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(Communicated by Michael Wolf)

Abstract. We give a simple proof of the Emch closing theorem by introducing
a new invariant measure on the circle. Special cases of that measure are well
known and have been used in the literature to prove Poncelet’s and the zigzag
theorems. Some further generalizations are also obtained by applying the new
measure.

1. Introduction

Invariant measures on circles and conics provide powerful tools in the study of
closing theorems such as Poncelet’s and Steiner’s porisms, the zigzag theorem, etc.
We present an elementary formula for a universal measure that generalizes several
well-known invariant measures. We show that every pair of circles generates a
function on the plane, whose restriction to an arbitrary circle defines an invariant
measure on it. Remarkable properties of that measure give new results as well as
new proofs of known facts.

The Poncelet closing theorem discovered in 1813 and published in 1822 [16] states
that if for two circles (or quadrics) α and δ, there is an n-sided polygon x1 . . .xn

inscribed in δ and circumscribed around α (i.e., the straight lines containing its sides
are tangent to α), then there exist infinitely many such polygons whose vertices x1

can be chosen on δ arbitrarily, provided x1 /∈ α.
There are several methods to prove Poncelet’s theorem. They are all nontrivial

and based on various ideas [3, 4, 8, 10, 11]. The invariant measure approach orig-
inated with Jacobi in 1828, then was improved by Bertrand, and was developed
further in [1, 2, 13, 19], etc., giving an elegant and natural proof. Consider, for ex-
ample, the case when the circle α lies inside δ. Suppose there is a measure m(·) on δ

such that all oriented arcs
�
xy⊂ δ whose chords touch the circle α have the same

value m(
�
xy) = m̃. Then the Poncelet n-gon exists if and only if the number n m̃

is an integer multiple of m(δ). Since this property does not depend on the location
of the first vertex of the polygon, the Poncelet theorem for two circles follows.

For arbitrary circles α and δ, a measure on δ is called invariant if its density
ρ = m′ satisfies the equality ρ(x)|dx| = ρ(y)|dy|, where dx, dy are oriented lengths
of small arcs after perturbation of an arbitrary chord xy touching α. If a function

ρ : δ → R+ possesses this property, thenm(
�
xy) =

∫ y

x
ρ(s)ds is an invariant measure
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(the integration is over the arc
�
xy). For arbitrary circles α and δ, such a measure

is readily available by the formula ρ(x) = 1/
√
|f(x)|, where f(x) = |x − c|2 − r2

is the power with respect to the circle α of radius r centered at c ∈ R
2. This is the

Jacobi-Bertrand measure. Moreover, as was observed by Khovansky (see [1] for an
overview), if we consider an arbitrary quadratic polynomial f(x), x ∈ R

2, then the
same formula also defines an invariant measure, which proves Poncelet’s theorem
for the circle δ and the quadric α = {x ∈ R

2 |f(x) = 0}. By a suitable projective
transform, this leads to the general case of two quadrics.

In 1974 Black, Howland, and Howland [5] found an invariant measure for another
well-known closing theorem:

Zigzag Theorem. If for given circles α, δ and for a number l > 0, there is a
polygon with 2n sides all of length l, with odd vertices (i.e., vertices xk with odd k)
on δ and even vertices on α, then there exist infinitely many such polygons, whose
vertex x1 can be chosen on δ arbitrarily, provided the distance from x1 to α is
smaller than l.

Thus, if a grasshopper jumps from one circle to the other making a closed walk
after 2n jumps, then his walk from any point of the first circle closes after 2n steps,
provided he can make the first jump. This theorem was established by Emch in
1901 [4], then rediscovered by Bottema in 1965 [4] and in 1974 in [5]. It holds for
two circles in the space as well, but we consider only the plane version.

We mention also the third popular closing theorem, the Steiner theorem. Given
two circles α0, α1, one inside the other. Circles {ωk}k∈N inscribed in the annulus
between α0 and α1 touch each other in succession (ωk and ωk+2 are different and
both tangent to ωk+1 , k ∈ N). If this series closes after n steps, i.e., ωn+1 = ω1,
then it does for an arbitrary initial circle ω1.

Those three closing theorems are actually special cases of the Emch theorem
on circular series [9]. To formulate it we need to introduce some notation. The
tangency of two circles is called interior if one of the circles lies inside the other.
Suppose α0, α1 are circles on the plane. Then for an arbitrary circle ω touching
both α0 and α1 the index of tangency is 0 if there is an even number of interior
tangencies among the two ones: ω with α0 and ω with α1. If this number is odd,
then the index is 1. For i = 0, 1, let Mi denote the family of circles touching α0, α1

with index i.
Let α0, α1, and δ be an arbitrary triple of circles on the plane. Choose some

i ∈ {0, 1} and take the familyMi of circles touching α0, α1 with index i. We assume
δ /∈ Mi. Take arbitrary circle ω1 ∈ Mi that intersects δ at two points x1,x2. The
family Mi contains two circles passing through x2: one of them is ω1; take the
other and denote it ω2. The circles ω2 and δ have two points of intersection: one
of them is x2; take the other and denote it x3, etc. This way we obtain a circular
series {ωk}k∈N. Each ωk touches α0 and α1 with index i and meets the circle δ at
points xk and xk+1. This series closes after n steps if ωn+1 = ω1.

Theorem of Emch [9]. Let α0, α1, and δ be arbitrary circles, i ∈ {0, 1}, and
δ /∈ Mi. If for some initial circle ω1 ∈ Mi, the circular series closes after n steps,
then it does for arbitrary ω1 ∈ Mi.

This theorem was formulated by Emch in 1901 [9], but he gave a proof only for
nonintersecting circles α0 and α1. See Figure 1. Probably, the author missed this
aspect. It was not before 1996 that the proof for the general position of circles
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Figure 1. Theorem of Emch.

α0, α1, δ was given in [3]. In [17] the Emch theorem was deduced from Poncelet’s
theorem for quadrics; in [18] an elementary geometrical proof was found.

All three famous closing theorems follow directly from the Emch theorem. If
the radius of α1 tends to infinity, then we obtain in the limit the Poncelet theorem
for circles α0 and δ. If α0 and α1 are concentric circles, then we obtain the zigzag
theorem. Finally, if δ is a locus of points of tangency for pairs of circles from Mi,
then we come to the Steiner theorem. See [17] for more details.

A natural question arises if the Emch theorem admits a proof by an invariant
measure. We show that such a measure exists and, moreover, is explicitly given
by a simple formula. For an arbitrary pair of circles α0 and α1, we consider the
function ρ(x) = 1√

|f0(x)f1(x)|
on the plane R

2, where fj is a power w.r.t. the circle

αj , j = 0, 1. In Theorem 1 we show that this function defines an invariant measure
on any circle δ ⊂ R

2. This gives a geometric proof for the Emch theorem. Both
the Jacobi-Bertrand measure and the Black–Howland measure are special cases
of this measure ρ(·). Therefore, it can be considered as a universal measure for
Poncelet-type theorems. Simple algebraic manipulations with the formula for ρ(x)
give generalizations of Emch’s theorem to pencils of circles (Section 4), to a cyclic
instead of two circles (Section 5), and prove the equivalence of Emch’s theorem
with Poncelet’s theorem for quadrics (Section 6).

In the next section we formulate Theorem 1 and observe its special cases for the
Poncelet, zigzag, and Steiner theorems. In Section 3 we give a geometrical proof
of Theorem 1. For the sake of simplicity, in Sections 4-6 we deal with the case
of nested circles α0, δ, α1. This means that α0 is inside δ, which is inside α1, and
all the circles ωk are inscribed in the annulus between α0 and α1; i.e., they are
from the family M1. Then, in Section 7, we prove Emch’s theorem for the general
position of circles. The proof remains short but becomes less obvious than for the
nested circles.

In what follows, we denote points and vectors from R
2 by bold letters, all dis-

tances are Euclidean, the distance between points x and y is denoted either as
xy or as |x − y|. By ci, ri, and fi(x) = |x − ci| − r2i we denote the center of
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the circle αi, its radius, and the power w.r.t. αi, respectively, i = 0, 1. For two
different quadrics γj = {x ∈ R

2 | qj(x) = 0}, j = 0, 1, we denote by {γ0, γ1}
the pencil passing through them, which is the one-parametric family of quadrics
γt = {x ∈ R

2 | (q0 + tq1)(x) = 0}, t ∈ R̄, where R̄ = R∪ {∞}. For a circular series
{ωk}k∈N, we denote by xk,xk+1 the points of intersection of the circle ωk with δ
and by tk0 , t

k
1 the points of its tangency with α0 and α1, respectively.

2. The main result

Let α0, α1, and δ be arbitrary circles. Consider a circle ω tangent to both α0

and α1 and intersecting δ at some points x,y. Let ω′ be a circle close to ω and also
touching α0, α1; let x

′,y′ be the corresponding points of intersection (x′ is close to

x). The oriented lengths of small arcs
�
x′x and

�
y′y of the circle δ as ω′ → ω are dx

and dy. Thus, if one slightly perturbs the circle ω, its points of intersection with
the circle δ move to dx and dy.

Definition 1. Given three circles α0, α1, δ and an index i ∈ {0, 1}. A Lebesgue
measurable function ρ : δ → R+ defines an invariant measure if for almost all circles
ω touching α0, α1 with index i we have

(1) ρ(x) |dx| = ρ(y) |dy| ,
where x,y are points of intersection of the circles ω and δ.

For an arbitrary arc
�
xy⊂ δ we denote by m(

�
xy) =

∫ y

x
ρ(s)ds its measure,

or mass. In case of nested circles α0, δ, α1, any slight perturbation of a circle ω
moves the points x and y in the same direction. Hence, dx and dy always have
the same sign, and equality (1) becomes ρ(x)dx = ρ(y)dy. Integrating, we obtain

m(
�
xy) ≡ const. Thus, all circles ω ∈ Mi cut arcs of the same mass m̃ from the

circle δ. In particular, in Emch’s theorem, m(
�

xkxk+1) = m̃ for all k. Hence, the
circular series closes after n steps if and only if n m̃ is an integer multiple of m(δ).
This proves Emch’s theorem in case of nested circles. The general case is more
delicate, and we consider it in Section 7.

Theorem 1. The function ρ(x) = 1√
|f0(x)f1(x)|

defines an invariant measure on

any circle δ.

Note that the function ρ(x) is defined on the whole plane (including the cir-
cles α0, α1, where it equals +∞) and does not depend on the circle δ. The restric-
tion of this function to any circle defines an invariant measure on it. Before we
prove Theorem 1 we observe some of its special cases.

1. The circle α1 is infinitely big: Poncelet’s theorem. If we increase the
radius of α1 leaving its center and all other circles unmoved, then f1(x)/r

2
1 → − 1

uniformly on any compact subset of R2 as r1 → ∞. Hence, on the circle δ, the
function f1 becomes equivalent to an identical constant. Consequently, the function
ρ(·) becomes proportional to 1/

√
|f0(·)|, which is the Jacobi-Bertrand measure. On

the other hand, all the circles ωk also enlarge as r1 → ∞, and their arcs touching
α0 become close to line segments. Therefore, in the limit as r1 → ∞, the Emch
theorem becomes the Poncelet theorem (for circles) and the measure ρ becomes the
Jacobi-Bertrand measure. Hence, the invariance property of the Jacobi-Bertrand
measure follows from Theorem 1.
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2. The circles α0, α1, and δ belong to one pencil: Steiner’s theorem. If the
circle δ belongs to the pencil {α0, α1}, then the functions f0 and f1 are proportional
on δ: f1(x) = −cf0(x), x ∈ δ. Hence ρ(x) = 1

c f0(x)
. So, in this case the reciprocal

of the power w.r.t. the circle α0 is an invariant measure on the circle δ. If δ is the
locus of points of tangency of two circles both touching α0 and α1, we obtain the
Steiner theorem.

3. The circles α0 and α1 are concentric: The zigzag theorem. If α0 and
α1 are concentric, then the Emch theorem becomes the zigzag theorem for the
circles δ and α (the circle α is of radius r = r0+r1

2 and is concentric to α0, α1)

and for the jump length l = |r1−r0|
2 . The measure ρ(·) on the circle δ becomes the

Black–Howland measure b(·) for the zigzag theorem [5]. It is defined as b(x) =
1/|(x − c0) × (x− z)|, where × denotes the operation of cross (vector) product,
and x ∈ δ and z ∈ α is such that |x− z| = l. In other terms, 1/b(x) is the double

area of a triangle with the sidelengths x = |x− c0|, r1+r0
2 , and |r1−r0|

2 (Figure 2).

Figure 2. The invariant measure for the zigzag theorem.

The Heron formula yields

1

b(x)
=

1

2

√
(r1 + x)(r1 − x)(x+ r0)(x− r0) =

1

2

√
(r21 − x2)(x2 − r20)

=
1

2

√
−f1(x) · f0(x) .

Hence b(x) = 2ρ(x) for all x ∈ δ. Thus, the Black–Howland measure is the special
case of ρ(·), when the circles α0 and α1 are concentric.

3. Proof of the main theorem

Let a circle ω touch both α0 and α1. We consider the line connecting the two
tangent points and denote by h(x) the distance from a point x to that line. We
are going to show that the function ρ on the circle ω is proportional to 1/h.
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Proposition 1. Suppose ω is an arbitrary circle touching α0 and α1 at points t0
and t1, respectively. Then the restriction of the function ρ(x) = 1/

√
|f0(x)f1(x)|

to ω is proportional to the reciprocal of the distance to the line t0t1. Thus, ρ(x) ∼
1/h(x), x ∈ ω.

Proof. Let the line xt0 meet the circle α0 for the second time at point z0. Note
that |f0(x)| = xt0 ·xz0 = c ·xt20, where c is a constant. Indeed, since the circles α0

and ω are homothetic with respect to the point of tangency t0, the ratio z0t0/xt0
is constant, and hence so is the ratio xz0/xt0. Similarly, |f1(x)| is proportional to
(xt1)

2. Thus,
√
|f0(x) · f1(x)| ∼ xt0 ·xt1, which is proportional to the area of the

triangle 
 t0xt1 (because sin(∠ t0xt1) is constant), which is, in turn, proportional
to its altitude h(x), since this triangle has a constant base t0t1. �

A different proof of Proposition 1 based on properties of pencils of quadrics is
given in Section 5, where we prove a generalization of Emch’s theorem.

Proposition 2. Suppose a circle ω passes through points k and l and meets a circle
δ at points x and y. Then a small perturbation of ω that passes through k and l

satisfies |dy|
|dx| =

q(y)
q(x) , where q(·) is the distance to the line kl.

Proof. Since three pairwise chords of three circles concur, the lines xy and x′y′

meet on the line kl at some point n. Equalities x′n ·y′n = kn · ln = xn ·yn imply

similarity of triangles 
xnx′ ∼ 
y′ny, which yields yy′

xx′ = ny′

nx . Replacing ny′

by a close value ny and ny
nx by q(y)

q(x) , we conclude the proof. See Figure 3. �

Figure 3. Proof of Proposition 2.

Proof of Theorem 1. Let ω be a circle touching α0, α1 and intersecting δ at points
x,y; let ω′ be a small perturbation of ω. Replacing in the equality (1) the function
ρ(·) by 1/h(·) (Proposition 1) and h(·) by a close value q(·), which is the distance to
the common chord of the circles ω and ω′ (this chord tends to the line t0t1, hence

q/h → 1 as ω′ → ω), we come to an equivalent assertion |dx|
q(x) =

|dy|
q(y) , which follows

from Proposition 2. �
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4. Generalizations to pencils of circles

For the sake of simplicity, in Sections 4-6 we consider the case of nested circles
α0, δ, α1. The general case is analyzed in Section 7.

The measure ρ provides a simple way to generalize Emch’s theorem from one pair

of circles (α0, α1) to an arbitrary sequence of pairs (α
(k)
0 , α

(k)
1 )k∈N, where each α

(k)
i

is taken from a given pencil of circles Ai. Such an extension for Poncelet’s theorem
is known; it was proved by Poncelet himself [16], then developed by Lebesgue [14];
see also [4]. A similar extension for Emch’s theorem originated in [18]. Let A0,A1

be arbitrary pencils of circles both containing the circle δ. Take arbitrary sequences

{α(k)
0 }k∈N ⊂ A0 and {α(k)

1 }k∈N ⊂ A1.

Proposition 3. All the pairs (α
(k)
0 , α

(k)
1 ), k ∈ N, generate invariant measures on

the circle δ that are proportional to one measure ρ.

Proof. Let f
(k)
i denote the power w.r.t. the circle α

(k)
i , i = 0, 1. Since this circle

belongs to the pencil {δ, α(1)
i }, it follows that f

(k)
i = (1 − ti,k)fδ + ti,kf

(1)
i , for

some ti,k ∈ R̄. For all x ∈ δ, we have fδ(x) = 0, and hence f
(k)
0 (x)f

(k)
1 (x) =

t0,kt1,kf
(1)
0 (x)f

(1)
1 (x); i.e., the measures generated by the kth pair and by the first

pair are proportional on δ. �

Thus, for given pencils A0,A1 containing a circle δ, every pair (α0, α1) ∈ A0 ×
A1 generates an invariant measure, and all those measures are proportional on δ.

Hence, the following generalized Emch’s theorem holds. Let (α
(k)
0 , α

(k)
1 ) ∈ A0 ×

A1, k ∈ N, be an arbitrary sequence of pairs. Consider a circular series {ωk}k∈N,
where ωk touches the kth pair (Figure 4).

Figure 4. Emch theorem for pencils of circles.

If for some initial circle ω1, we have ωn+1 = ω1, then it holds for arbitrary
ω1 touching the first pair. Moreover, after an arbitrary change of order of the

pairs (α
(1)
0 , α

(1)
1 ), . . . , (α

(n)
0 , α

(n)
1 ), this series still closes after n steps. See [18] for

the precise formulation. The proof is literally the same as for the Emch theorem.
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The closing after n steps takes place if and only if the sum of masses of n arcs
�

x1x2, . . . ,
�

xnxn+1 of the circle δ cut by the circles ωk is equal to a multiple of the
total mass of δ. This equality depends neither on the location of the initial circle
ω1 (due to the invariance of the measure) nor on the ordering of the circles (due to
commutativity of summation).

Several corollaries can be drawn from Proposition 3 even if the circular series
does not close. They are based on the following simple observation.

Proposition 4. Under the assumptions of Emch’s theorem, for every m̃ > 0, the
following holds: all circles ω that cut δ arcs of the same mass m̃ (generated by the

measure ρ(x) = 1/
√
|f0(x)f1(x)| ) and touch α0 with a given index touch a fixed

circle from the pencil A1 = {δ, α1}.

Proof. For an arbitrary circle ω, the pencil A1 contains a unique circle α′
1 touching

ω with a given index. By Proposition 3, the measure ρ is invariant for the pair
(α0, α

′
1); hence all circles ω′ touching this pair with a given index cut the same

mass m on δ. �

Corollary 1. Let us have two circular series {ωk}k∈N and {ω′
k}k∈N touching circles

α0, α1 with the same index and having the same direction. Let ωk and ω′
k intersect

the circle δ at points xk,xk+1 and x′
k,x

′
k+1, respectively. Denote by γk the circle

passing through the points xk and x′
k and touching α0 with the same index. Then

all γk touch a fixed circle from the pencil A1 = {δ, α1}.

Proof. All the arcs
�

xkx′
k of the circle δ have the same masses. Invoking Proposi-

tion 4 completes the proof. �

Corollary 2. Let {ωk}k∈N be a circular series touching α0, α1, and let ωk intersect
the circle δ at points xk,xk+1. Fix r ∈ N and for every k, consider a circle passing
through xk and xk+r and touching α0 with the same index. Then all those circles
touch a fixed circle αr ∈ A1.

Proof. We apply Corollary 1 with ω′
k = ωk+r. �

Thus, the situation is the same as for the diagonals of Poncelet’s polygons [4].
Here, if a curvilinear broken line is inscribed in a circle δ and its sides touch a pair
of circles α0, α1, then all its diagonals of rth order touching α0 also touch a fixed
circle from the pencil A1 = {δ, α1}.

5. Emch’s theorem for cyclics

A cyclic is a plane algebraic curve of order four defined by the equation

(2) F (x1, x2) = λ(x2
1 + x2

2)
2 + (x2

1 + x2
2) �(x1, x2) + Q(x1, x2) = 0 ,

where � is a linear form and Q is a polynomial of degree at most two. In what follows
we assume λ = 1. The general case follows either by normalization (if λ �= 0) or by
a limit passage (if λ = 0). A pair of circles on the plane is always a cyclic, but not
vice versa. An arbitrary quadric is a cyclic as well. Some properties of cyclics can
be found in [7, Chapter 4, Section 2]. Nilov in [15] proved that the Emch theorem
remains true after replacing the pair of circles α0, α1 by an arbitrary cyclic Γ. In
this case, all circles ωk have double tangency (i.e., two points of tangency) with Γ.
See Figure 5.



UNIVERSAL MEASURE FOR PONCELET-TYPE THEOREMS 4851

Figure 5. The Emch theorem for a cyclic.

If we take into account the complex tangency, then there exist four families of
circles with double tangency with Γ; all ωk belong to one of them [7]. The definition
of invariant measure remains the same. The proof in [15] is geometrical and relies
on the Poncelet theorem for quadrics. The universal measure ρ enables us to give
a self-contained proof using the following generalization of Theorem 1.

Theorem 1′. The function ρ(x) = 1/
√
|F (x)| generated by a cyclic Γ = {x ∈ R

2 |
F (x) = 0} defines an invariant measure on any circle.

The proof is based on the following generalization of Proposition 1 (Section 3)
to cyclics.

Proposition 1′. If a circle ω touches a given cyclic Γ = {x ∈ R
2 |F (x) = 0} at

points t0, t1, then the function F |ω is proportional to the square of the distance to
the line t0t1.

Combining this with Proposition 2 we prove Theorem 1′ in the same way as The-
orem 1. The proof of Proposition 1′ uses an algebraic argument and one auxiliary
result.

Definition 2. For an arbitrary circle δ, two algebraic curves are called δ-equivalent
if the polynomials defining those curves are proportional on δ.

The δ-equivalence of curves g1(x) = 0 and g2(x) = 0 means that for some μ �= 0,
the polynomial g1 − μg2 is divisible by f δ (the power w.r.t. δ).

Lemma 1. For an arbitrary cyclic Γ and a circle δ, the closure of the set of quadrics
δ-equivalent to Γ is a pencil of quadrics containing δ.

Proof. Let f δ(x) = x2
1 + x2

2 + �δ(x1, x2) +Aδ = 0, where �δ is a linear form and Aδ

is a constant. A polynomial p(x) possesses the property deg (F − p f δ) ≤ 2 if and
only if

(3) p(x) = x2
1 + x2

2 + �p(x1, x2) +Ap , with �p + �δ = � , Ap ∈ R ,

where � is from the equation of cyclic (2). Denote by p0 the polynomial (3) with
Ap = 0. For arbitrary Ap ∈ R, we have a quadratic polynomial F − p f δ =
F − (p0+Ap)f δ =

(
F − p0 f δ

)
− Apf δ. When Ap runs over R̄, these polynomials

define a pencil of quadrics which contains δ (for Ap = ∞). �
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Proof of Proposition 1′. Any quadric ω-equivalent to Γ touches the circle ω at
points t0 and t1. By Lemma 1, those quadrics form a pencil. On the other hand,
all quadrics touching a circle at two points form a pencil that contains a double
line connecting those points [4, Section 16.4.10]. Hence, these two pencils coincide.
In particular, the double line t0t1 is ω-equivalent to Γ. So, the function F |ω is
proportional to the square of the distance to the line t0t1. �

6. The Emch theorem and Poncelet’s theorem for quadrics

By Lemma 1, a cyclic is equivalent to a quadric on every circle. Moreover, if
a cyclic Γ and a circle δ are fixed, then all such quadrics form a pencil Q. This
implies that the invariant measure ρ = 1/

√
|F | generated by Γ on the circle δ

is proportional to the Jacobi-Bertrand measure 1/
√
|q| generated by any quadric

from Q. Therefore, Q contains a quadric γ tangent to all lines xkxk+1, k ∈ N,
corresponding to a circular series {ωk}. Hence the Emch theorem follows from
Poncelet’s theorem for quadrics δ and γ.

It was first noted by Hraskó [12] that the zigzag theorem can be derived from
Poncelet’s theorem for quadrics. Then in [17] this result was extended to Emch’s
theorem and in [15] to cyclics. The proofs in those works are different and nontrivial.
Now we see that this is actually a consequence of equivalence of a cyclic to a certain
quadric on a circle. Moreover, it is possible to find the desired quadric γ explicitly.
We have F (x) = f0(x)f1(x), where fi(x) = x2

1 + x2
2 + �i(x1, x2) + Bi = 0 is

the power w.r.t. the circle αi, i = 0, 1. Applying (3) we see that the polynomial
p(x) = x2

1 + x2
2 + �p(x1, x2) + Ap satisfies the equalities �p + � δ = �0 + �1. The

quadric γ is thus given by the equation q(x) = (f0f1 − pf δ)(x) = 0. Simplifying,
we get

(4)
q(x) =

(
�0(x) +B0

)(
�1(x) +B1

)
−
(
�δ(x) +Aδ

)(
�p(x) +Ap

)

+
(
x2
1 + x2

2

) (
B0 +B1 −Aδ −Ap

)
,

where �p = �0 + �1 − �δ, and the parameter Ap is found by the tangency condition.
The inverse implication can also be easily realized. If we have a circle δ and

a quadric γ, then one can find functionals �0, �1, �p and constants B0, B1, Ap such
that �0 + �1 = �p + �δ and (4) holds. This way we find circles α0, α1 such that
all chords xkxk+1, k ∈ N, in the Emch theorem are tangent to γ. Hence, Emch’s
theorem implies Poncelet’s theorem for a circle and a quadric, which is equivalent
to the case of two quadrics (by means of a suitable stereographic projection).

Thus, the Poncelet theorem for quadrics follows from Emch’s theorem.

7. The Emch theorem for general position of circles

As we noted in Section 2, the very existence of an invariant measure immediately
implies the Emch theorem for nested circles. In this case, the differentials dx and
dy in (1) always have the same sign. In particular, for a small perturbation of the
circular series {ωk}, we have ρ(xk)dxk ≡ const, k ∈ N. Integrating, we obtain that
if the circle ω1 moves to a circle ω′

1, then for the series {ωk} and {ω′
k}, we have

m(
�

xkx′
k) ≡ const, k ∈ N. In particular, m(

�
x1x′

1) = m(
�

xn+1x′
n+1); hence if xn+1 =

x1, then x′
n+1 = x′

1, which completes the proof. In the general case, however, a
small perturbation of ω1 can move the points {xk}k∈N in different directions. That
is why, to prove Emch’s theorem in the general case, we need to modify the invariant
ρ(x)|dx| to respect the sign of the differential dx.
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For an arbitrary triangle 
abc we denote by τ (abc) its orientation: τ (abc) = 1
if its vertices follow in the positive direction or, equivalently, the pair of vectors b−a
and c − a is positively oriented. Otherwise, τ (abc) = −1. To avoid considering
two cases, we make the following assumption:

Assumption 1. The circle ω1 lies inside α1.

This assumption is not restrictive; it can always be achieved by a suitable in-
version. Note also that if ω1 lies inside α1, then so does ω2 (since it intersects ω1),
and ω3, etc. Thus, Assumption 1 means that the whole series {ωk} is inside α1.

Theorem 2. For any circles α0, α1, δ and for an arbitrary circular series {ωk}k∈N

touching α0, α1 and satisfying Assumption 1, we have τ (xkt
k
0t

k
1) ρ(xk) dxk ≡

const, k ∈ N.

The proof of Theorem 2 requires two auxiliary facts. The first one is a general-
ization of Proposition 2.

Proposition 5. Under the assumptions of Proposition 2, we have

dy

dx
= − τ (ykl)

τ (xkl)

q(y)

q(x)
.

Proof. If the chords kl and xy intersect, then the arcs
�
xx′ and

�
yy′ have the same

sign and τ(xkl)
τ(ykl) = −1. Otherwise those arcs have opposite signs and τ(xkl)

τ(ykl) = −1.

Applying Proposition 2, we conclude the proof. �

The proof of the following fact is elementary and we omit it.

Lemma 2. Let circles ω and ν pass through a point m, and let circles α0 and α1

touch them with index 0 at points t0, t1 and s0, s1, respectively. Then τ (mt0t1) =
−τ (ms0s1).

Proof of Theorem 2. Arguing as in the proof of Theorem 1 and using Proposition 5
for x = xk,y = xk+1, we obtain τ (xkt

k
0t

k
1)ρ(xk)dxk=−τ (xk+1t

k
0t

k
1)ρ(xk+1)dxk+1.

Applying now Lemma 2 to the circles ω = ωk, ν = ωk+1 and taking into account
that α0 and α1 touch them with index 0, because ωk lies inside α1, we conclude
that τ (xk+1t

k
0t

k
1) = −τ (xk+1t

k+1
0 tk+1

1 ). �

Now we are ready to prove Emch’s theorem in the general case.

Proof of the Emch theorem. Consider a perturbation of the circular series {ωk}
that moves it to a series {ω′

k}. The orientation of all triangles 
xkt
k
0t

k
1 , k =

1, . . . , n+ 1, is not changed whenever the perturbation is small enough. If ωn+1 =
ω1, then the points xn+1, t

n+1
0 , tn+1

1 coincide with x1, t
1
0, t

1
1, respectively. Hence

τ (xn+1t
n+1
0 tn+1

1 ) = τ (x1t
1
0t

1
1), and therefore ρ(xn+1)dxn+1 = ρ(x1)dx1. Integrat-

ing, we obtain m(xn+1x
′
n+1) = m(x1x

′
1); hence x′

n+1 = x′
1. We see that the

assertion x′
n+1 = x′

1 is locally stable (under small perturbations). The continuity
implies that it holds identically. �
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