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ISOMORPHIC CLASSIFICATION OF Lp,q-SPACES:

THE CASE p = 2, 1 ≤ q < 2

O. SADOVSKAYA AND F. SUKOCHEV

(Communicated by Thomas Schlumprecht)

Abstract. Let 1 ≤ q < 2. We prove that the Banach space l2,q (respectively,
L2,q(0,∞)) does not isomorphically embed into the space L2,q(0, 1) (respec-
tively, L2,q(0, 1)⊕ l2,q).

1. Introduction

In this paper, we complete the isomorphic classification of Lp,q-spaces over res-
onant measure spaces by answering two open questions posed in [7, Section 5.1].
In that paper the authors proved that lp,q does not isomorphically embed into
Lp,q(0, 1) and that the space Lp,q(0, 1) ⊕ lp,q does not contain a closed subspace
which is isomorphic to Lp,q(0,∞) for all 1 ≤ p, q < ∞, p �= q, p �= 1, p �= 2, and
p = 2, q > 2. The case p = 2, 1 ≤ q < 2 was not amenable to the techniques em-
ployed there and was left open in [7]. We shall use here a rather different approach
from that of [7], which is of interest in its own right.

2. Preliminaries

2.1. Lp,q-spaces. Let m be the Lebesgue measure on R
n, n = 1, 2. Given a mea-

surable real-valued function f defined on a measurable set B ⊂ R
n, we define the

distribution function df (of |f |) by setting

df (t) = m({|f | > t})
and the decreasing rearrangement of |f | by

f∗(t) = inf{s > 0 : df (s) ≤ t}.
For 0 < p < ∞ and I = [0, 1], or I = [0, 1]2, or [0,∞), the Lorentz function space
Lp,q(I) is the space (of equivalence classes) of all measurable functions f on I for
which ‖f‖p,q < ∞, where

‖f‖p,q =

(∫
I

f∗(t)qd(tq/p)

)1/q

, q < ∞.(1)

A symmetric sequence space analogue of Lp,q is given by the space lp,q consisting
of all scalar sequences (xi)

∞
i=1 for which ‖(xi)‖p,q < ∞, where

‖(xi)‖p,q =

{ ∞∑
i=1

x∗q
i (iq/p − (i− 1)q/p)

} 1
q

, q < ∞,(2)
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and where (x∗
i ) is the decreasing rearrangement of (|xi|). Clearly, lp,q is isometric

to a sublattice of Lp,q[0,∞). Also for any p ≥ 1 we have Lp,p = Lp and lp,p = lp;
in this case we will simply write ‖ · ‖p.

It is well known that for 1 ≤ q ≤ p < ∞, (1) defines a norm under which Lp,q

is a separable, rearrangement invariant (r.i.) Banach function space; otherwise,
(1) defines a quasi-norm on Lp,q (which is known to be equivalent to a norm if
1 < p < q ≤ ∞).

Next recall that for any 0 < p < ∞ and 0 < q ≤ ∞, Lp,q is equal, up to an
equivalent norm, to the space [Lp1

, Lp2
]θ,q constructed using the real interpolation

method, where 0 < p1 < p2 ≤ ∞, 0 < θ < 1, and 1/p = (1 − θ)/p1 + θ/p2. (See
Theorem 5.2.4 in [2].)

Let I = [0, 1] or I = [0,∞) and let ψ be an increasing concave function on I with
ψ(0) = ψ(+0) = 0, 1 ≤ q < ∞. The Lorentz space Λψ,q (when q = 1 we simply
write Λψ) consists of all measurable functions f on I for which

‖f‖Λψ,q
:=

(∫
I

f∗(t)qdψ(t)

) 1
q

< ∞.

If ψ(t) = t for all 0 ≤ t < ∞, then Λψ,q = Lq with equality of norms. If 1 ≤ q ≤
p < ∞, then Lp,q = Λψ,q with ψ(t) = tq/p, 0 ≤ t < ∞.

2.2. Main tool. A key role in our proofs is played by the operator An defined
below. It is a substantially modified operator An introduced in [10]. Let rn(t)
denote the nth Rademacher function, that is,

rn(t) = sign sin 2nπt, for 0 ≤ t ≤ 1 (n = 1, 2, . . . ).

Define operators An : L2,1(0, 1) → L2,1((0, 1)
2), n ≥ 1, by setting

(3) Anf =

n∑
k=1

k−
1
2 (f ◦ γk)⊗ rk, n ≥ 1,

where γk : (0, 1) → (0, 1) is an arbitrary measure-preserving transformation, for
every k ≥ 1.

In the rest of this subsection we collect a number of (basically) known results.
Firstly, we need to recall a well-known sufficient condition on a sequence {fk}∞k=1 ⊆
Lp,q guaranteeing that it has a subsequence whose closed linear span is isomorphic
to the space lq.

Lemma 1 ([3, Lemma 2.1], [4, Proposition 1]). Let I = [0, 1] or I = [0, 1]2 or
[0,∞), let 1 < p < ∞, 1 ≤ q < ∞, and let {fk}∞k=1 be a sequence of semi-

normalized elements in Lp,q(I). If f∗
k

a.e.−→ 0 as k → ∞, then there is a subsequence
of {fk}∞k=1 which is equivalent to the unit vector basis of lq.

The statement of the following subsequence splitting lemma is very similar to
[5, Proposition 3.2] and [10, Theorem 3.2]. The only new component below is the as-
sertion that the subsequence {f ′

k}∞k=1 and sequences {xk}∞k=1, {yk}∞k=1 ⊆ Lp,q(0, 1)
can be chosen to be unconditional. This assertion easily follows from a well-known
fact that the space Lp,q(0, 1), 1 < p < ∞, 1 ≤ q < ∞ admits an unconditional
finite dimensional decomposition (see e.g. the proof of [1, Proposition 3.10]).
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Lemma 2. Let 1 < p < ∞, 1 ≤ q < ∞ and let {fk}∞k=1 be a weakly null sequence
of elements in Lp,q(0, 1) with infk ‖fk‖p,q > 0. Then there exists an unconditional
basic subsequence {f ′

k}∞k=1 of {fk}∞k=1 such that

(4) f ′
k = xk + yk + dk, k ≥ 1,

where {xk}∞k=1, {yk}∞k=1, {dk}∞k=1 ⊆ Lp,q(0, 1), x∗
k = x∗

1 for all k, ykyj = 0 for
all k �= j, ‖dk‖p,q → 0, k → ∞, and both sequences {xk}∞k=1 and {yk}∞k=1 are
unconditional basic sequences in Lp,q(0, 1).

3. Auxiliary results

Given a measurable real-valued function f on B ⊂ R
n, n = 1, 2, we define the

support of f by supp(f) = {f �= 0}. In what follows χE denotes the indicator
function of a Lebesgue measurable set E.

Lemma 3. For every k ≥ 1, let Sk ⊂ (0, 1) be a measurable set such that m(Sk) =
t ∈ (0, 1]. For all n ∈ N, we have∥∥∥∥

( n∑
k=1

k−1χ
Sk

) 1
2
∥∥∥∥
2,1

≤
√

6

log(2)
· t 1

2 log(en).

Proof. Fix n ≥ 1 and set f =
∑n

k=1
1
kχSk

. For every l ∈ Z, consider the set

{2l < f ≤ 21+l}. Obviously,

2lχ{2l<f≤21+l} ≤ fχ{2l<f≤21+l} ≤ 21+lχ{2l<f≤21+l}, l ∈ Z,

and therefore, setting

g =
∑
l∈Z

2lχ{2l<f≤21+l}

we obtain

g ≤ f ≤ 2g.

Next, observing that 1
nχsupp(f) ≤ f ≤ (1 + log(n))χsupp(f), we can rewrite the

function g as a finite sum

g =

l+(n)∑
l=l−(n)

2lχ{2l<f≤21+l},

where l−(n) and l+(n) are integers depending on n such that l−(n) ≤ l+(n).
It is immediate that

g∗ =

l+(n)∑
l=l−(n)

2lχ(df (2l+1),df (2l)).

Using the inequality α
1
2 − β

1
2 ≤ (α− β)

1
2 for 0 < β < α and the fact that f ≤ 2g,

we obtain

‖f 1
2 ‖2,1 ≤ 2

1
2 ‖g 1

2 ‖2,1 = 2
1
2

l+(n)∑
l=l−(n)

2
l
2 (df (2

l)
1
2 − df (2

1+l)
1
2 )

≤ 2
1
2

l+(n)∑
l=l−(n)

2
l
2 (df (2

l)− df (2
1+l))

1
2 .
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From Cauchy inequality, we have

l+(n)∑
l=l−(n)

al ≤ (l+(n)− l−(n) + 1)
1
2 ·

( l+(n)∑
l=l−(n)

a2l

) 1
2

.

Setting

al = 2
l
2 (df (2

l)− df (2
1+l))

1
2 ,

we obtain

(5) ‖f 1
2 ‖2,1 ≤ 2

1
2 (l+(n)− l−(n) + 1)

1
2

( l+(n)∑
l=l−(n)

2l(df (2
l)− df (2

1+l))

) 1
2

.

Also,

(6)

l+(n)∑
l=l−(n)

2l(df (2
l)− df (2

1+l)) = ‖g‖1 ≤ ‖f‖1 = t

n∑
k=1

1

k
≤ t log(en).

From (5) and (6) we have

(7) ‖f 1
2 ‖2,1 ≤ 2

1
2 (l+(n)− l−(n) + 1)

1
2 · (t log(en)) 1

2 .

Clearly,
1

n
≤ inf{f(t) : f(t) �= 0} ∈ (2l−(n), 21+l−(n)],

n∑
k=1

1

k
≥ sup{f(t) : f(t) �= 0} ∈ (2l+(n), 21+l+(n)].

Thus,

− log(n)

log(2)
≤ 1 + l−(n),

log(
∑n

k=1
1
k )

log(2)
≥ l+(n).

In either case, we have

l+(n) ≤
log(log(en))

log(2)
≤ log(en)

log(2)
,

l−(n) ≥ − log(2n)

log(2)
≥ − log(en)

log(2)
.

Hence,

1 + l+(n)− l−(n) ≤ 1 + 2
log(en)

log(2)
≤ 3

log(en)

log(2)
.

Substituting this into (7), we arrive at

‖f 1
2 ‖2,1 ≤

√
6

log(2)
· t 1

2 log(en).

This concludes the proof. �

The following fact should be compared with formula [6, (II.5.4)].

Fact 4. If f ∈ Λψ(0, 1) is such that f : (0, 1) → Z+, then

‖f‖Λψ
=

∞∑
k=0

ψ(df (k)).
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Proof. Indeed, we have that

f∗(t) = k + 1, t ∈ (df (k + 1), df (k)).

Therefore,

‖f‖Λψ
=

∞∑
k=0

(k + 1) · (ψ(df (k))− ψ(df (k + 1))).

Summation by parts yields∑
k≥0

ψ(df (k)) =
∑
k≥0

∑
l≥k

(ψ(df (l))− ψ(df (l + 1)))

=
∑
l≥0

(ψ(df (l))− ψ(df (l + 1)))

l∑
k=0

1

=
∑
l≥0

(l + 1)(ψ(df (l))− ψ(df (l + 1))).

Thus,

‖f‖Λψ
=

∞∑
k=0

ψ(df (k)).

�
In the lemma below we shall use the following simple decomposition. Suppose

that 0 ≤ f ∈ Λψ(0, 1). Fix ε > 0 and consider the approximation

fε =

∞∑
k=0

(k + 1)εχ(kε,(k+1)ε](f) =

∞∑
k=0

(k + 1)ε(χ(kε,∞)(f)− χ((k+1)ε,∞)(f))

=

∞∑
k=0

εχ(kε,∞)(f),

where χ(a,b)(f) = χ{a<f<b}.
Obviously, by construction, we have

‖f − fε‖Λψ
≤ ‖f − fε‖∞ ≤ ε.

The following result could be inferred from [6, Lemma II.5.2]; however, we supply
a short and self-contained proof for the convenience of the reader.

Lemma 5. If V : Λψ(0, 1) → Λψ(0, 1) is a bounded operator, then

‖V ‖Λψ→Λψ
= sup

A⊂(0,1)
m(A)>0

sup
h∈Λψ

|h|=χA

‖V (h)‖Λψ

‖h‖Λψ

.

Proof. Assume for simplicity that the right hand side is 1. We aim to prove that
‖V ‖Λψ→Λψ

≤ 1. Fix f ∈ Λψ. We shall show below that

‖V (f)‖Λψ
≤ ‖f‖Λψ

.

Let f+ = f · χ{f>0} and f− = f · χ{f<0} .

Fix ε > 0 and let1

g1 = ε�f+
ε
� =

∞∑
k=0

εχ(kε,∞)(f+),

1Here, �·� denotes the ceiling function.
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g2 = ε�f−
ε
� =

∞∑
k=0

εχ(kε,∞)(f−).

These series converge in the norm of Λψ and

(8) ‖f − (g1 − g2)‖Λψ
≤ ‖f − (g1 − g2)‖∞ ≤ ε.

By triangle inequality, we have

‖V (g1 − g2)‖Λψ
≤

∞∑
k=0

ε‖V (χ(kε,∞)(f+)− χ(kε,∞)(f−))‖Λψ
.

Observing that χ(kε,∞)(f+) ·χ(kε,∞)(f−) = 0, k ≥ 0, we see that by our assumption

‖V (χ(kε,∞)(f+)− χ(kε,∞)(f−))‖Λψ
≤ ‖χ(kε,∞)(f+)− χ(kε,∞)(f−)‖Λψ

, k ≥ 0,

and hence
(9)

‖V (g1 − g2)‖Λψ
≤ ε

∞∑
k=0

‖χ(kε,∞)(f+)− χ(kε,∞](f−)‖Λψ
= ε

∞∑
k=0

‖χ(kε,∞)(|f |)‖Λψ
.

Denote for brevity

h = � |f |
ε
�.

We have

(10) χ(kε,∞)(|f |) = χ(k,∞)(
|f |
ε
) = χ(k,∞)(h).

Clearly, h takes only values in Z+, and, therefore, one can apply Fact 4. We then
have

∞∑
k=0

‖χ(kε,∞)(|f |)‖Λψ
=

∞∑
k=0

‖χ(k,∞)(h)‖Λψ
=

∞∑
k=0

ψ(dh(k))
F.4
= ‖h‖Λψ

.

Therefore, we have

(11) ‖V (g1 − g2)‖Λψ
≤ ε‖h‖Λψ

= ‖g1 − g2‖Λψ
≤ ‖f‖Λψ

+ ε.

Hence, from (10) and (11), we arrive at

‖V (f)‖Λψ
≤ ‖V (g1 − g2)‖Λψ

+ ‖V (f − g1 + g2)‖Λψ
≤ ‖f‖Λψ

+ ε‖V ‖Λψ→Λψ
.

Since ε > 0 is arbitrarily small, the assertion follows. �

The following three lemmas provide key estimates for the norm of the operator
An, n ≥ 1, and for the norms ‖Anf‖2,q, 1 ≤ q < 2, n ≥ 1, for an arbitrary fixed
element f ∈ L2,q(0, 1). The notation cabs stands for an absolute constant (whose
value may change from line to line).

Lemma 6. Let An : L2,1(0, 1) → L2,1((0, 1)
2), then

(12) ‖An‖L2,1→L2,1
≤ cabs log(en), n ≥ 1.

Proof. Let A ⊂ (0, 1) be measurable. By Proposition 2.d.1 in [9] and Lemma 3, we
have

‖An(χA)‖2,1 =

∥∥∥∥
n∑

k=1

k−
1
2 (χA ◦ γk)⊗ rk

∥∥∥∥
2,1

≤ cabs

∥∥∥∥
( n∑

k=1

1

k
(χA ◦ γk)2

) 1
2
∥∥∥∥
2,1

= cabsm(A)
1
2 log(en) = cabs log(en)‖χA‖2,1.
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If A and B are Lebesgue measurable subsets of (0, 1) such that A ∩B = ∅, then

‖An(χA − χB)‖2,1 ≤ 2‖An(χA∪B )‖2,1 ≤ 2cabs log(en)‖χA∪B‖2,1,

and we conclude that (12) holds, thanks to Lemma 5. �

Lemma 7. Let An : L2,q(0, 1) → L2,q((0, 1)
2), for 1 ≤ q ≤ 2. Then

(13) ‖An‖L2,q→L2,q
≤ cabs log

1
q (en), n ≥ 1.

Proof. It follows from Theorem 5.2.4 in [2] that [L2,1, L2] 2q−2
q ,q = L2,q. Using

Proposition 2.g.15 in [9] we obtain

(14) ‖An‖L2,q→L2,q
≤ ‖An‖

2−q
q

L2,1→L2,1
‖An‖

2q−2
q

L2→L2
.

Clearly,

(15) ‖An‖L2→L2
=

( n∑
k=1

1

k

) 1
2 ≤ log

1
2 (en).

From (14) and (15) and Lemma 6 we infer that

‖An‖L2,q→L2,q
≤ cabs

(
log(en)

) 2−q
q ·

(
log

1
2 (en)

) 2q−2
q

= cabs log
1
q (en).

�

Lemma 8. For every f ∈ L2,q(0, 1), 1 ≤ q < 2, we have

‖Anf‖2,q = o(log
1
q (en)), n → ∞.

Proof. Without loss of generality, we assume that f ≥ 0 and fix ε > 0. Since
L2,q is separable, it follows that there exists t > 0 with ‖f∗(t)χ(0,t)‖2,q ≤ ε. Set
f1 = (f − f∗(t))+ and f2 = min{f, f∗(t)}. It is immediate that

(16) ‖Anf‖2,q ≤ ‖An(f1)‖2,q + ‖An(f2)‖2,q.

By Lemma 7, we have

(17) ‖An(f1)‖2,q ≤ cabs log(en)‖f1‖2,q ≤ cabsε log
1
q (en).

By Proposition 2.d.1 in [9], we have

‖An(f2)‖2,q ≤cabs

∥∥∥∥
( n∑

k=1

1

k
(f2 ◦ γk)2

) 1
2
∥∥∥∥
2,q

≤ cabs

∥∥∥∥
( n∑

k=1

1

k
(f2 ◦ γk)2

) 1
2
∥∥∥∥
∞

= cabs

∥∥∥∥
( n∑

k=1

1

k
(f2 ◦ γk)2

)∥∥∥∥
1
2

∞
≤ cabs

( n∑
k=1

1

k
‖(f2 ◦ γk)2‖∞

) 1
2

= cabs

( n∑
k=1

1

k
(f∗(t))2

) 1
2

= cabsf
∗(t)

( n∑
k=1

1

k

) 1
2

≤ cabs log
1
2 (en)f∗(t).

(18)

From (16), (17), and (18) we have

‖An(f)‖2,q ≤ cabs log
1
2 (en)f∗(t) + cabsε log

1
q (en).
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Taking into account that q < 2, we obtain

lim sup
n→∞

1

log
1
q (en)

‖Anf‖2,q ≤ cabsε.

Since ε > 0 is arbitrarily small, the assertion follows. �

4. Main results

In the proof, A ≈ B means that c−1A ≤ B ≤ cA for some constant c which only
depends on the isomorphic embedding.

Theorem 9. If 1 ≤ q < 2, then the Banach space l2,q does not isomorphically
embed into L2,q(0, 1).

Proof. Suppose the contrary, that is, there exists T , the required embedding. Let
{ek}∞k=1 be the standard unit basis in l2,q. Set fk = T (ek), k ≥ 1. It is obvious that
{fk}∞k=1 is a basic sequence in L2,q(0, 1), which is equivalent to the basis {ek}∞k=1

in l2,q. Hence, for every t ∈ (0, 1) and for every α ∈ l2,q, we have∥∥∥∥∑
k≥1

αkrk(t)fk

∥∥∥∥
2,q

≈
∥∥∥∥∑
k≥1

αkrk(t)ek

∥∥∥∥
2,q

≈ ‖α‖2,q.

Thus, ∫ 1

0

∥∥∥∥∑
k≥1

αkrk(t)fk

∥∥∥∥
2,q

dt ≈ ‖α‖2,q.

By Theorem 1.d.6 and Proposition 2.d.1 in [9], we have∫ 1

0

∥∥∥∥∑
k≥1

αkrk(t)fk

∥∥∥∥
2,q

dt ≈
∥∥∥∥∑
k≥1

αkfk ⊗ rk

∥∥∥∥
2,q

and therefore

(19)

∥∥∥∥∑
k≥1

αkfk ⊗ rk

∥∥∥∥
2,q

≈ ‖α‖2,q.

Since the sequence {fk}∞k=1 is weakly null and infk ‖fk‖2,q > 0, it follows from
Lemma 2 that we may further assume (passing to a subsequence, if necessary)2

that {fk}∞k=1 is an unconditional basic sequence satisfying

fk = uk + vk, k ≥ 1,

where {uk}∞k=1, {vk}∞k=1 are unconditional basic sequences in L2,q(0, 1), such that
u∗
k = u∗

1 for all k ≥ 1 (hence, there exists u ∈ L2,q and measure-preserving trans-
formations γk : (0, 1) → (0, 1) such that uk = u ◦ γk for all k ≥ 1) and vkvi = 0 for
all k �= i ≥ 1, in particular, vk → 0 in measure as k → ∞.

Suppose that vk �→ 0 in the norm of L2,q(0, 1). Passing to a subsequence if
needed, we may further assume (see Lemma 1) that the basic sequence {vk}∞k=1 in
L2,q is equivalent to the basis {ek}∞k=1 in lq. It follows from the triangle inequality
that

(20)

∥∥∥∥
n∑

k=1

k−
1
2 vk ⊗ rk

∥∥∥∥
2,q

≤
∥∥∥∥

n∑
k=1

k−
1
2 fk ⊗ rk

∥∥∥∥
2,q

+

∥∥∥∥
n∑

k=1

k−
1
2 uk ⊗ rk

∥∥∥∥
2,q

.

2We get rid of the third sequence by applying Proposition 1.a.9 in [8].
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By (2), we have

(21)
∥∥∥{k− 1

2

}n

k=1

∥∥∥
2,q

≈ log
1
q (en), n ≥ 1,

and therefore we immediately infer from (19) that∥∥∥∥
n∑

k=1

k−
1
2 fk ⊗ rk

∥∥∥∥
2,q

≈ log
1
q (en), n ≥ 1.

Note that uk = u ◦ γk and, hence, the second summand on the right hand side of
(20) equals ‖Anu‖2,q. Appealing to Lemma 6, we infer that this second summand

is also O(log
1
q (en)) when n → ∞. So we obtain from (20)

(22)

∥∥∥∥
n∑

k=1

k−
1
2 vk ⊗ rk

∥∥∥∥
2,q

= O(log
1
q (en)), n → ∞.

However,∥∥∥∥
n∑

k=1

k−
1
2 vk ⊗ rk

∥∥∥∥
2,q

≈
∥∥∥∥

n∑
k=1

k−
1
2 vk

∥∥∥∥
2,q

≈
∥∥∥{k− 1

2

}n

k=1

∥∥∥
q
≈ n

1
q−

1
2 .

Combining the equivalences above with (22), we arrive at

n
1
q−

1
2 = O(log

1
q (en)), n → ∞.

Taking into account the fact that q < 2, we obtain a contradiction, which shows
that limk→∞ ‖vk‖2,q = 0.

Again appealing to Proposition 1.a.9 in [8], we may further assume without loss
of generality that vk = 0, k ≥ 1. Now, combining (21) with (19), we arrive at

(23)

∥∥∥∥
n∑

k=1

k−
1
2uk ⊗ rk

∥∥∥∥
2,q

≈ log
1
q (en), n → ∞.

Recalling that uk = u ◦ γk, the equivalence (23) can be rewritten as

‖Anu‖2,q ≈ log
1
q (en), n → ∞.

This contradiction with Lemma 8 completes the proof. �

For every n, k ∈ N, t ∈ (0,∞) we define

(24) rn, k(t) :=

{
rn(t− k + 1), t ∈ (k − 1, k],

0, elsewhere,

where rn(t), n ∈ N, t ∈ (0, 1) are the Rademacher functions. Let r := {rn,k}n,k∈N
.

Theorem 10. Let [rn,k]
∞
k,n=1 be the closed linear subspace of L2,q(0,∞) spanned

by the system r. If 1 ≤ q < 2, then [rn,k]
∞
k,n=1 does not isomorphically embed into

L2,q(0, 1)⊕ l2,q.

Proof. The proof is essentially a verbatim repetition of the arguments given in the
proof of [7, Theorem 11]. One needs only to consistently replace the references to
[7, Theorem 10] and [7, Corollary 8] there with references to our Theorem 9. We
omit further details. �

Corollary 11. If 1 ≤ q < 2, then the space L2,q(0, 1) ⊕ l2,q does not contain a
closed subspace which is isomorphic to L2,q(0,∞).
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