i}^{*}\right)$ is the decreasing rearrangement of $\left(\left|x_{i}\right|\right)$. Clearly, $l_{p, q}$ is isometric to a sublattice of $L_{p, q}[0, \infty)$. Also for any $p \geq 1$ we have $L_{p, p}=L_{p}$ and $l_{p, p}=l_{p}$; in this case we will simply write $\|\cdot\|_{p}$.

It is well known that for $1 \leq q \leq p<\infty$, (1) defines a norm under which $L_{p, q}$ is a separable, rearrangement invariant (r.i.) Banach function space; otherwise, (11) defines a quasi-norm on $L_{p, q}$ (which is known to be equivalent to a norm if $1<p<q \leq \infty)$.

Next recall that for any $0<p<\infty$ and $0<q \leq \infty, L_{p, q}$ is equal, up to an equivalent norm, to the space $\left[L_{p_{1}}, L_{p_{2}}\right]_{\theta, q}$ constructed using the real interpolation method, where $0<p_{1}<p_{2} \leq \infty, 0<\theta<1$, and $1 / p=(1-\theta) / p_{1}+\theta / p_{2}$. (See Theorem 5.2.4 in [2].)

Let $I=[0,1]$ or $I=[0, \infty)$ and let ψ be an increasing concave function on I with $\psi(0)=\psi(+0)=0,1 \leq q<\infty$. The Lorentz space $\Lambda_{\psi, q}$ (when $q=1$ we simply write Λ_{ψ}) consists of all measurable functions f on I for which

$$
\|f\|_{\Lambda_{\psi, q}}:=\left(\int_{I} f^{*}(t)^{q} d \psi(t)\right)^{\frac{1}{q}}<\infty
$$

If $\psi(t)=t$ for all $0 \leq t<\infty$, then $\Lambda_{\psi, q}=L_{q}$ with equality of norms. If $1 \leq q \leq$ $p<\infty$, then $L_{p, q}=\Lambda_{\psi, q}$ with $\psi(t)=t^{q / p}, 0 \leq t<\infty$.
2.2. Main tool. A key role in our proofs is played by the operator A_{n} defined below. It is a substantially modified operator A_{n} introduced in [10. Let $r_{n}(t)$ denote the $n^{\text {th }}$ Rademacher function, that is,

$$
r_{n}(t)=\operatorname{sign} \sin 2^{n} \pi t, \text { for } 0 \leq t \leq 1 \quad(n=1,2, \ldots) .
$$

Define operators $A_{n}: L_{2,1}(0,1) \rightarrow L_{2,1}\left((0,1)^{2}\right), n \geq 1$, by setting

$$
\begin{equation*}
A_{n} f=\sum_{k=1}^{n} k^{-\frac{1}{2}}\left(f \circ \gamma_{k}\right) \otimes r_{k}, \quad n \geq 1, \tag{3}
\end{equation*}
$$

where $\gamma_{k}:(0,1) \rightarrow(0,1)$ is an arbitrary measure-preserving transformation, for every $k \geq 1$.

In the rest of this subsection we collect a number of (basically) known results. Firstly, we need to recall a well-known sufficient condition on a sequence $\left\{f_{k}\right\}_{k=1}^{\infty} \subseteq$ $L_{p, q}$ guaranteeing that it has a subsequence whose closed linear span is isomorphic to the space l_{q}.

Lemma 1 ([3, Lemma 2.1], 4, Proposition 1]). Let $I=[0,1]$ or $I=[0,1]^{2}$ or $[0, \infty)$, let $1<p<\infty, 1 \leq q<\infty$, and let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a sequence of seminormalized elements in $L_{p, q}(I)$. If $f_{k}^{*} \xrightarrow{\text { a.e. }} 0$ as $k \rightarrow \infty$, then there is a subsequence of $\left\{f_{k}\right\}_{k=1}^{\infty}$ which is equivalent to the unit vector basis of l_{q}.

The statement of the following subsequence splitting lemma is very similar to [5. Proposition 3.2] and [10, Theorem 3.2]. The only new component below is the assertion that the subsequence $\left\{f_{k}^{\prime}\right\}_{k=1}^{\infty}$ and sequences $\left\{x_{k}\right\}_{k=1}^{\infty},\left\{y_{k}\right\}_{k=1}^{\infty} \subseteq L_{p, q}(0,1)$ can be chosen to be unconditional. This assertion easily follows from a well-known fact that the space $L_{p, q}(0,1), 1<p<\infty, 1 \leq q<\infty$ admits an unconditional finite dimensional decomposition (see e.g. the proof of [1, Proposition 3.10]).

Lemma 2. Let $1<p<\infty, 1 \leq q<\infty$ and let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a weakly null sequence of elements in $L_{p, q}(0,1)$ with $\inf _{k}\left\|f_{k}\right\|_{p, q}>0$. Then there exists an unconditional basic subsequence $\left\{f_{k}^{\prime}\right\}_{k=1}^{\infty}$ of $\left\{f_{k}\right\}_{k=1}^{\infty}$ such that

$$
\begin{equation*}
f_{k}^{\prime}=x_{k}+y_{k}+d_{k}, k \geq 1, \tag{4}
\end{equation*}
$$

where $\left\{x_{k}\right\}_{k=1}^{\infty},\left\{y_{k}\right\}_{k=1}^{\infty},\left\{d_{k}\right\}_{k=1}^{\infty} \subseteq L_{p, q}(0,1), x_{k}^{*}=x_{1}^{*}$ for all $k, y_{k} y_{j}=0$ for all $k \neq j,\left\|d_{k}\right\|_{p, q} \rightarrow 0, k \rightarrow \infty$, and both sequences $\left\{x_{k}\right\}_{k=1}^{\infty}$ and $\left\{y_{k}\right\}_{k=1}^{\infty}$ are unconditional basic sequences in $L_{p, q}(0,1)$.

3. Auxiliary results

Given a measurable real-valued function f on $B \subset \mathbb{R}^{n}, n=1,2$, we define the support of f by $\operatorname{supp}(f)=\{f \neq 0\}$. In what follows χ_{E} denotes the indicator function of a Lebesgue measurable set E.

Lemma 3. For every $k \geq 1$, let $S_{k} \subset(0,1)$ be a measurable set such that $m\left(S_{k}\right)=$ $t \in(0,1]$. For all $n \in \mathbb{N}$, we have

$$
\left\|\left(\sum_{k=1}^{n} k^{-1} \chi_{S_{k}}\right)^{\frac{1}{2}}\right\|_{2,1} \leq \sqrt{\frac{6}{\log (2)}} \cdot t^{\frac{1}{2}} \log (e n) .
$$

Proof. Fix $n \geq 1$ and set $f=\sum_{k=1}^{n} \frac{1}{k} \chi_{S_{k}}$. For every $l \in \mathbb{Z}$, consider the set $\left\{2^{l}<f \leq 2^{1+l}\right\}$. Obviously,

$$
2^{l} \chi_{\left\{2^{l}<f \leq 2^{1+l}\right\}} \leq f \chi_{\left\{2^{l}<f \leq 2^{1+l}\right\}} \leq 2^{1+l} \chi_{\left\{2^{l}<f \leq 2^{1+l}\right\}}, \quad l \in \mathbb{Z},
$$

and therefore, setting

$$
g=\sum_{l \in \mathbb{Z}} 2^{l} \chi_{\left\{2^{l}<f \leq 2^{1+l}\right\}}
$$

we obtain

$$
g \leq f \leq 2 g
$$

Next, observing that $\frac{1}{n} \chi_{\operatorname{supp}(f)} \leq f \leq(1+\log (n)) \chi_{\text {supp }(f)}$, we can rewrite the function g as a finite sum

$$
g=\sum_{l=l_{-}(n)}^{l_{+}(n)} 2^{l} \chi_{\left\{2^{l}<f \leq 2^{1+l}\right\}},
$$

where $l_{-}(n)$ and $l_{+}(n)$ are integers depending on n such that $l_{-}(n) \leq l_{+}(n)$.
It is immediate that

$$
g^{*}=\sum_{l=l_{-}(n)}^{l_{+}(n)} 2^{l} \chi_{\left(d_{f}\left(2^{l+1}\right), d_{f}\left(2^{l}\right)\right)}
$$

Using the inequality $\alpha^{\frac{1}{2}}-\beta^{\frac{1}{2}} \leq(\alpha-\beta)^{\frac{1}{2}}$ for $0<\beta<\alpha$ and the fact that $f \leq 2 g$, we obtain

$$
\begin{aligned}
\left\|f^{\frac{1}{2}}\right\|_{2,1} \leq 2^{\frac{1}{2}}\left\|g^{\frac{1}{2}}\right\|_{2,1} & =2^{\frac{1}{2}} \sum_{l=l_{-}(n)}^{l_{+}(n)} 2^{\frac{l}{2}}\left(d_{f}\left(2^{l}\right)^{\frac{1}{2}}-d_{f}\left(2^{1+l}\right)^{\frac{1}{2}}\right) \\
& \leq 2^{\frac{1}{2}} \sum_{l=l_{-}(n)}^{l_{+}(n)} 2^{\frac{l}{2}}\left(d_{f}\left(2^{l}\right)-d_{f}\left(2^{1+l}\right)\right)^{\frac{1}{2}}
\end{aligned}
$$

From Cauchy inequality, we have

$$
\sum_{l=l_{-}(n)}^{l_{+}(n)} a_{l} \leq\left(l_{+}(n)-l_{-}(n)+1\right)^{\frac{1}{2}} \cdot\left(\sum_{l=l_{-}(n)}^{l_{+}(n)} a_{l}^{2}\right)^{\frac{1}{2}} .
$$

Setting

$$
a_{l}=2^{\frac{l}{2}}\left(d_{f}\left(2^{l}\right)-d_{f}\left(2^{1+l}\right)\right)^{\frac{1}{2}},
$$

we obtain

$$
\begin{equation*}
\left\|f^{\frac{1}{2}}\right\|_{2,1} \leq 2^{\frac{1}{2}}\left(l_{+}(n)-l_{-}(n)+1\right)^{\frac{1}{2}}\left(\sum_{l=l_{-}(n)}^{l_{+}(n)} 2^{l}\left(d_{f}\left(2^{l}\right)-d_{f}\left(2^{1+l}\right)\right)\right)^{\frac{1}{2}} . \tag{5}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\sum_{l=l_{-}(n)}^{l_{+}(n)} 2^{l}\left(d_{f}\left(2^{l}\right)-d_{f}\left(2^{1+l}\right)\right)=\|g\|_{1} \leq\|f\|_{1}=t \sum_{k=1}^{n} \frac{1}{k} \leq t \log (e n) . \tag{6}
\end{equation*}
$$

From (5) and (6) we have

$$
\begin{equation*}
\left\|f^{\frac{1}{2}}\right\|_{2,1} \leq 2^{\frac{1}{2}}\left(l_{+}(n)-l_{-}(n)+1\right)^{\frac{1}{2}} \cdot(t \log (e n))^{\frac{1}{2}} . \tag{7}
\end{equation*}
$$

Clearly,

$$
\begin{gathered}
\frac{1}{n} \leq \inf \{f(t): f(t) \neq 0\} \in\left(2^{l_{-}(n)}, 2^{1+l_{-}(n)}\right] \\
\sum_{k=1}^{n} \frac{1}{k} \geq \sup \{f(t): f(t) \neq 0\} \in\left(2^{l_{+}(n)}, 2^{1+l_{+}(n)}\right] .
\end{gathered}
$$

Thus,

$$
\frac{-\log (n)}{\log (2)} \leq 1+l_{-}(n), \quad \frac{\log \left(\sum_{k=1}^{n} \frac{1}{k}\right)}{\log (2)} \geq l_{+}(n) .
$$

In either case, we have

$$
\begin{aligned}
& l_{+}(n) \leq \frac{\log (\log (e n))}{\log (2)} \leq \frac{\log (e n)}{\log (2)} \\
& l_{-}(n) \geq-\frac{\log (2 n)}{\log (2)} \geq-\frac{\log (e n)}{\log (2)}
\end{aligned}
$$

Hence,

$$
1+l_{+}(n)-l_{-}(n) \leq 1+2 \frac{\log (e n)}{\log (2)} \leq 3 \frac{\log (e n)}{\log (2)} .
$$

Substituting this into (7), we arrive at

$$
\left\|f^{\frac{1}{2}}\right\|_{2,1} \leq \sqrt{\frac{6}{\log (2)}} \cdot t^{\frac{1}{2}} \log (e n)
$$

This concludes the proof.
The following fact should be compared with formula [6, (II.5.4)].
Fact 4. If $f \in \Lambda_{\psi}(0,1)$ is such that $f:(0,1) \rightarrow \mathbb{Z}_{+}$, then

$$
\|f\|_{\Lambda_{\psi}}=\sum_{k=0}^{\infty} \psi\left(d_{f}(k)\right) .
$$

Proof. Indeed, we have that

$$
f^{*}(t)=k+1, \quad t \in\left(d_{f}(k+1), d_{f}(k)\right)
$$

Therefore,

$$
\|f\|_{\Lambda_{\psi}}=\sum_{k=0}^{\infty}(k+1) \cdot\left(\psi\left(d_{f}(k)\right)-\psi\left(d_{f}(k+1)\right)\right)
$$

Summation by parts yields

$$
\begin{aligned}
\sum_{k \geq 0} \psi\left(d_{f}(k)\right) & =\sum_{k \geq 0} \sum_{l \geq k}\left(\psi\left(d_{f}(l)\right)-\psi\left(d_{f}(l+1)\right)\right) \\
& =\sum_{l \geq 0}\left(\psi\left(d_{f}(l)\right)-\psi\left(d_{f}(l+1)\right)\right) \sum_{k=0}^{l} 1 \\
& =\sum_{l \geq 0}(l+1)\left(\psi\left(d_{f}(l)\right)-\psi\left(d_{f}(l+1)\right)\right)
\end{aligned}
$$

Thus,

$$
\|f\|_{\Lambda_{\psi}}=\sum_{k=0}^{\infty} \psi\left(d_{f}(k)\right)
$$

In the lemma below we shall use the following simple decomposition. Suppose that $0 \leq f \in \Lambda_{\psi}(0,1)$. Fix $\epsilon>0$ and consider the approximation

$$
\begin{aligned}
f_{\epsilon}=\sum_{k=0}^{\infty}(k+1) \epsilon \chi_{(k \epsilon,(k+1) \epsilon]}(f) & =\sum_{k=0}^{\infty}(k+1) \epsilon\left(\chi_{(k \epsilon, \infty)}(f)-\chi_{((k+1) \epsilon, \infty)}(f)\right) \\
& =\sum_{k=0}^{\infty} \epsilon \chi_{(k \epsilon, \infty)}(f),
\end{aligned}
$$

where $\chi_{(a, b)}(f)=\chi_{\{a<f<b\}}$.
Obviously, by construction, we have

$$
\left\|f-f_{\epsilon}\right\|_{\Lambda_{\psi}} \leq\left\|f-f_{\epsilon}\right\|_{\infty} \leq \epsilon
$$

The following result could be inferred from [6, Lemma II.5.2]; however, we supply a short and self-contained proof for the convenience of the reader.
Lemma 5. If $V: \Lambda_{\psi}(0,1) \rightarrow \Lambda_{\psi}(0,1)$ is a bounded operator, then

$$
\|V\|_{\Lambda_{\psi} \rightarrow \Lambda_{\psi}}=\sup _{\substack{A \subset(0,1) \\ m(A)>0}} \sup _{\substack{h \in \Lambda_{\psi} \\ m \mid=\chi_{A}}} \frac{\|V(h)\|_{\Lambda_{\psi}}}{\|h\|_{\Lambda_{\psi}}}
$$

Proof. Assume for simplicity that the right hand side is 1 . We aim to prove that $\|V\|_{\Lambda_{\psi} \rightarrow \Lambda_{\psi}} \leq 1$. Fix $f \in \Lambda_{\psi}$. We shall show below that

$$
\|V(f)\|_{\Lambda_{\psi}} \leq\|f\|_{\Lambda_{\psi}}
$$

Let $f_{+}=f \cdot \chi_{\{f>0\}}$ and $f_{-}=f \cdot \chi_{\{f<0\}}$.
Fix $\epsilon>0$ and let ${ }^{1}$

$$
g_{1}=\epsilon\left\lceil\frac{f_{+}}{\epsilon}\right\rceil=\sum_{k=0}^{\infty} \epsilon \chi_{(k \epsilon, \infty)}\left(f_{+}\right)
$$

[^0]$$
g_{2}=\epsilon\left\lceil\frac{f_{-}}{\epsilon}\right\rceil=\sum_{k=0}^{\infty} \epsilon \chi_{(k \epsilon, \infty)}\left(f_{-}\right) .
$$

These series converge in the norm of Λ_{ψ} and

$$
\begin{equation*}
\left\|f-\left(g_{1}-g_{2}\right)\right\|_{\Lambda_{\psi}} \leq\left\|f-\left(g_{1}-g_{2}\right)\right\|_{\infty} \leq \epsilon \tag{8}
\end{equation*}
$$

By triangle inequality, we have

$$
\left\|V\left(g_{1}-g_{2}\right)\right\|_{\Lambda_{\psi}} \leq \sum_{k=0}^{\infty} \epsilon\left\|V\left(\chi_{(k \epsilon, \infty)}\left(f_{+}\right)-\chi_{(k \epsilon, \infty)}\left(f_{-}\right)\right)\right\|_{\Lambda_{\psi}}
$$

Observing that $\chi_{(k \epsilon, \infty)}\left(f_{+}\right) \cdot \chi_{(k \epsilon, \infty)}\left(f_{-}\right)=0, k \geq 0$, we see that by our assumption

$$
\left\|V\left(\chi_{(k \epsilon, \infty)}\left(f_{+}\right)-\chi_{(k \epsilon, \infty)}\left(f_{-}\right)\right)\right\|_{\Lambda_{\psi}} \leq\left\|\chi_{(k \epsilon, \infty)}\left(f_{+}\right)-\chi_{(k \epsilon, \infty)}\left(f_{-}\right)\right\|_{\Lambda_{\psi}}, k \geq 0
$$

and hence

$$
\begin{equation*}
\left\|V\left(g_{1}-g_{2}\right)\right\|_{\Lambda_{\psi}} \leq \epsilon \sum_{k=0}^{\infty}\left\|\chi_{(k \epsilon, \infty)}\left(f_{+}\right)-\chi_{(k \epsilon, \infty]}\left(f_{-}\right)\right\|_{\Lambda_{\psi}}=\epsilon \sum_{k=0}^{\infty}\left\|\chi_{(k \epsilon, \infty)}(|f|)\right\|_{\Lambda_{\psi}} \tag{9}
\end{equation*}
$$

Denote for brevity

$$
h=\left\lceil\frac{|f|}{\epsilon}\right\rceil .
$$

We have

$$
\begin{equation*}
\chi_{(k \epsilon, \infty)}(|f|)=\chi_{(k, \infty)}\left(\frac{|f|}{\epsilon}\right)=\chi_{(k, \infty)}(h) . \tag{10}
\end{equation*}
$$

Clearly, h takes only values in \mathbb{Z}_{+}, and, therefore, one can apply Fact 4 . We then have

$$
\sum_{k=0}^{\infty}\left\|\chi_{(k \epsilon, \infty)}(|f|)\right\|_{\Lambda_{\psi}}=\sum_{k=0}^{\infty}\left\|\chi_{(k, \infty)}(h)\right\|_{\Lambda_{\psi}}=\sum_{k=0}^{\infty} \psi\left(d_{h}(k)\right) \stackrel{F \text { 团 }}{=}\|h\|_{\Lambda_{\psi}} .
$$

Therefore, we have

$$
\begin{equation*}
\left\|V\left(g_{1}-g_{2}\right)\right\|_{\Lambda_{\psi}} \leq \epsilon\|h\|_{\Lambda_{\psi}}=\left\|g_{1}-g_{2}\right\|_{\Lambda_{\psi}} \leq\|f\|_{\Lambda_{\psi}}+\epsilon \tag{11}
\end{equation*}
$$

Hence, from (10) and (11), we arrive at

$$
\|V(f)\|_{\Lambda_{\psi}} \leq\left\|V\left(g_{1}-g_{2}\right)\right\|_{\Lambda_{\psi}}+\left\|V\left(f-g_{1}+g_{2}\right)\right\|_{\Lambda_{\psi}} \leq\|f\|_{\Lambda_{\psi}}+\epsilon\|V\|_{\Lambda_{\psi} \rightarrow \Lambda_{\psi}}
$$

Since $\epsilon>0$ is arbitrarily small, the assertion follows.
The following three lemmas provide key estimates for the norm of the operator $A_{n}, n \geq 1$, and for the norms $\left\|A_{n} f\right\|_{2, q}, 1 \leq q<2, n \geq 1$, for an arbitrary fixed element $f \in L_{2, q}(0,1)$. The notation $c_{a b s}$ stands for an absolute constant (whose value may change from line to line).
Lemma 6. Let $A_{n}: L_{2,1}(0,1) \rightarrow L_{2,1}\left((0,1)^{2}\right)$, then

$$
\begin{equation*}
\left\|A_{n}\right\|_{L_{2,1} \rightarrow L_{2,1}} \leq c_{a b s} \log (e n), \quad n \geq 1 \tag{12}
\end{equation*}
$$

Proof. Let $A \subset(0,1)$ be measurable. By Proposition 2.d. 1 in [9] and Lemma 3, we have

$$
\begin{aligned}
\left\|A_{n}\left(\chi_{A}\right)\right\|_{2,1}= & \left\|\sum_{k=1}^{n} k^{-\frac{1}{2}}\left(\chi_{A} \circ \gamma_{k}\right) \otimes r_{k}\right\|_{2,1} \leq c_{a b s}\left\|\left(\sum_{k=1}^{n} \frac{1}{k}\left(\chi_{A} \circ \gamma_{k}\right)^{2}\right)^{\frac{1}{2}}\right\|_{2,1} \\
& =c_{a b s} m(A)^{\frac{1}{2}} \log (e n)=c_{a b s} \log (e n)\left\|\chi_{A}\right\|_{2,1} .
\end{aligned}
$$

If A and B are Lebesgue measurable subsets of $(0,1)$ such that $A \cap B=\emptyset$, then

$$
\left\|A_{n}\left(\chi_{A}-\chi_{B}\right)\right\|_{2,1} \leq 2\left\|A_{n}\left(\chi_{A \cup B}\right)\right\|_{2,1} \leq 2 c_{a b s} \log (e n)\left\|\chi_{A \cup B}\right\|_{2,1},
$$

and we conclude that (12) holds, thanks to Lemma 5 ,
Lemma 7. Let $A_{n}: L_{2, q}(0,1) \rightarrow L_{2, q}\left((0,1)^{2}\right)$, for $1 \leq q \leq 2$. Then

$$
\begin{equation*}
\left\|A_{n}\right\|_{L_{2, q} \rightarrow L_{2, q}} \leq c_{a b s} \log ^{\frac{1}{q}}(e n), \quad n \geq 1 \tag{13}
\end{equation*}
$$

Proof. It follows from Theorem 5.2.4 in [2] that $\left[L_{2,1}, L_{2}\right]_{\frac{2 q-2}{q}, q}=L_{2, q}$. Using Proposition 2.g. 15 in [9 we obtain

$$
\begin{equation*}
\left\|A_{n}\right\|_{L_{2, q} \rightarrow L_{2, q}} \leq\left\|A_{n}\right\|_{L_{2,1} \rightarrow L_{2,1}}^{\frac{2-q}{q}}\left\|A_{n}\right\|_{L_{2} \rightarrow L_{2}}^{\frac{2 q-2}{q}} . \tag{14}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left\|A_{n}\right\|_{L_{2} \rightarrow L_{2}}=\left(\sum_{k=1}^{n} \frac{1}{k}\right)^{\frac{1}{2}} \leq \log ^{\frac{1}{2}}(e n) . \tag{15}
\end{equation*}
$$

From (14) and (15) and Lemma 6 we infer that

$$
\left\|A_{n}\right\|_{L_{2, q} \rightarrow L_{2, q}} \leq c_{a b s}(\log (e n))^{\frac{2-q}{q}} \cdot\left(\log ^{\frac{1}{2}}(e n)\right)^{\frac{2 q-2}{q}}=c_{a b s} \log ^{\frac{1}{q}}(e n)
$$

Lemma 8. For every $f \in L_{2, q}(0,1), 1 \leq q<2$, we have

$$
\left\|A_{n} f\right\|_{2, q}=o\left(\log ^{\frac{1}{q}}(e n)\right), \quad n \rightarrow \infty
$$

Proof. Without loss of generality, we assume that $f \geq 0$ and fix $\epsilon>0$. Since $L_{2, q}$ is separable, it follows that there exists $t>0$ with $\left\|f^{*}(t) \chi_{(0, t)}\right\|_{2, q} \leq \epsilon$. Set $f_{1}=\left(f-f^{*}(t)\right)_{+}$and $f_{2}=\min \left\{f, f^{*}(t)\right\}$. It is immediate that

$$
\begin{equation*}
\left\|A_{n} f\right\|_{2, q} \leq\left\|A_{n}\left(f_{1}\right)\right\|_{2, q}+\left\|A_{n}\left(f_{2}\right)\right\|_{2, q} \tag{16}
\end{equation*}
$$

By Lemma 7, we have

$$
\begin{equation*}
\left\|A_{n}\left(f_{1}\right)\right\|_{2, q} \leq c_{a b s} \log (e n)\left\|f_{1}\right\|_{2, q} \leq c_{a b s} \epsilon \log ^{\frac{1}{q}}(e n) \tag{17}
\end{equation*}
$$

By Proposition 2.d. 1 in 9], we have

$$
\begin{align*}
\left\|A_{n}\left(f_{2}\right)\right\|_{2, q} \leq & c_{a b s}\left\|\left(\sum_{k=1}^{n} \frac{1}{k}\left(f_{2} \circ \gamma_{k}\right)^{2}\right)^{\frac{1}{2}}\right\|_{2, q} \leq c_{a b s}\left\|\left(\sum_{k=1}^{n} \frac{1}{k}\left(f_{2} \circ \gamma_{k}\right)^{2}\right)^{\frac{1}{2}}\right\|_{\infty} \tag{18}\\
& =c_{a b s}\left\|\left(\sum_{k=1}^{n} \frac{1}{k}\left(f_{2} \circ \gamma_{k}\right)^{2}\right)\right\|_{\infty}^{\frac{1}{2}} \leq c_{a b s}\left(\sum_{k=1}^{n} \frac{1}{k}\left\|\left(f_{2} \circ \gamma_{k}\right)^{2}\right\|_{\infty}\right)^{\frac{1}{2}} \\
& =c_{a b s}\left(\sum_{k=1}^{n} \frac{1}{k}\left(f^{*}(t)\right)^{2}\right)^{\frac{1}{2}}=c_{a b s} f^{*}(t)\left(\sum_{k=1}^{n} \frac{1}{k}\right)^{\frac{1}{2}} \leq c_{a b s} \log ^{\frac{1}{2}}(e n) f^{*}(t) .
\end{align*}
$$

From (16), (17), and (18) we have

$$
\left\|A_{n}(f)\right\|_{2, q} \leq c_{a b s} \log ^{\frac{1}{2}}(e n) f^{*}(t)+c_{a b s} \epsilon \log ^{\frac{1}{q}}(e n)
$$

Taking into account that $q<2$, we obtain

$$
\limsup _{n \rightarrow \infty} \frac{1}{\log ^{\frac{1}{q}}(e n)}\left\|A_{n} f\right\|_{2, q} \leq c_{a b s} \epsilon
$$

Since $\epsilon>0$ is arbitrarily small, the assertion follows.

4. Main results

In the proof, $A \approx B$ means that $c^{-1} A \leq B \leq c A$ for some constant c which only depends on the isomorphic embedding.

Theorem 9. If $1 \leq q<2$, then the Banach space $l_{2, q}$ does not isomorphically embed into $L_{2, q}(0,1)$.

Proof. Suppose the contrary, that is, there exists T, the required embedding. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be the standard unit basis in $l_{2, q}$. Set $f_{k}=T\left(e_{k}\right), k \geq 1$. It is obvious that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a basic sequence in $L_{2, q}(0,1)$, which is equivalent to the basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ in $l_{2, q}$. Hence, for every $t \in(0,1)$ and for every $\alpha \in l_{2, q}$, we have

$$
\left\|\sum_{k \geq 1} \alpha_{k} r_{k}(t) f_{k}\right\|_{2, q} \approx\left\|\sum_{k \geq 1} \alpha_{k} r_{k}(t) e_{k}\right\|_{2, q} \approx\|\alpha\|_{2, q} .
$$

Thus,

$$
\int_{0}^{1}\left\|\sum_{k \geq 1} \alpha_{k} r_{k}(t) f_{k}\right\|_{2, q} d t \approx\|\alpha\|_{2, q} .
$$

By Theorem 1.d. 6 and Proposition 2.d. 1 in [9, we have

$$
\int_{0}^{1}\left\|\sum_{k \geq 1} \alpha_{k} r_{k}(t) f_{k}\right\|_{2, q} d t \approx\left\|\sum_{k \geq 1} \alpha_{k} f_{k} \otimes r_{k}\right\|_{2, q}
$$

and therefore

$$
\begin{equation*}
\left\|\sum_{k \geq 1} \alpha_{k} f_{k} \otimes r_{k}\right\|_{2, q} \approx\|\alpha\|_{2, q} . \tag{19}
\end{equation*}
$$

Since the sequence $\left\{f_{k}\right\}_{k=1}^{\infty}$ is weakly null and $\inf _{k}\left\|f_{k}\right\|_{2, q}>0$, it follows from Lemma 2 that we may further assume (passing to a subsequence, if necessary) ${ }^{2}$ that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is an unconditional basic sequence satisfying

$$
f_{k}=u_{k}+v_{k}, \quad k \geq 1
$$

where $\left\{u_{k}\right\}_{k=1}^{\infty},\left\{v_{k}\right\}_{k=1}^{\infty}$ are unconditional basic sequences in $L_{2, q}(0,1)$, such that $u_{k}^{*}=u_{1}^{*}$ for all $k \geq 1$ (hence, there exists $u \in L_{2, q}$ and measure-preserving transformations $\gamma_{k}:(0,1) \rightarrow(0,1)$ such that $u_{k}=u \circ \gamma_{k}$ for all $\left.k \geq 1\right)$ and $v_{k} v_{i}=0$ for all $k \neq i \geq 1$, in particular, $v_{k} \rightarrow 0$ in measure as $k \rightarrow \infty$.

Suppose that $v_{k} \nrightarrow 0$ in the norm of $L_{2, q}(0,1)$. Passing to a subsequence if needed, we may further assume (see Lemma (1) that the basic sequence $\left\{v_{k}\right\}_{k=1}^{\infty}$ in $L_{2, q}$ is equivalent to the basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ in l_{q}. It follows from the triangle inequality that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} v_{k} \otimes r_{k}\right\|_{2, q} \leq\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} f_{k} \otimes r_{k}\right\|_{2, q}+\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} u_{k} \otimes r_{k}\right\|_{2, q} . \tag{20}
\end{equation*}
$$

[^1]By (2), we have

$$
\begin{equation*}
\left\|\left\{k^{-\frac{1}{2}}\right\}_{k=1}^{n}\right\|_{2, q} \approx \log ^{\frac{1}{q}}(e n), \quad n \geq 1 \tag{21}
\end{equation*}
$$

and therefore we immediately infer from (19) that

$$
\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} f_{k} \otimes r_{k}\right\|_{2, q} \approx \log ^{\frac{1}{q}}(e n), \quad n \geq 1
$$

Note that $u_{k}=u \circ \gamma_{k}$ and, hence, the second summand on the right hand side of (20) equals $\left\|A_{n} u\right\|_{2, q}$. Appealing to Lemma 66 we infer that this second summand is also $O\left(\log ^{\frac{1}{q}}(e n)\right)$ when $n \rightarrow \infty$. So we obtain from (20)

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} v_{k} \otimes r_{k}\right\|_{2, q}=O\left(\log ^{\frac{1}{q}}(e n)\right), \quad n \rightarrow \infty \tag{22}
\end{equation*}
$$

However,

$$
\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} v_{k} \otimes r_{k}\right\|_{2, q} \approx\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} v_{k}\right\|_{2, q} \approx\left\|\left\{k^{-\frac{1}{2}}\right\}_{k=1}^{n}\right\|_{q} \approx n^{\frac{1}{q}-\frac{1}{2}} .
$$

Combining the equivalences above with (22), we arrive at

$$
n^{\frac{1}{q}-\frac{1}{2}}=O\left(\log ^{\frac{1}{q}}(e n)\right), \quad n \rightarrow \infty .
$$

Taking into account the fact that $q<2$, we obtain a contradiction, which shows that $\lim _{k \rightarrow \infty}\left\|v_{k}\right\|_{2, q}=0$.

Again appealing to Proposition 1.a. 9 in [8], we may further assume without loss of generality that $v_{k}=0, k \geq 1$. Now, combining (21) with (19), we arrive at

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} k^{-\frac{1}{2}} u_{k} \otimes r_{k}\right\|_{2, q} \approx \log ^{\frac{1}{q}}(e n), \quad n \rightarrow \infty \tag{23}
\end{equation*}
$$

Recalling that $u_{k}=u \circ \gamma_{k}$, the equivalence (23) can be rewritten as

$$
\left\|A_{n} u\right\|_{2, q} \approx \log ^{\frac{1}{q}}(e n), \quad n \rightarrow \infty
$$

This contradiction with Lemma 8 completes the proof.
For every $n, k \in \mathbb{N}, t \in(0, \infty)$ we define

$$
r_{n, k}(t):= \begin{cases}r_{n}(t-k+1), & t \in(k-1, k], \tag{24}\\ 0, & \text { elsewhere },\end{cases}
$$

where $r_{n}(t), n \in \mathbb{N}, t \in(0,1)$ are the Rademacher functions. Let $\mathbf{r}:=\left\{r_{n, k}\right\}_{n, k \in \mathbb{N}}$.
Theorem 10. Let $\left[r_{n, k}\right]_{k, n=1}^{\infty}$ be the closed linear subspace of $L_{2, q}(0, \infty)$ spanned by the system \mathbf{r}. If $1 \leq q<2$, then $\left[r_{n, k}\right]_{k, n=1}^{\infty}$ does not isomorphically embed into $L_{2, q}(0,1) \oplus l_{2, q}$.
Proof. The proof is essentially a verbatim repetition of the arguments given in the proof of [7, Theorem 11]. One needs only to consistently replace the references to [7. Theorem 10] and [7, Corollary 8] there with references to our Theorem 9, We omit further details.

Corollary 11. If $1 \leq q<2$, then the space $L_{2, q}(0,1) \oplus l_{2, q}$ does not contain a closed subspace which is isomorphic to $L_{2, q}(0, \infty)$.

Acknowledgment

The authors thank E. Semenov and D. Zanin for detailed discussions and assistance in the preparation of this article.

References

[1] S. V. Astashkin and F. A. Sukochev, Banach-Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl. 336 (2007), no. 2, 1231-1258. MR2353012
[2] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR0482275
[3] N. L. Carothers and S. J. Dilworth, Subspaces of $L_{p, q}$, Proc. Amer. Math. Soc. 104 (1988), no. 2, 537-545. MR 962825
[4] S. J. Dilworth, Special Banach lattices and their applications, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 497-532. MR 1863700
[5] P. G. Dodds, E. M. Semenov, and F. A. Sukochev, The Banach-Saks property in rearrangement invariant spaces, Studia Math. 162 (2004), no. 3, 263-294. MR2047655
[6] S. G. Kreı̆n, Yu. Ī. Petunīn, and E. M. Semënov, Interpolation of linear operators, translated from the Russian by J. Szűcs, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. MR649411
[7] A. Kuryakov and F. Sukochev, Isomorphic classification of $L_{p, q}$-spaces, J. Funct. Anal. 269 (2015), no. 8, 2611-2630. MR3390012
[8] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer-Verlag, Berlin-New York, 1977. MR0500056
[9] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. MR 540367
[10] E. M. Semënov and F. A. Sukochev, The Banach-Saks index (Russian, with Russian summary), Mat. Sb. 195 (2004), no. 2, 117-140; English transl., Sb. Math. 195 (2004), no. 1-2, 263-285. MR2068953

Institute of Mathematics of Uzbekistan Academy of Sciences, Tashkent, 100084, UzBEKISTAN

Email address: sadovskaya-o@inbox.ru
School of Mathematics and Statistics, University of New South Wales, Sydney, 2052, Australia

Email address: f.sukochev@unsw.edu.au

[^0]: ${ }^{1}$ Here, $\lceil\cdot\rceil$ denotes the ceiling function.

[^1]: ${ }^{2}$ We get rid of the third sequence by applying Proposition 1.a. 9 in [8].

