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Abstract. In this short note we show that the lower bounds of Mangoubi on
the inner radius of nodal domains can be improved for quantum ergodic se-
quences of eigenfunctions, according to a certain power of the radius of shrink-
ing balls on which the eigenfunctions equidistribute. We prove such improve-
ments using a quick application of our recent results [Anal. PDE 11 (2018),
855–871], which give modified growth estimates for eigenfunctions that equidis-
tribute on small balls. Since by Nonlinearity 28 (2015), 3263–3288, Adv. Math.
290 (2016), 938–966 small scale QE holds for negatively curved manifolds on
logarithmically shrinking balls, we get logarithmic improvements on the in-
ner radius of eigenfunctions on such manifolds. We also get improvements
for manifolds with ergodic geodesic flows. In addition using the small scale

equidistribution results of Comm. Math. Phys. 350 (2017), 279–300, one gets
polynomial betterments of Comm. Partial Differential Equations 33 (2008),
1611–1621 for toral eigenfunctions in dimensions n ≥ 3. The results work only
for a full density subsequence of eigenfunctions.

1. Introduction

Let (X, g) be a smooth compact connected boundaryless Riemannian manifold
of dimension n. Suppose Δg is the positive Laplace-Beltrami operator on (X, g)
and ψλ is a real-valued L2-normalized eigenfunction of Δg with eigenvalue λ > 0,
i.e., Δgψλ = λψλ. Let Ωλ be a nodal domain of ψλ and let in(Ωλ) be its inner
radius.1 Mangoubi [Ma08a,Ma08b] has shown that2

(1.1) a1λ
− 1

2−
(n−1)(n−2)

4n ≤ in(Ωλ) ≤ a2λ
− 1

2 ,

where a1 and a2 depend only on (X, g). In this note we show that

Theorem 1. There exists r0(g) > 0 such that if λ−1/2 < r0(g) and if for some
r ∈ [λ−1/2, r0(g)] and for all geodesic balls {Br(x)}x∈X we have

(1.2) K1r
n ≤

∫
Br(x)

|ψλ|2dvg ≤ K2r
n,

for some positive constants K1 and K2 independent of x, then for n ≥ 3,

(1.3) a1λ
− 1

2 (r2λ)−
(n−1)(n−2)

4n ≤ in(Ωλ) .
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1in(Ωλ) is the supremum of the radii of geodesic balls contained in Ωλ.
2In particular in dimension two, one has the optimal lower bound a1λ−1/2.
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A result of [HeRi16]3 shows that on negatively curved manifolds, (1.2) holds
for a full density subsequence with r = (log λ)−κ for any κ ∈ (0, 1

2n ). Hence the
following unconditional result on such manifolds is quickly obtained.

Corollary 1.1. Let (X, g) be a boundaryless compact connected smooth Riemann-
ian manifold of dimension n ≥ 3, with negative sectional curvatures. Let {ψλj

}j∈N

be any ONB of L2(X) consisting of real-valued eigenfunctions of Δg with eigenval-
ues {λj}j∈N. Let ε > 0 be arbitrary. Then there exists Sε ⊂ N of full density 4 such
that for j ∈ Sε,

a1(log λj)
(n−1)(n−2)

4n2 −ελ
− 1

2−
(n−1)(n−2)

4n
j ≤ in(Ωλ),

for some a1 that only depends on (X, g) and ε.

One can also get the following improvements for quantum ergodic sequences of
eigenfunctions. In fact it is enough to assume equidistribution on the configuration
space X.

Corollary 1.2. Let (X, g) be a boundaryless compact connected smooth Riemann-
ian manifold of dimension n ≥ 3. Let {ψλj

}j∈S be a sequence of real-valued

L2-normalized eigenfunctions of Δg with eigenvalues {λj}j∈S such that for all
r ∈ (0, R0), for some fixed R0 > 0, and for all x ∈ X,

(1.4)

∫
Br(x)

|ψλj
|2 → Volg(Br(x))

Volg(X)
, λj

j∈S−−→ ∞.

Then along this sequence

lim
j→∞

λ
1
2+

(n−1)(n−2)
4n

j in(Ωλj
) = ∞.

In particular the above corollary holds for manifolds with ergodic geodesic flows
by the quantum ergodicity theorem of [Sh74,CdV85,Ze87]. This means that given
any ONB of eigenfunctions on such a manifold one can find a full density subse-
quence where (1.4), hence Corollary 1.2, holds.

We must also mention the work of Lester-Rudnick [LeRu16], where they proved
that for a full density subsequence of toral eigenfunctions one has equidistribution

at the shrinking rate r = λ− 1
2n−2+ε. Of course, one can also use this and Theorem

1 to get improved lower bounds for such toral eigenfunctions.

Corollary 1.3. For any ONB {ψλj
}j∈N of real-valued eigenfunctions of Δ on the

flat torus T
n≥3 and any ε > 0, there exists a full density subset Sε ⊂ N such that

for j ∈ Sε,

a1λ
− 1

2−
(n−2)2

4n −ε
j ≤ in(Ωλj

),

where a1 is a positive constant that depends only on n and ε.

Remark 1.4. In the real analytic case, a very recent result of Georgiev [Ge16] gives
the lower bound

aλ−1 ≤ in(Ωλ),

which is better than Mangoubi’s lower bounds for dimensions n ≥ 5. The pa-
per [Ge16] also uses the idea of this paper, namely, modified doubling estimates,

3In [Han15], this is proved for κ ∈ (0, 1
3n

).
4It means that limN→∞

1
N
card

(
S ∩ [1, N ]

)
= 1.
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and gives logarithmic improvements on the above lower bound for a full density
subsequence of eigenfunctions on negatively curved manifolds.

1.1. Proofs of Theorem 1. The main idea is to use the modified growth estimates
of our recent preprint [He16]. We recall that Donnelly and Fefferman (see Theorem
4.2.ii of [DoFe88]) showed that an eigenfunction ψλ of Δg with eigenvalue λ satisfies

N(Bs(x)) := log

(
supB2s(x) |ψλ|2

supBs(x) |ψλ|2

)
≤ c

√
λ,

for all s < s0 where s0 and c depend only on (X, g). In [He16], we have shown that
(see Lemma 2.1 of [He16]):

Lemma 1.5. Under the assumption

K1r
n ≤

∫
Br(x)

|ψj |2 ≤ K2r
n,

we have

(1.5) N(Bs(x)) ≤ c r
√
λ, for all s ≤ r,

where c is positive and is uniform in x, r, s, and λ, but depends on K1, K2, and
(X, g).

Remark 1.6. For the sake of completeness and independence, we present a short
proof of this lemma in the next section. We also give a proof without the upper
bound assumption

∫
Br(x)

|ψj |2 ≤ K2r
n however under the additional mild condition

r ≥ (log λ)λ− 1
2 , λ ≥ 2.

We apply the growth estimates in the above lemma to the proof of [Ma08b]. In
[Ma08b], it is first proved (see Theorem 4.4 and inequality 5.1 of [Ma08b]) that
there exists ε0 ∈ (0, 1), sufficiently small and only dependent on (X, g), such that
for all embedded geodesic balls BR(p) with {ψλ = 0} ∩BR/2(p) 
= ∅ we have

(1.6)
Vol

(
{ψλ ≥ 0} ∩BR(p)

)
Vol(BR(p))

≥ a3
β(λ)n−1

,

where
β(λ) = sup

x∈X,s≤ε0λ
− 1

2

N(Bs(x))

and a3 > 0 depends only on (X, g). One can think of (1.6) as a local asymmetry
property of the nodal domain Ωλ. Then it is shown that (see Theorem 6.2 of
[Ma08b]) for n ≥ 3 one has5

in(Ωλ) ≥ a4λ
− 1

2 inf
B∈Bλ

(
Vol

(
{ψλ ≥ 0} ∩BR(p)

)
Vol(BR(p))

)n−2
2n

,

where a4 > 0 depends only on (X, g) and the infimum in taken over the set Bλ of
balls BR(p) such that {ψλ = 0}∩BR/2(p) 
= ∅. Combining the last two inequalities,
one obtains

in(Ωλ) ≥ a5λ
− 1

2 β(λ)−
(n−1)(n−2)

2n .

Since s ≤ ε0λ
−1/2 ≤ r, we can use our improved doubling estimates (1.5) to get

β(λ) ≤ cr
√
λ, which implies the theorem immediately.

5The condition n ≥ 3 seems to be essential in this part of the argument of [Ma08b].
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1.2. Proof of Corollary 1.2. This follows quickly from the following lemma (see
Lemma 2.9 of [He16]) together with Theorem 1.

Lemma 1.7. Let {ψj}j∈S be a sequence of eigenfunctions of Δg with eigenvalues
{λj}j∈S such that for some R0 > 0, all r ∈ (0, R0), and all x ∈ X,

(1.7)

∫
Br(x)

|ψj |2 → Volg(Br(x))

Volg(X)
, λj

j∈S−−→ ∞.

Then there exists r0(g) such that for each r ∈ (0, r0(g)) there exists Λr such that
for λj ≥ Λr we have

K1r
n ≤

∫
Br(x)

|ψj |2 ≤ K2r
n,

uniformly for all x ∈ X. Here, K1 and K2 are independent of r, j, and x.

We note that this lemma is obvious when x is fixed, but to show that it holds
uniformly in x one can use a covering argument as presented in the proof of Lemma
2.9 of [He16].

Remark 1.8. It is clear from Theorem 1 that if (1.2) holds for r = λ− 1
2+ε for

arbitrary ε > 0, then we have

a1(ε)λ
− 1

2−ε ≤ in(Ωλ) ≤ a2λ
− 1

2 ,

for any ε > 0. It is a natural but seemingly very difficult to prove conjecture that

r = λ− 1
2+ε is the optimal rate for the eigenfunctions of negatively curved manifolds.

A result of [LeRu16] shows that this optimal rate of shrinking is satisfied for a full
density subsequence of any ONB of eigenfunctions of the flat 2-torus T2.

Remark 1.9. We have used both local and global harmonic analysis of eigenfunc-
tions. The local analysis is contained in the work of Mangoubi, where lower bounds
for the inner radius in terms of the doubling index are given. The global analysis
is contained in the small scale QE results of [Han15,HeRi16] and also the QE re-
sults of [Sh74,CdV85,Ze87], where the global behavior of the geodesic flow and the
wave operator are considered to obtain equidistribution on small balls. Hence, any
non-optimal results that give improvements on the results of [Ma08b] and are only
based on the local analysis of eigenfunctions (for example via doubling methods)
can be improved using our hybrid method.

Remark 1.10. The upper bound in (1.1) is an immediate consequence of a result of
Brüning [Br78], which says that there exists a2 > 0 dependent only on (X, g) such
that every geodesic ball of radius a2λ

−1/2 contains a zero of ψλ. See [Ze08] for a
simple proof using the domain monotonicity property of Dirichlet eigenvalues.

Remark 1.11. The paper [GeMa16] gives a refinement of the result of Mangoubi us-
ing Brownian motion techniques. To be precise, the authors show that the inscribed
ball that gives the lower bound of [Ma08b] can be centered at the maximum of the
eigenfunctions ψλ on its nodal domain Ωλ. It would be interesting to see whether
our improved lower bounds also hold when the ball is centered at a maximum.

2. Proof of Lemma 1.5

Here we will prove Lemma 1.5 and we will also prove a new version of it without
assuming the upper bound

∫
Br(x)

|ψj |2 ≤ K2r
n, but under the additional mild
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assumption that r ≥ (log λ)λ− 1
2 . Our proof relies on a refined doubling estimate of

Mangoubi [Ma12] (see Theorem 3.2), which asserts that

Theorem 2. Let (X, g) and ψλ be as in the introduction. Denote S=supX |Sec(g)|.
Then for all s ≤ t ≤ CS−1/2 and all x ∈ X we have

sup
B3s(x)

|ψλ|2 ≤ c0e
c1 t

√
λ

(
supB3t(x) |ψλ|2

supBt(x) |ψλ|2

)1+c2s
2S

sup
B2s(x)

|ψλ|2,

where C, c1, and c2 are positive constants which depend only on the injectivity radius
of (X, g), and c0 depends on bounds on (g−1)ij, its derivatives, and its ellipticity
constant on (X, g).

Using this theorem twice, we get for s ≤ t ≤ CS−1/2:

supB2s(x) |ψλ|2

supBs(x) |ψλ|2
≤

supB 9
4
s
(x) |ψλ|2

supB 3
2
s
(x) |ψλ|2

supB 3
2
s
(x) |ψλ|2

supBs(x) |ψλ|2
(2.1)

≤ c20e
2c1 t

√
λ

(
supB3t(x) |ψλ|2

supBt(x) |ψλ|2

)2+c′2s
2S

,(2.2)

for a new constant c′2. Now we put t = r into this inequality. To estimate

supB3r(x) |ψλ|2

supBr(x) |ψλ|2
,

we observe that since by assumption
∫
Br(x)

|ψλ|2 ≥ K1r
n, we must have

sup
Br(x)

|ψλ|2 ≥ rn

Vol(Br(x))
K1.

By making r sufficiently small (only dependent on (X, g)), we obtain that

sup
Br(x)

|ψλ|2 ≥ aK1,

for some constant a which is uniform in x, r, and λ. We also note that by the
standard supnorm estimates of L2 normalized eigenfunctions,

(2.3) sup
B3r(x)

|ψλ|2 ≤ sup
X

|ψλ|2 ≤ c3λ
n−1
2 .

Applying these estimates to (2.2) gives us

supB2s(x) |ψλ|2

supBs(x) |ψλ|2
≤ b0e

2c1 r
√
λλb1 ,

for some new constants b0 and b1 independent of r, x, and λ. Note that if we
assume r ≥ (log λ)λ− 1

2 and λ ≥ 2, by choosing b2 sufficiently large we have

e2c1 r
√
λλb1 ≤ eb2 r

√
λ.

In the above proof we did not use the upper bound assumption
∫
Br(x)

|ψj |2 ≤
K2r

n at the price of assuming r ≥ (log λ)λ− 1
2 . To prove Lemma 1.5 in the full

generality r ≥ λ− 1
2 , we will need the upper bound on the local L2 norms. All we
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have to change in the above proof is to replace the estimate (2.3), using a result of
Sogge [So16] (see estimate (3.3) on page 391), with

sup
X

|ψλ|2 ≤ c4r
−1λ

n−1
2 sup

x∈X

∫
Br(x)

|ψλ|2 ≤ c4K2r
n−1λ

n−1
2 = c4K2(r

√
λ)n−1.

Acknowledgments

We are grateful to Steve Zelditch for encouraging us to write this note. We are
also thankful to the anonymous referee for most helpful suggestions.

References
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