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Abstract. The spectrum of the singular indefinite Sturm-Liouville operator

A = sgn(·)
(
− d2

dx2 + q
)

with a real potential q ∈ L1(R) covers the whole real line, and, in addition,
non-real eigenvalues may appear if the potential q assumes negative values. A
quantitative analysis of the non-real eigenvalues is a challenging problem, and
so far only partial results in this direction have been obtained. In this paper
the bound

|λ| ≤ ‖q‖2
L1

on the absolute values of the non-real eigenvalues λ of A is obtained. Further-
more, separate bounds on the imaginary parts and absolute values of these
eigenvalues are proved in terms of the L1-norm of the negative part of q.

1. Introduction

The aim of this paper is to prove bounds on the absolute values of the non-real
eigenvalues of the singular indefinite Sturm-Liouville operator

Af = sgn(·)
(
−f ′′ + qf

)
,

domA =
{
f ∈ L2(R) : f, f ′ ∈ AC(R),−f ′′ + qf ∈ L2(R)

}
,

where AC(R) stands for the space of all locally absolutely continuous functions. It
will always be assumed that the potential q is real-valued and belongs to L1(R).

The operator A is not symmetric nor self-adjoint in an L2-Hilbert space due to
the sign change of the weight function sgn(·). However, A can be interpreted as
a self-adjoint operator with respect to the Krein space inner product (sgn ·, ·) in
L2(R). We summarize the qualitative spectral properties of A in the next theorem,
which follows from [4, Theorem 4.2] or [16, Proposition 2.4] and the well-known

spectral properties of the definite Sturm-Liouville operator − d2

dx2 + q; cf. [23–25].

Theorem 1.1. The essential spectrum of A coincides with R, and the non-real
spectrum of A consists of isolated eigenvalues with finite algebraic multiplicity which
are symmetric with respect to R.

Indefinite Sturm-Liouville operators have been studied for more than a century
and have again attracted a lot of attention in the recent past. Early works in this
context usually deal with the regular case; that is, the operator A is studied on a
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finite interval with appropriate boundary conditions at the endpoints; cf. [15, 22]
and, e.g., [11, 18, 26]. In this situation the spectrum of A is purely discrete, and
various estimates on the real and imaginary parts of the non-real eigenvalues were
obtained in the last few years; cf. [2,9,10,14,17,21]. The singular case is much less
studied due to the technical difficulties which, very roughly speaking, are caused
by the presence of continuous spectrum.

Explicit bounds on non-real eigenvalues for singular Sturm-Liouville operators
with L∞-potentials were obtained with Krein space perturbation techniques in [5]
and under additional assumptions for L1-potentials in [6, 7]; see also [3] for the
absence of real eigenvalues and [19] for the accumulation of non-real eigenvalues of
a very particular family of potentials. In this paper we substantially improve the
earlier bounds in [6, 7] and relax the conditions on the potential. More precisely,
here we prove for arbitrary real q ∈ L1(R) the following bound.

Theorem 1.2. Let q ∈ L1(R) be real. Every non-real eigenvalue λ of the indefinite
Sturm-Liouville operator A satisfies

(1.1) |λ| ≤ ‖q‖2L1 .

Moreover, we prove two bounds in terms of the negative part q− of q.

Theorem 1.3. Let q ∈ L1(R) be real. Every non-real eigenvalue λ of the indefinite
Sturm-Liouville operator A satisfies

| Imλ| ≤ 24 ·
√
3‖q−‖2L1 and |λ| ≤ (24 ·

√
3 + 18)‖q−‖2L1 .(1.2)

The bound (1.1) is proved in Section 2. Its proof is based on the Birman-
Schwinger principle using similar arguments as in [1,13] and [12, Chapter 14.3]; see
also [8]. The bounds in (1.2) are obtained in Section 3 by adapting the techniques
from the regular case in [2, 9, 21] to the present singular situation.

2. Proof of Theorem 1.2

In this section we prove the bound (1.1) for the non-real eigenvalues of A. We
adapt a technique similar to the Birman-Schwinger principle in [12] and apply it to
the indefinite operator A. The main ingredient is a bound for the integral kernel
of the resolvent of the operator

B0f = sgn(·)
(
−f ′′), domB0 =

{
f ∈ L1(R) : f, f ′ ∈ AC(R),−f ′′ ∈ L1(R)

}
,

in L1(R).

Lemma 2.1. The operator B0 is closed in L1(R), and for all λ in the open upper
half-plane C+ the resolvent of B0 is an integral operator[

(B0 − λ)−1g
]
(x) =

∫
R

Kλ(x, y)g(y) dy, g ∈ L1(R),

where the kernel Kλ : R×R → C is bounded by |Kλ(x, y)| ≤ |λ|− 1
2 for all x, y ∈ R.

Proof. Here and in the following we define
√
λ for λ ∈ C+ as the principal value

of the square root, which ensures that Im
√
λ > 0 and Re

√
λ > 0. For λ ∈ C+

consider the integral operator

(Tλg)(x) =

∫
R

Kλ(x, y)g(y) dy, g ∈ L1(R),(2.1)
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with the kernel Kλ(x, y) = Cλ(x, y) +Dλ(x, y) of the form

Cλ(x, y) =
1

2α
√
λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αei

√
λ(x+y), x ≥ 0, y ≥ 0,

−e
√
λ(ix+y), x ≥ 0, y < 0,

e
√
λ(x+iy), x < 0, y ≥ 0,

−αe
√
λ(x+y), x < 0, y < 0,

and

Dλ(x, y) =
1

2α
√
λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αei

√
λ|x−y|, x ≥ 0, y ≥ 0,

0, x ≥ 0, y < 0,

0, x < 0, y ≥ 0,

−αe−
√
λ|x−y|, x < 0, y < 0,

where α := 1−i
2 . Hence,

|Kλ(x, y)| = |Cλ(x, y) +Dλ(x, y)| ≤
1√
|λ|

,

and the integral in (2.1) converges for every g ∈ L1(R). We have

sup
y≥0

∫
R

|Cλ(x, y)| dx =
1

2
√
|λ|

(
1

Im
√
λ
+

√
2

Re
√
λ

)

and

sup
y<0

∫
R

|Cλ(x, y)| dx =
1

2
√
|λ|

( √
2

Im
√
λ
+

1

Re
√
λ

)
.

For y ≥ 0 we estimate∫ ∞

0

|Dλ(x, y)| dx =
1

2
√
|λ|

∫ ∞

0

e− Im
√
λ|x−y| dx =

2− e− Im
√
λy

2
√
|λ| Im

√
λ

≤ 1√
|λ| Im

√
λ
,

and analogously for y < 0,∫ 0

−∞
|Dλ(x, y)| dx =

1

2
√
|λ|

∫ 0

−∞
e−Re

√
λ|x−y| dx =

2− eRe
√
λy

2
√
|λ|Re

√
λ
≤ 1√

|λ|Re
√
λ
.

Hence,

c := sup
y∈R

∫
R

|Kλ(x, y)| dx < ∞,

and Fubini’s theorem yields

‖Tλg‖L1 ≤
∫
R

|g(y)|
∫
R

|Kλ(x, y)| dx dy ≤ c‖g‖L1 .

Therefore Tλ in (2.1) is an everywhere defined bounded operator in L1(R).
We claim that Tλ is the inverse of B0 − λ. In fact, consider the functions u, v

given by

u(x) =

{
ei

√
λx, x ≥ 0,

αe
√
λx + αe−

√
λx, x < 0,

and v(x) =

{
αei

√
λx + αe−i

√
λx, x ≥ 0,

e
√
λx, x < 0,
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which solve the differential equation sgn(·)(−f ′′) = λf ; that is, u and v, and their
derivatives, belong to AC(R) and satisfy the differential equation almost every-

where. Since the Wronskian equals 2α
√
λ, these solutions are linearly independent.

Note that u, v /∈ L1(R), and one concludes that B0 − λ is injective. A simple
calculation shows the identity

Kλ(x, y) = Cλ(x, y) +Dλ(x, y) =
1

2α
√
λ

{
u(x)v(y) sgn(y), y < x,

v(x)u(y) sgn(y), x < y,

and hence we have

(Tλg)(x) =
1

2α
√
λ

(
u(x)

∫ x

−∞
v(y) sgn(y)g(y) dy + v(x)

∫ ∞

x

u(y) sgn(y)g(y) dy

)
.

One verifies that Tλg, (Tλg)
′ ∈ AC(R) and Tλg is a solution of sgn(·)(−f ′′)−λf = g.

This implies that (Tλg)
′′ ∈ L1(R), and hence Tλg ∈ domB0 satisfies

(B0 − λ)Tλg = g for all g ∈ L1(R).

Therefore, B0 −λ is surjective, and we have Tλ = (B0 − λ)−1. It follows that B0 is
a closed operator in L1(R) and that λ belongs to the resolvent set of B0. �

Proof of Theorem 1.2. Since the non-real point spectrum of A is symmetric with
respect to the real line (see Theorem 1.1) it suffices to consider eigenvalues in
the upper half-plane. Let λ ∈ C+ be an eigenvalue of A with a corresponding

eigenfunction f ∈ domA. Since q ∈ L1(R) and − d2

dx2 + q is in the limit point
case at ±∞ (see, e.g., [23, Lemma 9.37]) the function f is unique up to a constant
multiple. As −f ′′ + qf = λf on R+ and f ′′ − qf = λf on R− with q integrable,
one has the well-known asymptotical behaviour

f(x) = α+

(
1 + o(1)

)
ei

√
λx, x → +∞,

f ′(x) = α+i
√
λ
(
1 + o(1)

)
ei

√
λx, x → +∞,

(2.2)

and

f(x) = α−
(
1 + o(1)

)
e
√
λx, x → −∞,

f ′(x) = α−
√
λ
(
1 + o(1)

)
e
√
λx, x → −∞,

(2.3)

for some α+, α− ∈ C; see, e.g., [20, §24.2, Example a] or [23, Lemma 9.37]. These
asymptotics yield f, qf ∈ L1(R), and −f ′′ = λ sgn(·)f − qf ∈ L1(R), and therefore
f ∈ domB0. Thus, f satisfies

0 = (A− λ)f = sgn(·)(−f ′′)− λf + sgn(·)qf = (B0 − λ)f + sgn(·)qf,

and since λ is in the resolvent set of B0 we obtain

−qf = q(B0 − λ)−1 sgn(·)qf.

Note that ‖qf‖L1 	= 0 as otherwise λ would be an eigenvalue of B0. With the help
of Lemma 2.1 we then conclude that

0 < ‖qf‖L1 ≤
∫
R

|q(x)|
∫
R

|Kλ(x, y)||q(y)f(y)| dy dx ≤ 1√
|λ|

‖qf‖L1‖q‖L1 ,

and this yields the desired bound (1.1). �
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3. Proof of Theorem 1.3

In this section we prove the bounds in (1.2) for the non-real eigenvalues of A
in Theorem 1.3, which depend only on the negative part q−(x) = max{0,−q(x)},
x ∈ R, of the potential. The following lemma will be useful.

Lemma 3.1. Let λ ∈ C+ be an eigenvalue of A and let f be a corresponding
eigenfunction. Define

U(x) :=

∫ ∞

x

sgn(t)|f(t)|2 dt and V (x) :=

∫ ∞

x

|f ′(t)|2 + q(t)|f(t)|2 dt

for x ∈ R. Then the following assertions hold:

(a) λU(x) = f ′(x)f(x) + V (x);
(b) limx→−∞ U(x) = 0 and limx→−∞ V (x) = 0;
(c) ‖f ′‖L2 ≤ 2‖q−‖L1‖f‖L2 ;

(d) ‖f‖∞ ≤ 2
√
‖q−‖L1‖f‖L2 ;

(e) ‖qf2‖L1 ≤ 8‖q−‖2L1‖f‖2L2 .

Proof. Note that f satisfies the asymptotics (2.2)–(2.3) and hence f and f ′ vanish
at ±∞ and f ′ ∈ L2(R). In particular, V (x) is well defined. We multiply the identity

λf(t) = sgn(t)(−f ′′(t) + q(t)f(t)) by sgn(t)f(t), and integration by parts yields

λU(x) =

∫ ∞

x

−f ′′(t)f(t) + q(t)|f(t)|2 dt = f ′(x)f(x) + V (x)

for all x ∈ R. This shows (a). Moreover, we have

λ

∫
R

sgn(t)|f(t)|2 dt = lim
x→−∞

λU(x) = lim
x→−∞

V (x) =

∫
R

|f ′(t)|2 + q(t)|f(t)|2 dt.

Taking the imaginary part shows that limx→−∞ U(x) = 0 and, hence,
limx→−∞ V (x) = 0. This proves (b).

As f is continuous and vanishes at ±∞ we have ‖f‖∞ < ∞. Let q+(x) :=
max{0, q(x)}, x ∈ R. Making use of limx→−∞ V (x) = 0 and q = q+ − q− we find
that

0 ≤ ‖f ′‖2L2 = −
∫
R

q(t)|f(t)|2 dt = −
∫
R

(
q+(t)− q−(t)

)
|f(t)|2 dt

≤
∫
R

q−(t)|f(t)|2 dt ≤ ‖q−‖L1‖f‖2∞.

(3.1)

This implies that ‖q+f2‖L1 ≤ ‖q−f2‖L1 ≤ ‖q−‖L1‖f‖2∞ and, thus,

‖qf2‖L1 =

∫
R

|q(t)||f(t)|2 dt =
∫
R

(
q+(t) + q−(t)

)
|f(t)|2 dt ≤ 2‖q−‖L1‖f‖2∞.(3.2)

In order to verify (d) let x, y ∈ R with x > y. Then

|f(x)|2 − |f(y)|2 =

∫ x

y

(
|f |2

)′
(t) dt ≤ 2

∫ x

y

|f(t)f ′(t)| dt ≤ 2‖f‖L2‖f ′‖L2 ,

together with f(y) → 0, y → −∞, leads to ‖f‖2∞ ≤ 2‖f‖L2‖f ′‖L2 . Since f is an
eigenfunction ‖f‖∞ does not vanish and we have with (3.1)

‖f‖∞ ≤ 2‖f‖L2‖f ′‖L2

‖f‖∞
≤ 2

√
‖q−‖L1‖f‖L2 ,
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which shows (d). Moreover, the estimate in (d) applied to (3.1) and (3.2) yields (c)
and (e). �

Proof of Theorem 1.3. Let λ ∈ C+ be an eigenvalue of A and let f ∈ domA be a
corresponding eigenfunction. We can assume ‖q−‖L1 > 0, as otherwise f = 0 by
Lemma 3.1(d). Let U and V be as in Lemma 3.1, let δ := (24‖q−‖L1)−1, and define
the function g on R by

g(x) =

{
sgn(x), |x| > δ,
x
δ , |x| ≤ δ.

From Lemma 3.1(a) we have

λ

∫
R

g′(x)U(x) dx =

∫
R

g′(x)
(
f ′(x)f(x) + V (x)

)
dx.(3.3)

Since g is bounded and U(x) vanishes for x → ±∞, integration by parts leads to
the estimate∫

R

g′(x)U(x) dx =

∫
R

g(x) sgn(x)|f(x)|2 dx ≥
∫
R\[−δ,δ]

|f(x)|2 dx

=‖f‖2L2 −
∫ δ

−δ

|f(x)|2 dx ≥ ‖f‖2L2 − 2δ‖f‖2∞

≥‖f‖2L2 − 8δ‖q−‖L1‖f‖2L2 =
2

3
‖f‖2L2 ;

(3.4)

here we have used Lemma 3.1(d) in the last line of (3.4). Further we see with
Lemma 3.1(c)–(d) that∣∣∣∣

∫
R

g′(x)f ′(x)f(x) dx

∣∣∣∣ ≤ ‖f‖∞‖f ′‖L2‖g′‖L2 ≤ 4‖q−‖
3
2

L1‖f‖2L2

√
2

δ

≤ 16 ·
√
3‖q−‖2L1‖f‖2L2 .

(3.5)

Since ‖g‖∞ = 1 and V (x) vanishes for x → ±∞, integration by parts together with
Lemma 3.1(c) and (e) yields∣∣∣∣

∫
R

g′(x)V (x) dx

∣∣∣∣ =
∣∣∣∣
∫
R

g(x)
(
|f ′(x)|2 + q(x)|f(x)|2

)
dx

∣∣∣∣
≤ ‖g‖∞

(
‖f ′‖2L2 + ‖qf2‖L1

)
≤ 12‖q−‖2L1‖f‖2L2 .

(3.6)

Comparing the imaginary parts in (3.3) we have with (3.4) and (3.5)

2

3
| Imλ|‖f‖2L2 ≤| Imλ|

∣∣∣∣
∫
R

g′(x)U(x) dx

∣∣∣∣ ≤
∣∣∣∣
∫
R

g′(x)f ′(x)f(x) dx

∣∣∣∣
≤16 ·

√
3‖q−‖2L1‖f‖2L2 .

In the same way we obtain from (3.4), (3.3), and (3.5)–(3.6) that

2

3
|λ|‖f‖2L2 ≤

∣∣∣∣λ
∫
R

g′(x)U(x) dx

∣∣∣∣ =
∣∣∣∣
∫
R

g′(x)
(
f ′(x)f(x) + V (x)

)
dx

∣∣∣∣
≤
(
16 ·

√
3 + 12

)
‖q−‖2L1‖f‖2L2 .

This shows the bounds in (1.2). �
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