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FINITE NUMBERS OF INITIAL IDEALS

IN NON-NOETHERIAN POLYNOMIAL RINGS

FELICITAS LINDNER

(Communicated by Irena Peeva)

Abstract. In this article, we generalize the well-known result that ideals
of Noetherian polynomial rings have only finitely many initial ideals to the
situation of ideals in the polynomial ring R = K[xi,j | 1 ≤ i ≤ c, j ∈ N] that are
invariant under the action of the monoid Inc(N) of strictly increasing functions
on N. This monoid acts on R by shifting the second variable index. We show
that for every Inc(N)-invariant ideal, the number of initial ideals with respect
to term orders that are compatible with this Inc(N)-action is finite. The article
also addresses the question of how many such term orders exist. We give a
complete list of the Inc(N)-compatible term orders for the case c = 1 and show

that there are infinitely many for c > 1.

1. Introduction

It has long been known that for ideals of polynomial rings in finitely many vari-
ables, the number of initial ideals with respect to arbitrary term orders is finite
(e.g. [MR], Lemma 2.6). As this result relies on the Noetherianity of such poly-
nomial rings, it cannot be transferred to ideals of polynomial rings in infinitely
many variables in general. However, more recent results show that for certain non-
Noetherian polynomial rings, there are classes of ideals satisfying a weaker kind of
Noetherianity, namely Noetherianity up to the action of certain monoids. Thus, it
seems worthwhile to try to generalize the result on finiteness of numbers of initial
ideals in the Noetherian case to this class of ideals.

Let R := K[xi,j | i ∈ [c], j ∈ N] be the polynomial ring over an arbitrary field
K in the variables indexed by [c] × N, where N := {1, 2, 3, ...} denotes the set of
natural numbers, c ∈ N is any fixed number, and [c] := {1, ..., c}. On R, we can
define an action of the monoid

Inc(N) := {p : N → N | p(n) < p(n+ 1) for all n ∈ N}
of strictly increasing functions on N by a K-linear extension of the map

xe1
i1,j1

· ... · xer
ir,jr

�→ p · (xe1
i1,j1

· ... · xer
ir,jr

) := xe1
i1,p(j1)

· ... · xer
ir,p(jr)

for every p ∈ Inc(N). We call an ideal J of R Inc(N)-invariant if Inc(N) · J = J .
Let ≺ be a term order on R, i.e., a total order on the monomials of R respecting

multiplication and satisfying 1 � f for every monomial f . Note that we do not
require ≺ to be a well-order. If ≺ has the additional property that

f ≺ g ⇒ p · f ≺ p · g
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for all monomials f, g ∈ R and every p ∈ Inc(N), then we call ≺ an Inc(N)-
compatible term order on R. In [HS] the authors showed that for any Inc(N)-
invariant ideal J ⊆ R and any Inc(N)-compatible term order ≺, the ideal J has a
finite Inc(N)-Gröbner basis with respect to ≺; i.e., there is a finite subset G ⊆ J
such that

in≺(J) = 〈Inc(N) · in≺(g) | g ∈ G〉R.
This can be seen as a generalization of the statement that in Noetherian polynomial
rings, every ideal has finite Gröbner bases with respect to arbitrary term orders.
For Noetherian polynomial rings it is also known that for any ideal J , the number of
initial ideals of J with respect to arbitrary term orders is finite (e.g. [MR], Lemma
2.6). In this article, we will generalize this result to the case of Inc(N)-invariant
ideals of the polynomial ring R in the following sense:

Theorem 1.1. Let J be an Inc(N)-invariant ideal of R. Then J has only finitely
many initial ideals with respect to Inc(N)-compatible term orders on R.

Theorem 1.1 is a straightforward consequence of certain finiteness results for
Inc(N)-invariant ideal chains in R, which are also part of this article. Let Rn :=
K[xi,j | i ∈ [c], j ∈ [n]] and

Inc(N)m,n := {p ∈ Inc(N) | p(m) ≤ n}
for each pair of natural numbers m ≤ n. For every n, let Jn be an ideal of Rn.
We call the sequence J◦ = J1 ⊆ J2 ⊆ ... an Inc(N)-invariant ideal chain in R if for
every m ≤ n, we have

Inc(N)m,n · Jm ⊆ Jn.

In [HS] it was shown that every Inc(N)-invariant ideal chain J◦ in R stabilizes up
to the action of Inc(N); i.e., there is an index N ∈ N satisfying

(1.1) 〈Inc(N)N,n · JN 〉Rn
= Jn

for every n ≥ N . We call the minimal N satisfying (1.1) the stability index of J◦
and denote it by Ind(J◦).

If J◦ is an Inc(N)-invariant ideal chain and ≺ is an Inc(N)-compatible term order
on R, then the chain of initial ideals

in≺(J◦) := in≺(J1) ⊆ in≺(J2) ⊆ ...

is Inc(N)-invariant, too, and therefore stabilizes. Thus, we can define the set

I(J◦) := {Ind(in≺(J◦)) | ≺ is an Inc(N)-compatible term order on R}
of stability indices of initial ideal chains of J◦ with respect to Inc(N)-compatible
term orders. In this article, we will prove the following statement:

Theorem 1.2. For every Inc(N)-invariant ideal chain J◦ in R, the set I(J◦) is
bounded above (and, thus, finite).

Note that the global stability index Ind(J◦) of an Inc(N)-invariant ideal chain
can be smaller than max(I(J◦)). For instance, let c = 1, J1 = J2 = J3 = {0}, J4 =
〈x1+x3〉R4

, and Jn = 〈Inc(N)4,n ·J4〉Rn
for n ≥ 5. Let ≺ be any Inc(N)-compatible

term order satisfying xn ≺ xn+1 for all n ∈ N. As (x2+x4)−(x1+x4) = x2−x1 lies
in J5, we conclude that x2 ∈ in≺(J5). On the other hand, we have in≺(J4) = 〈x3〉R4

.
Thus, x2 is not an element of 〈Inc(N)4,5 ·in≺(J4)〉R5

, so Ind(in≺(J◦)) > 4 = Ind(J◦).
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Hence, the seemingly obvious idea to prove Theorem 1.2 by showing that I(J◦) is
bounded by Ind(J◦) must fail.

We will use Theorem 1.2 to prove that (a) the number of initial ideal chains of
Inc(N)-invariant ideal chains in R with respect to Inc(N)-compatible term orders is
finite (Corollary 3.1), and (b) the number of initial ideals of Inc(N)-invariant ideals
of R with respect to Inc(N)-compatible term orders is finite (Theorem 1.1). Also,
Theorem 1.2 will allow us to generalize the notion of universal Gröbner bases to the
setting of Inc(N)-invariant ideals of R and prove their existence (Corollary 3.7).

Of course, all of these statements would be trivial if there were only finitely many
Inc(N)-compatible term orders on R. However, for c ≥ 2 it is easy to show that
the number of Inc(N)-compatible term orders is infinite: Choose any term order
≺′ on the polynomial ring K[y1, ..., yc]. For a tuple a = (a1, ..., ac) ∈ Nc

0, write
xa
i := xa1

1,i · · ·x
ac

c,i, y
a := ya1

1 · · · yac
c . Then define the relation ≺ by

xa1
1 · · ·xan

n ≺ xb1
1 · · ·xbn

n :⇔ yai ≺′ ybi for i = min{j | aj �= bj}.
This is obviously an Inc(N)-compatible term order on R, and if we choose two
distinct term orders ≺′

1,≺′
2 of K[y1, ..., yc], then the corresponding term orders

≺1,≺2 on R are distinct, too. As for c ≥ 2, there are uncountably many distinct
term orders on K[y1, ..., yc]. There are also uncountably many Inc(N)-compatible
term orders on R.

As we will see in Section 3, this is not true for c = 1. In this case, the only Inc(N)-
compatible term orders on R are the lexicographic, the degree-lexicographic, and
the degree-reverse-lexicographic term orders with respect to the Inc(N)-compatible
variable orderings x1 ≺ x2 ≺ · · · or x1 � x2 � · · · (Corollary 4.5). This answers
Question 5.5 in [HKL] in the negative.

The article is organized as follows: We begin with some technical preparations
in Section 2 needed for the proof of Theorem 1.2, which will be given in Section 3.
In Section 3, we will also discuss the consequences of Theorem 1.2 described above.
In Section 4 we will then study the question of what the Inc(N)-compatible term
orders are in the case c = 1.

2. Technical preparations

Here and in the section that follows, the number c from the definitions of R and
Rn is an arbitrary natural number. We start this section with some observations
concerning the monoid Inc(N) and its action on R.

Lemma 2.1 (cf. [NR], Proposition 4.6). Let l ≤ m ≤ n be natural numbers. Then

Inc(N)l,n = Inc(N)m,n ◦ Inc(N)l,m,

meaning that for every p1 ∈ Inc(N)l,m, p2 ∈ Inc(N)m,n we have p2 ◦ p1 ∈ Inc(N)l,n,
and every element p ∈ Inc(N)l,n has such a decomposition.

The somewhat technical proof of the following lemma is left to the reader.

Lemma 2.2. Let N, l ∈ N, n ≥ N , and i1 < · · · < il ≤ N , j1 < · · · < jl ≤ n be
two ascending sequences of natural numbers. Then there is p ∈ Inc(N)N,n such that
p(ir) = jr for all r ∈ [l] if and only if j1 ≥ i1, jr+1− jr ≥ ir+1− ir for 1 ≤ r ≤ l−1
and n− jl ≥ N − il.

Lemma 2.3. Let m ≤ n be natural numbers, let f ∈ Rm be a polynomial of degree
deg(f) > 0, and let p ∈ Inc(N) with p · f ∈ Rn. Let m′, n′ ∈ N be minimal with
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f ∈ Rm′ and p · f ∈ Rn′ . Then there is p′ ∈ Inc(N)m,n such that p′ · f = p · f if and
only if n− n′ ≥ m−m′.

Proof. Let i1 < · · · < il ≤ m and j1 < · · · < jl ≤ n be the second variable
indices occurring in f and p · f , respectively. By assumption, we have l ≥ 1,
il = m′, and jl = n′. As p(ir) = jr for all r ∈ [l], Lemma 2.2 yields j1 ≥ i1 and
jr+1 − jr ≥ ir+1 − ir for 1 ≤ r ≤ l − 1. Therefore, again by Lemma 2.2, we can
conclude that there is p′ ∈ Inc(N)m,n with p′(ir) = jr for all r ∈ [l] if and only if
n− n′ = n− jl ≥ m− il = m−m′. �

Lemma 2.4. Let i1 ≤ i2 ≤ ... be an ascending sequence of natural numbers and let
gin ∈ Rin be monomials. Then there are indices j < k such that gik is contained in
〈Inc(N)ij ,ik · gij 〉Rik

.

Proof. There is nothing to show if gin ∈ K for some n ∈ N, so assume deg(gin) > 0
for all n. By Theorem 3.1 in [HS], there is an infinite subsequence (gink

)k≥1 of

(gin)n≥1 such that for each k ∈ N we have gink+1
= fk(pk · gink

) for a monomial

fk ∈ Rink+1
and pk ∈ Inc(N). We claim that one of the pk can be substituted for an

element from Inc(N)ink
,ink+1

. By contradiction, assume that this is not the case.

For each k let mk ≤ ink
be minimal with gink

∈ Rmk
. By Lemma 2.3 we have

ink
−mk > ink+1

−mk+1 for every k ≥ 1. But this contradicts the fact that there
are no infinite, strictly decreasing sequences of natural numbers. �

We now return to our problem of stability indices of initial ideal chains with
respect to Inc(N)-compatible term orders. We begin with the remark that if J◦
is an Inc(N)-invariant ideal chain, then every N ≥ Ind(J◦) satisfies the stability
condition (1.1).

Lemma 2.5. Let J◦ be an Inc(N)-invariant ideal chain in R and let N ≥ Ind(J◦).
Then

〈Inc(N)N,n · JN 〉Rn
= Jn

for all n ≥ N .

Proof. Let N ≥ Ind(J◦). Then by Lemma 2.1 and the Inc(N)-invariance of J◦, we
have

Jn =
〈
Inc(N)Ind(J◦),n · JInd(J◦)

〉
Rn

=
〈
Inc(N)N,n ·

(
Inc(N)Ind(J◦),N · JInd(J◦)

)〉
Rn

⊆ 〈Inc(N)N,n · JN 〉Rn
.

�

The key to our proof of Theorem 1.2 is the following proposition.

Proposition 2.6. Let J◦ = J1 ⊆ J2 ⊆ ... be an Inc(N)-invariant ideal chain in R
and let N ≥ Ind(J◦). Then for every Inc(N)-compatible term order ≺, the identity
in≺(J2N ) = 〈Inc(N)N,2N · in≺(JN )〉R2N

implies that Ind(in≺(J◦)) ≤ 2N .

Proof. Let N ≥ Ind(J◦) and let ≺ be an Inc(N)-compatible term order. Suppose
that in≺(J2N ) = 〈Inc(N)N,2N · in≺(JN )〉R2N

. To prove the proposition, it is enough
to show that the corresponding identity holds for every n ≥ 2N , as this implies
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that

in≺(Jn) = 〈Inc(N)N,n · in≺(JN )〉Rn

= 〈Inc(N)2N,n · (Inc(N)N,2N · in≺(JN ))〉Rn

⊆ 〈Inc(N)2N,n · in≺(J2N )〉Rn
,

where we used Lemma 2.1 in the second line and the Inc(N)-invariance of in≺(J◦)
in the third line. To this end, it suffices to prove the following.

Claim. If G is a Gröbner basis of JN with respect to ≺, then G′ := Inc(N)N,n · G is
a Gröbner basis of Jn with respect to ≺ for every n ≥ 2N .

Clearly, Inc(N)N,2N · G is a Gröbner basis for J2N . Let n > 2N . As G generates
JN andN ≥ Ind(J◦), G′ is a generating set for Jn by Lemma 2.5. Thus, we only have
to show that the S-polynomials of the elements of G′ reduce to zero with respect to
G′. Choose f ′, g′ ∈ G′ and write f ′ = p1 · f , g′ = p2 · g with p1, p2 ∈ Inc(N)N,n and
f, g ∈ G. Let j1 < · · · < jN ≤ n, k1 < · · · < kN ≤ n be natural numbers satisfying
p1([N ]) = {j1, ..., jN} and p2([N ]) = {k1, ..., kN} and let i1 < · · · < i2N ≤ n be
natural numbers such that {j1, ..., jN}∪{k1, ..., kN} ⊆ {i1, ..., i2N}. Define the map
p by

p(j) :=

{
ij , j ∈ [2N ],
n+ j, j > 2N.

Then p is an element of Inc(N)2N,n satisfying p1([N ]), p2([N ]) ⊆ p(N). Therefore,
p−1 ◦ p1 : [N ] → [2N ] and p−1 ◦ p2 : [N ] → [2N ] are well-defined, strictly increasing
maps which can easily be extended to elements q1, q2 ∈ Inc(N)N,2N . Due to the
Inc(N)-invariance of J◦, this yields p−1 · f ′ = (p−1 ◦ p1) · f = q1 · f ∈ J2N and
p−1 · g′ = (p−1 ◦ p2) · g = q2 · g ∈ J2N .

Recall that for polynomials h1, h2 ∈ R, the S-polynomial S(h1, h2) of h1 and h2

with respect to the term order ≺ is defined as

S(h1, h2) = lcm(in≺(h1), in≺(h2))

(
h1

lt≺(h1)
− h2

lt≺(h2)

)
,

where lcm(in≺(h1), in≺(h2)) stands for the least common multiple of in≺(h1) and
in≺(h2) and lt≺(hi) denotes the leading term of hi, i.e., the product of the leading
monomial of hi with respect to ≺ and its coefficient in hi. Due to the Inc(N)-
compatibility of ≺, the S-polynomial of p−1 · f ′ and p−1 · g′ satisfies

S(p−1 · f ′, p−1 · g′)

= lcm(in≺(p
−1 · f ′), in≺(p

−1 · g′))
(

p−1 · f ′

lt≺(p−1 · f ′)
− p−1 · g′

lt≺(p−1 · g′)

)

= lcm(p−1 · in≺(f ′), p−1 · in≺(g′))
(

p−1 · f ′

p−1 · lt≺(f ′)
− p−1 · g′

p−1 · lt≺(g′)

)

= p−1 ·
[
lcm(in≺(f

′), in≺(g
′))

(
f ′

lt≺(f ′)
− g′

lt≺(g′)

)]

= p−1 · S(f ′, g′).(2.1)

As both p−1 ·f ′ and p−1 ·g′ are contained in J2N , this is also true for S(p−1 ·f ′, p−1 ·
g′). Therefore, S(p−1 · f ′, p−1 · g′) reduces to zero with respect to Inc(N)N,2N · G;
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i.e., it can be written as

S(p−1 · f ′, p−1 · g′) =
r∑

i=1

hi (q
′
i · gi)

with hi ∈ R2N , q′i ∈ Inc(N)N,2N , gi ∈ G, and in≺(S(p
−1·f ′, p−1·g′)) � in≺(hi(q

′
i·gi))

for all i ∈ [r]. This yields

in≺(p · S(p−1 · f ′, p−1 · g′)) = p · in≺(S(p−1 · f ′, p−1 · g′))
� p · in≺(hi(q

′
i · gi)) = in≺((p · hi)((p ◦ q′i) · gi))

for all i ∈ [r]. As by equation (2.1) we have

S(f ′, g′) = p · S(p−1 · f ′, p−1 · g′) =
r∑

i=1

(p · hi)((p ◦ q′i) · gi)

and p ◦ q′i ∈ Inc(N)N,n by Lemma 2.1, we conclude that S(f ′, g′) reduces to zero
with respect to G′. �

3. Proof of Theorem 1.2 and implications

Proof of Theorem 1.2. By contradiction, assume the existence of a sequence
(≺n)n≥1 of Inc(N)-compatible term orders on R with limn→∞ Ind(in≺n

(J◦)) = ∞.
Set N0 := Ind(J◦) and Ni := 2Ni−1 for i ≥ 1. We claim that there is a collection
(≺i

n)n≥1 of infinite subsequences of (≺n)n≥1, where i ranges over N0, such that
(1) (≺i

n)n≥1 is a subsequence of (≺i−1
n )n≥1 for all i ≥ 1;

(2) in≺i
n
(JNi

) � 〈Inc(N)Ni−1,Ni
· in≺i

n
(JNi−1

)〉RNi
for all i, n ≥ 1;

(3) in≺i
n
(JNi

) = in≺i
1
(JNi

) for all i, n ≥ 1.

Indeed, we can construct these subsequences as follows: Set (≺0
n)n≥1 := (≺n)n≥1.

By induction, assume that the subsequence (≺i
n)n≥1 has already been defined for

some i ≥ 0. Then limn→∞ Ind(in≺i
n
(J◦)) = ∞, so in particular, there are infinitely

many indices n such that Ind(in≺i
n
(J◦)) > Ni+1. By Proposition 2.6, these indices

satisfy in≺i
n
(JNi+1

) � 〈Inc(N)Ni,Ni+1
·in≺i

n
(JNi

)〉RNi+1
. Hence, we obtain an infinite

subsequence of (≺i
n)n≥1 satisfying (2). As the total number of initial ideals of JNi+1

is finite, this subsequence contains another infinite subsequence (≺i+1
n )n≥1 such that

in≺i+1
n

(JNi+1
) = in≺i+1

1
(JNi+1

) for all n and we are done.

For every i ≥ 1, choose a monomial gi ∈ in≺i
1
(JNi

) that is not contained in

〈Inc(N)Ni−1,Ni
· in≺i

1
(JNi−1

)〉RNi
. Then for any pair i < j of natural numbers, we

have

gj �∈ 〈Inc(N)Nj−1,Nj
· in≺j

1
(JNj−1

)〉RNj

⊇ 〈Inc(N)Nj−1,Nj
· (Inc(N)Ni,Nj−1

· in≺j
1
(JNi

))〉RNj

= 〈Inc(N)Nj−1,Nj
· (Inc(N)Ni,Nj−1

· in≺i
1
(JNi

))〉RNj

= 〈Inc(N)Ni,Nj
· in≺i

1
(JNi

)〉RNj

⊇ 〈Inc(N)Ni,Nj
· gi〉RNj

,

where we used properties (1) and (3) in the third line and Lemma 2.1 in the fourth
line. But by Lemma 2.4, such a sequence (gi)i≥1 cannot exist, and we have reached
a contradiction. �



FINITENESS OF INITIAL IDEALS 3727

For any subset A ⊆ N, let RA denote the polynomial ring over K in the variables
indexed by [c]×A.

Corollary 3.1. Let J◦ be an Inc(N)-invariant ideal chain in R. Then:
(1) The set of ideal chains

{in≺(J◦) | ≺ is an Inc(N)-compatible term order on R}
is finite.

(2) There is N ∈ N such that

(3.1) in≺(Jn) =
∑

1≤i1<···<iN≤n

〈
in≺(Jn ∩R{i1,...,iN})

〉
Rn

for all n ≥ N and every Inc(N)-compatible term order ≺ on R. Here, we
regard the intersections Jn ∩R{i1,...,iN} as ideals of R{i1,...,iN}.

Furthermore, statement (1) is equivalent to |I(J◦)| < ∞.

Proof. Let N := max(I(J◦)). Then by Lemma 2.5, for Inc(N)-compatible term
orders ≺,≺′ we have in≺(J◦) = in≺′(J◦) if and only if in≺(Jn) = in≺′(Jn) for all
n ∈ [N ]. As J1, ..., JN each have only finitely many initial ideals, there are only
finitely many sequences L1 ⊆ · · · ⊆ LN such that Ln = in≺(Jn) for all n for any
term order ≺ on R. This proves (1). It is clear that conversely, the boundedness
of I(J◦) can be deduced from (1).

For the proof of (2), choose any Inc(N)-compatible term order ≺ on R. Then by
Remark 2.5 and the Inc(N)-compatibility of ≺, in≺(Jn) is generated by

{in≺(p · f) | p ∈ Inc(N)N,n, f ∈ JN} .
As J◦ is Inc(N)-invariant, each of the polynomials p · f in the above set lies in one
of the intersections Jn ∩ R{i1,...,iN}, where i1 < · · · < iN ranges over all strictly
ascending sequences of [n]. This proves the inclusion ⊆ in (3.1). The reverse
inclusion is obvious. �

Remark 3.2. By equation (3.1), for every Inc(N)-invariant ideal chain J◦ in R, there
is a natural number N such that for every n ≥ N and every Inc(N)-compatible term
order ≺ on R, there is a Gröbner basis of Jn with respect to ≺ whose elements each
contain no more than cN distinct variables. This is not the case for arbitrary ideal
chains in R. For instance, set c = 1 and consider the ideal chain J◦ defined by

J1 := {0},
J2n := 〈J2n−1 , x2n−1+1 + · · ·+ x2n〉R2n

for n ≥ 1,

Jm := 〈J2n〉Rm
for 2n ≤ m < 2n+1.

Then for any term order ≺ on R and n ≥ 1, every polynomial f ∈ J2n with in≺(f) |
in≺(x2n−1+1+ · · ·+x2n) must contain a non-trivial K-multiple of x2n−1+1+ · · ·+x2n

and, hence, at least 2n−1 distinct variables.

We can now prove our statement on the number of initial ideals with respect to
Inc(N)-compatible term orders for Inc(N)-invariant ideals of R:

Proof of Theorem 1.1. For every term order ≺ on R, we have

in≺(J) =
⋃
n≥1

in≺(J ∩Rn).
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Thus, if ≺,≺′ are term orders on R with in≺(J ∩Rn) = in≺′(J ∩Rn) for all n, then
in≺(J) = in≺′(J). As the ideal chain J◦ := J∩R1 ⊆ J∩R2 ⊆ ... is Inc(N)-invariant,
Corollary 3.1(1) tells us that there exists a finite number of Inc(N)-compatible term
orders ≺1, ...,≺N on R such that for every Inc(N)-compatible term order ≺ on R
there is i ∈ [N ] with in≺(J◦) = in≺i

(J◦). This proves our claim. �

Remark 3.3. If we only consider initial ideals with respect to Inc(N)-compatible
term orders that are also well-orders, there is a more direct way to prove Theorem
1.1 that does not depend on Theorem 1.2. Note that in the case where a term
order ≺ on R is also a well-order, for any subset S ⊆ R and any f ∈ R we can
find a decomposition f = f1 + f2, where f1 is an element of 〈S〉R and f2 does not
contain any monomials from 〈in≺(g) | g ∈ S〉R. In particular, if J ⊆ R is an ideal,
then the residue classes of the monomials of R that are not contained in in≺(J)
(i.e., the standard monomials with respect to ≺) form a K-basis of the quotient
ring R/J . As in the Noetherian setting, this implies that there can be no proper
containments in≺′(J) � in≺(J) for term orders of R that are also well-orders. This
is not true for general Inc(N)-compatible term orders: For instance, consider the
Inc(N)-invariant ideal J = 〈Inc(N) · (x1 − x2)〉R and let ≺,≺′ be the lexicographic
term orders with respect to the variable orderings xi ≺ xi+1 and xi �′ xi+1 for all
i ≥ 1, respectively. Then in≺(J) = 〈xi | i ≥ 2〉R � 〈xi | i ≥ 1〉R = in≺′(J). Note
that as 1 is the only standard monomial with respect to ≺′ and x1 + c �∈ J for all
c ∈ K, the residue classes of the standard monomials with respect to ≺′ do not
form a K-basis of R/J .

Using these observations on term orders on R that are also well-orders, we can
modify the proof of Lemma 2.6 in [MR] to show that any Inc(N)-invariant ideal
of R has only finitely many initial ideals with respect to Inc(N)-compatible term
orders that are also well-orders. For f ∈ R, let supp(f) be the set of monomials
occurring in f with a non-zero coefficient. Let J ⊆ R be an Inc(N)-invariant ideal.
By way of contradiction, assume that the number of initial ideals of J with respect
to Inc(N)-compatible term orders that are well-orders is infinite. Let Σ be an
infinite set of Inc(N)-compatible term orders on R that are also well-orders such
that in≺(J) �= in≺′(J) for distinct term orders ≺,≺′∈ Σ. Choose any polynomial
f1 ∈ J and let Σ1 ⊆ Σ be an infinite subset such that in≺(f1) = m1 for all ≺∈ Σ1.
Let m1 := 〈Inc(N) ·m1〉R and choose any ≺∈ Σ1. Then m1 � in≺(J), so there is
f2 ∈ J with in≺(f2) �∈ m1. We may assume that supp(f2) ∩ m1 = ∅. Again, let
Σ2 ⊆ Σ1 be an infinite subset such that in≺′(f2) = m2 for all ≺′∈ Σ2 and set m2 :=
〈Inc(N) ·m1, Inc(N) ·m2〉R. Iterating this procedure, we obtain an infinite sequence
(mi)i≥1 of monomials such that mi+1 is not contained in 〈Inc(N) ·mj | j ∈ [i]〉R for
all i ≥ 1. But this contradicts the fact that Inc(N)-divisibility is a well-partial-order
on the monomials of R (cf. [HS], Theorem 3.1).

Remark 3.4. One might wonder if it is possible to deduce Theorem 1.2 from Theo-
rem 1.1. Indeed, for any Inc(N)-invariant ideal chain J◦ in R, the ideal J :=

⋃
n≥1 Jn

is an Inc(N)-invariant ideal of R, and for every term order ≺ on R, we have
in≺(J) =

⋃
n≥1 in≺(Jn). Hence, Theorem 1.1 yields

#

{ ⋃
n≥1

in≺(Jn) | ≺ is Inc(N)-compatible

}
< ∞.
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However, Theorem 1.2 provides more information than that: By Corollary 3.1(1),
not only the number of unions of the initial ideals of the ideals Jn with respect
to Inc(N)-compatible term orders is finite but also the number of sequences
(in≺(Jn))n≥1 giving rise to the same union. Thus, Theorem 1.2 seems to be a
stronger result than Theorem 1.1.

Remark 3.5. Theorem 1.1 does not hold for the number of initial ideals with respect
to arbitrary term orders on R: Let c = 1 and let J := 〈Inc(N) · (x2

1x2 + x1x
2
2)〉R be

the ideal that is generated by the Inc(N)-orbits of the polynomial x2
1x2+x1x

2
2. For

every n ∈ N, define the term order ≺n by

xa1

σn(1)
· ... · xak

σn(k)
≺n xb1

σn(1)
· ... · xbk

σn(k)
:⇔ ai < bi for i = min{j | aj �= bj},

where the map σn ∈ S∞ is defined by

σn(j) =

{
n+ 1− j, j ≤ n,
j, j > n.

For example, if n = 3, then (σ3(1), σ3(2), σ3(3), σ3(4), σ3(5)) = (3, 2, 1, 4, 5). We
claim that for every pair n < n′ of natural numbers, x2

1xn′ ∈ in≺n
(J) \ in≺n′ (J).

We have in≺n
(x2

1xn′ + x1x
2
n′) = x2

1xn′ as σ−1
n (n′) = n′ > n = σ−1

n (1), so x2
1xn′ ∈

in≺n
(J). Let f be a polynomial in J that contains the monomial x2

1xn′ . We may

assume f to be homogeneous, so f =
∑k

i=1 cipi ·(x2
1x2+x1x

2
2) with ci ∈ K\{0} and

pi ∈ Inc(N), where pi · (x2
1x2 + x1x

2
2) �= pj · (x2

1x2 + x1x
2
2) for i �= j. As f contains

x2
1xn′ , there is exactly one i with pi · (x2

1x2 + x1x
2
2) = x2

1xn′ + x1x
2
n′ . Therefore,

f contains the monomial x1x
2
n′ . But x2

1xn′ ≺n′ x1x
2
n′ , so x2

1xn′ �∈ in≺n′ (J). We
conclude that the initial ideals in≺n

(J) are pairwise distinct. Thus, J has infinitely
many distinct initial ideals with respect to arbitrary term orders.

Definition 3.6. Let J ⊆ R be an Inc(N)-invariant ideal. Then we call a subset
G ⊆ J a universal Inc(N)-Gröbner basis of J if for every Inc(N)-compatible term
order on R, we have in≺(J) = 〈Inc(N) · in≺(g) | g ∈ G〉R.

Corollary 3.7. Every Inc(N)-invariant ideal J ⊆ R has a finite universal Inc(N)-
Gröbner basis.

Proof. Define the Inc(N)-invariant ideal chain J◦ by setting Jn := J ∩ Rn and
let N := max(I(J◦)). Let G be a finite universal Gröbner basis of JN . Then
for every n ≥ N and every Inc(N)-compatible term order ≺, we have in≺(Jn) =
〈Inc(N)N,n · in≺(g) | g ∈ G〉Rn

. As in≺(J) is the union of all initial ideals in≺(Jn),
this implies that in≺(J) = 〈Inc(N) · in≺(g) | g ∈ G〉R. �

4. Inc(N)-compatible term orders for c = 1

In this section, we will always assume c = 1. Observe that any term order ≺ on
R can be regarded as a total order of N∞ :=

⋃
n≥1 N

n by setting (mi)i≥1 ≺ (ni)i≥1

if and only if
∏

i≥1 x
mi
i ≺

∏
i≥1 x

ni
i . This order relation is compatible with addition

on N∞; i.e., (mi) ≺ (ni) implies (mi)+(li) ≺ (ni)+(li) for all (li), (mi), (ni) ∈ N∞.
Thus, by Lemma 1.3 in [KTV] the order relation ≺ on N∞ can be uniquely extended
to an order relation on Q∞ :=

⋃
n≥1 Q

n which satisfies

(O1) (qi) ≺ (ri) ⇒ (qi) + (si) ≺ (ri) + (si) for all (qi), (ri), (si) ∈ Q∞;
(O2) (qi) ≺ (ri) ⇒ a(qi) ≺ a(ri) for all (qi), (ri) ∈ Q∞ and a ∈ Q>0.
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Using terminology from [KTV], we call such an order relation a total order of
the vector space Q∞. The monoid Inc(N) acts on Q∞ by Q-vector space homomor-
phisms

(p · −) : Q∞ → Q∞, (p · (qi))j :=
{

qp−1(j), j ∈ p(N),
0, j �∈ p(N),

for every p ∈ Inc(N). We call an order of the vector spaceQ∞ Inc(N)-compatible if it
is compatible with this action. Hence, the problem of finding all Inc(N)-compatible
term orders on R is equivalent to finding all Inc(N)-compatible total orders of the
vector space Q∞.

In what follows, we will not only consider total orders ≺ but also partial orders
of Q∞ satisfying (O1), (O2) and
(O3) (qi) + (si) ≺ (ri) + (si) ⇒ (qi) ≺ (ri) for all (qi), (ri), (si) ∈ Q∞;
(O4) incomparability with respect to ≺ is transitive.
Again using terminology from [KTV], we call every such partial order ≺ a weak

partial order of the vector space Q∞. If ≺ has the additional property that for
every p ∈ Inc(N) the implication (qi) ≺ (ri) ⇒ p · (qi) ≺ p · (ri) holds, we call ≺ an
Inc(N)-compatible weak partial order of the vector space Q∞.

For any weak partial order ≺ of the vector space Q∞, the set E≺ of vectors
incomparable to 0 forms a Q-subspace. Furthermore, the relation (qi) + E≺ ≺
(ri) + E≺ if and only if (qi) ≺ (ri) is a well-defined total order of the vector space
Q∞/E≺ (cf. [KTV], Lemma 1.4).

Now let ≺ be an Inc(N)-compatible weak partial order of the vector space Q∞

and let ≺n denote its restriction to Qn. In [KTV] it was shown that there is m ≤ n
and a matrix A ∈ Rm×n such that for any (qi), (ri) ∈ Qn, we have

(qi) ≺ (ri) ⇔ A · (qi) ≺lex A · (ri),
where≺lex denotes the lexicographic order on Rm corresponding to the order ei �lex

ei+1 of the standard basis of Rm.

Lemma 4.1. Let n ≥ 4. If ≺n is non-trivial (i.e. E≺ ∩ Qn �= Qn), then ≺n is
represented by a matrix A ∈ Rm×n such that for the first row A1∗, we have

A1∗ ∈ {±e1,±en,±(1 · · · 1)},
and, if A1∗ is constant, either m = 1 or m ≥ 2 and the second row A2∗ satisfies

A2∗ ∈ {±e1,±en}.

Proof. Let A ∈ Rm×n be a matrix representing ≺. Note that for any vector (qi) ∈
Qn−1, the Inc(N)-compatibility of ≺ yields the following implications:

(A11 A12 · · · A1n−1) · (qi) < 0 ⇒
{

(A11 A13 A14 · · · A1n) · (qi) ≤ 0,
(A12 A13 A14 · · · A1n) · (qi) ≤ 0.

This means that the matrices(
A11 A12 A13 · · · A1n−1

A11 A13 A14 · · · A1n

)
,

(
A11 A12 A13 · · · A1n−1

A12 A13 A14 · · · A1n

)

have rank ≤ 2. It is easy to show that this is only the case if A1∗ is constant or if
either A11 = · · · = A1n−1 = 0 or A12 = · · · = A1n = 0.
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Now assume that A1∗ is constant and m ≥ 2. Then for any rational numbers
qi, the vector (q1 · · · qn−2 (−q1 − · · · − qn−2) 0) lies in the orthogonal complement
of A1∗. Therefore, setting (ri) := (q1 · · · qn−2 (−q1 − · · · − qn−2)), the Inc(N)-
compatibility of ≺ again yields implications

(A21 A22 · · · A2n−1) · (ri) < 0 ⇒
{

(A21 A23 A24 · · · A2n) · (ri) ≤ 0,
(A22 A23 A24 · · · A2n) · (ri) ≤ 0.

Hence, the matrices(
A21 −A2n−1 A22 −A2n−1 A23 −A2n−1 · · · A2n−2 −A2n−1

A21 −A2n A23 −A2n A24 −A2n · · · A2n−1 −A2n

)
,

(
A21 −A2n−1 A22 −A2n−1 A23 −A2n−1 · · · A2n−2 −A2n−1

A22 −A2n A23 −A2n A24 −A2n · · · A2n−1 −A2n

)

must have rank ≤ 2. This is only possible for either A21 = · · · = A2n−1 or A22 =
· · · = A2n, and the claim follows. �
Definition 4.2. For weak partial orders ≺,≺′ of the vector space Q∞, define their
product ≺′ ∗ ≺ by (qi) ≺′ ∗ ≺ (ri) if and only if (qi) ≺ (ri) or [(qi)− (ri) ∈ E≺ and
(qi) ≺′ (ri)]. Clearly, this is again a weak partial order of the vector space Q∞.

Lemma 4.3. Define weak partial orders ≺(N)
±,max, ≺±,min, and ≺±,deg of the vector

space Q∞ by
• (qi) ≺+,min (ri) :⇔ qj < rj for the minimal j such that qj �= rj;
(qi) ≺−,min (ri) :⇔ (qi) �+,min (ri);

• (qi) ≺(N)
+,max (ri) :⇔ for the maximal j such that qj �= rj, we have j ≥ N

and qj < rj;

(qi) ≺(N)
−,max (ri) :⇔ (qi) �(N)

+,max (ri);
• (qi) ≺+,deg (ri) :⇔

∑
i≥1 qi <

∑
i≥1 ri;

(qi) ≺−,deg (ri) :⇔ (qi) �+,deg (ri).
Then for n ≥ 4, the weak partial order ≺n is either trivial or agrees with one of the
following weak partial orders:

• ≺±,deg;
• ≺±,min;
• ≺±,min ∗ ≺±,deg;

• ≺(N)
±,max for some 1 ≤ N ≤ n;

• ≺(N)
±,max ∗ ≺±,deg for some 2 ≤ N ≤ n.

Proof. Assume ≺n to be non-trivial. As a consequence of the Inc(N)-compatibility
of ≺, ≺n is fully determined by the first two rows of the matrix A representing it.
This can be seen from the following distinction of cases:

• A has only one row and A1∗ = const: In this case, we have ≺n=≺±,deg.
• A1∗ = const, A2∗ = en: For any (qi) ∈ Qn satisfying

∑
i≥1 qi = 0 and

qn < 0, we have (qi) ≺ 0. Let N ∈ [n] be minimal such that e1 − eN ≺ 0.
As every (qi) ∈ Qn with

∑
i≥1 qi = 0 and qN = · · · = qn = 0 can be written

as

(qi) =

N−1∑
i=2

qi(−e1 + ei),

the inclusions −e1 + ei ∈ E≺ for 2 ≤ i ≤ N − 1 imply (qi) ∈ E≺. Now
assume that there is j ≥ N with qj �= 0 and let j be maximal with this
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property. Suppose that qj < 0. If j = N , we have

(qi) =

j−1∑
i=2

qi(−e1 + el) + qN (−e1 + eN) ≺ 0.

On the other hand, if j > N and (qi),0 were incomparable with respect to
≺, then (qi) + (−e1 + eN) � 0, contradicting the Inc(N)-compatibility of

≺. Thus, we obtain ≺n=≺(N)
+,max ∗ ≺±,deg for some N ≥ 2. If A2∗ = −en,

the same argument shows that ≺n=≺(N)
−,max ∗ ≺±,deg for some N ≥ 2.

• A1∗ = en: In this case, any (qi) ∈ Qn with qn < 0 satisfies (qi) ≺ 0.
Again, choose N ∈ [n] minimal such that −eN ≺ 0. For (qi) ∈ Qn with
qN = · · · = qn = 0 we have

(qi) =

N−1∑
i=1

qiei ∈ E≺.

If on the other hand there is j ≥ N with qj �= 0 and the maximal such
j satisfies qj < 0, then an analogous argument to the one above shows

that (qi) ≺ 0. This yields ≺n=≺(N)
+,max for some N ≥ 1. In the case that

A1∗ = −en, we obtain ≺n=≺(N)
−,max for some N ≥ 1.

• A1∗ = const, A2∗ = e1: If
∑

i≥1 qi = 0 and q1 < 0, then (qi) ≺ 0.

Therefore, the Inc(N)-compatibility of ≺ yields ≺n=≺+,min ∗ ≺±,deg. If
A2∗ = −e1, we have ≺n=≺−,min ∗ ≺±,deg.

• A1∗ = e1: As for every (qi) ∈ Qn with q1 < 0, we have (qi) ≺ 0, the
Inc(N)-compatibility of ≺ yields ≺n=≺+,min. If A1∗ = −e1, we obtain
≺n=≺−,min.

�
From our results for the restrictions ≺n of ≺ to Qn, we can now easily deduce:

Theorem 4.4. If ≺ is non-trivial, then it is equal to one of the following Inc(N)-
compatible weak partial orders:

• ≺±,deg;
• ≺±,min;
• ≺±,min ∗ ≺±,deg;

• ≺(N)
±,max for some N ≥ 1;

• ≺(N)
±,max ∗ ≺±,deg for some N ≥ 2.

Proof. It is easy to see that if there is n ≥ 4 such that≺n=≺+,min, then≺m=≺+,min

for all m ≥ n. This implies ≺=≺+,min. The same is true for ≺n=≺−,min and

≺n=≺±,min ∗ ≺±,deg. Likewise, if there is n ≥ 4 such that ≺n=≺(N)
+,max for some

N ≤ n, then ≺m=≺(N)
+,max for all m ≥ N and thus ≺=≺(N)

+,max. The same holds for

≺n=≺(N)
−,max and ≺n=≺(N)

±,max ∗ ≺±,deg. If none of the aforementioned cases applies,
we must have ≺n=≺±,deg for all n ≥ 4, which implies ≺=≺±,deg. �

The Inc(N)-compatible term orders on R induce Inc(N)-compatible total orders
of the vector space Q∞ which satisfy 0 � (qi) for all (qi) ∈ Q∞

≥0. Thus, we obtain:

Corollary 4.5. The lexicographic, the degree-lexicographic, and the degree-reverse-
lexicographic term orders with respect to x1 ≺ x2 ≺ · · · or x1 � x2 � · · · are the
only Inc(N)-compatible term orders on R.
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