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EIGENVALUE ESTIMATES ON A CONNECTED FINITE GRAPH

LIN FENG WANG AND YU JIE ZHOU

(Communicated by Guofang Wei)

Abstract. Based on gradient estimates of the eigenfunction, we prove lower
bound estimates for the first nonzero eigenvalue of the μ-Laplacian on a con-
nected finite graph through the curvature-dimension conditions. These esti-
mates are parallel to the results on compact Riemannian manifolds with the
Ricci curvature bounded from below.

1. Introduction

Lower bound estimates for the first nonzero eigenvalue of the Laplacian on com-
pact manifolds with the Ricci curvature bounded from below are the fundamental
results in the geometric analysis. The cases that the Ricci curvature is bounded
from below by a positive number, zero or a negative number, were considered by
Lichnerowicz [12] and Obata [13], Li-Yau [10] and Zhong-Yang [14] or Li-Yau [11],
respectively. A general lower bound estimate was established in [1, 3, 6] indepen-
dently, which can also be generalized to the compact metric measure space satisfying
the Remannian curvature-dimension condition RCD∗(K,N) [9].

A similar question exists on a connected finite graph through the curvature-
dimension conditions, and some estimates have been established. In [4] the authors
established an estimate λdeg ≥ m

m−1K on a connected finite graph through the

CD(m,K) condition (see Definition 2.2) for some m > 1 and K > 0, where λdeg is
the first nonzero eigenvalue of the normalized graph Laplacian�deg (see Remark 2.1
for its definition). When on a connected finite graph which satisfies the CD(m,K)
condition for some K ≤ 0, the lower bound estimate for λdeg was established in [7].

The chain rule always fails on graphs, even on the lattice Zn. In a recent paper [5]
the authors showed a way to bypass the chain rule in the graphic setting; they also
introduced the CDE(m,K) condition (see Definition 2.3). By using the maximum
principle they could establish the parabolic type gradient estimates for positive
solutions to the linear heat equation

(∂t −�μ)u = 0,

where �μ is the μ−Laplacian and is defined in (2.1). The Harnack inequalities and
the estimate of the heat kernel can also be derived.

In this paper we derive a gradient estimate for the eigenfunction of the μ-
Laplacian �μ on a connected finite graph through the CDE(m,K) condition for
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some constant K ≤ 0. Based on this estimate we can get the following lower bound
estimate for the first nonzero eigenvalue of the μ-Laplacian.

Theorem 1.1. Let G(V,E) be a connected finite graph satisfying the
CDE(m,−K) condition for some m > 0,K ≥ 0. Then there exist constants
c1, c2 > 0 depending on m,μmax, wmin alone, such that the first nonzero eigen-
value of the μ-Laplacian satisfies

λ ≥ c1
d2

exp (−c2
√
Kd),(1.1)

where μmax, wmin are defined in Section 2 and d = max {d(x, y), x, y ∈ V } denotes
the diameter of the graph.

When G(V,E) satisfies CDE(m, 0) condition for some m > 0, we can get the
following corollary from the proof of Theorem 1.1.

Corollary 1.2. Let G(V,E) be a connected finite graph satisfying the
CDE(m, 0) condition for some m > 0. Then the first nonzero eigenvalue of the
μ−Laplacian satisfies

λ ≥ wmin

2(m+ 1)e2μmaxd2
.(1.2)

When on a connected finite graph satisfying the CD(m, 0) condition, the esti-
mate of the first nonzero eigenvalue of the normalized graph Laplacian �deg was
considered in [7, 8]. For example, the authors of [7] showed that the first nonzero
eigenvalue of �deg on a connected finite unweighted graph (see Remark 2.1 for its
definition) with the CD(m, 0) condition satisfies

(1.3) λdeg ≥ 1

μmax(4− 1
m )d2

.

The estimates in (1.2) and (1.3) can be improved, by which, we let λ be the first
nonzero eigenvalue of the μ-Laplacian on a connected finite graph and let u be the
corresponding eigenfunction. Due to Lemma 2.6, it is possible to arrange that

a− 1 = inf
x∈V

u(x), a+ 1 = sup
x∈V

u(x)

by multiplying with a constant, where 0 ≤ a(u) < 1 is the median of u.

Theorem 1.3. Let G(V,E) be a connected finite graph satisfying the CD(1, 0)
condition. Then the first nonzero eigenvalue of the μ-Laplacian satisfies

λ ≥
2wmin(arcsin

√
1+a
2+a )

2

μmax(1 + a)d2
.(1.4)

When on a connected finite graph satisfying the CD(m,K) condition for some
m > 1 and K > 0, the estimate of the first nonzero eigenvalue of �deg was con-
sidered in [4]. In Section 6 we will prove the following similar estimate for the
μ-Laplacian �μ by using an important identity observed in [5].
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Theorem 1.4. Let G(V,E) be a connected finite graph satisfying the CD(m,K)
condition for some m > 1 and K > 0. Then the first nonzero eigenvalue of the
μ-Laplacian satisfies

λ ≥ m

m− 1
K.(1.5)

2. Notation and lemmas

Let G(V,E) be a connected finite graph whose edge xy ∈ E from x to y has
weight wxy > 0. We also assume that

wmin := inf
e∈E

we > 0,

and for all x ∈ V ,

deg(x) :=
∑
y∼x

wxy.

Given a measure μ : V → R on V , the μ-Laplacian on G is the operator �μ defined
by

(2.1) �μf(x) =
1

μ(x)

∑
y∼x

wxy(f(y)− f(x)).

Remark 2.1. We should point out that some special cases of the μ-Laplacian have
been studied in literature. For example if μ = 1, then the μ-Laplacian is the
standard graph Laplacian �, and the case where

μ(x) =
∑
y∼x

wxy = deg(x),

which yields the normalized graph Laplacian �deg. We say that G is unweighted
if wxy = 1 for all xy ∈ E. In this paper we always consider the μ-Laplacian �μ,
except when it is important to emphasize the effect of the measure.

Moreover we define

μmax = max
x∈V

μ(x),

Γ(f, g)(x) =
1

2
[�μ(fg)− f�μg − g�μf ](x)

=
1

2

1

μ(x)

∑
y∼x

wxy(f(y)− f(x))(g(y)− g(x)),

and

Γ2(f, g) =
1

2
[�μΓ(f, g)− Γ(f,�μg)− Γ(�μf, g)].

For convenience, we write Γ(f) = Γ(f, f),Γ2(f) = Γ2(f, f).

Definition 2.2. For m > 0,K ∈ R, we say that a graph G(V,E) satisfies the
CD(m,K) condition if for all x ∈ V and any function f : V → R,

(2.2) Γ2(f)(x) ≥
1

m
(�μf)

2(x) +KΓ(f)(x).
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When studying gradient estimates on manifolds we always need the identity

�μ lnu =
�μu

u
− |∇ lnu|2,

which comes from the chain rule formula. However the chain rule formula is always
false in the graphic setting. In [5] the authors observed that in the graphic setting
the identity

(2.3) 2
√
u�μ

√
u = �μu− 2Γ(

√
u)

is always right for any positive function u. In order to establish Li-Yau’s gradient
estimate, they also introduced the following CDE(m,K) condition.

Definition 2.3. We say that a graph G(V,E) satisfies the CDE(m,K) condition
if for all x ∈ V , for any positive function f : V → R such that (�μf)(x) < 0 we
have

(2.4) Γ̃2(f)(x) ≥
1

m
(�μf)

2(x) +KΓ(f)(x),

where

Γ̃2(f) = Γ2(f)− Γ(f,
Γ(f)

f
)

=
1

2
�μΓ(f)−

1

2
Γ(f,

�μf
2

f
).(2.5)

Remark 2.4. As pointed out in [2], if �μ satisfies the CD(m, 0) condition and gen-
erates a diffusion semigroup, then Li-Yau’s famous gradient estimate, established in
[11], holds. But �μ does not generate a diffusion semigroup on the graphic setting.
The CDE(m,K) condition was introduced in [5] to derive Li-Yau’s gradient esti-
mate. As pointed out in [5], both the CD(m,K) condition and the CDE(m,K)
condition are local properties, and in some sense the CDE(m,K) condition is
weaker than the CD(m,K) condition, i.e., if the semigroup generated by �μ is a
diffusion semigroup, then the CD(m,K) condition implies the CDE(m,K) condi-
tion.

The following maximum principle, which can be viewed as the elliptic version
of the maximum principle established in [5] for the parabolic operator �μ − ∂t, is
useful.

Lemma 2.5. Let G(V,E) be a graph, and let g, F : V → R be two functions.
Suppose that g ≥ 0 and that F has a local maximum at x0. Then

(2.6) �μ(gF )(x0) ≤ (�μg)(x0)F (x0).

Assume that λ is a nonzero constant and u is a nonconstant function satisfying

(2.7) �μu = −λu

on a connected finite graph.

Lemma 2.6. u must change sign and λ > 0.
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Proof. If λ < 0, we assume that u achieves its maximum at x0 ∈ V ; then

u(x0) = − 1

λμ(x0)

∑
y∼x0

wx0y(u(y)− u(x0)) ≤ 0.

Hence for all x ∈ V , u(x) ≤ 0, which implies that u ≡ 0 and contradicts the fact
that u is nonconstant. If λ = 0, we assume that u achieves its maximum at x0 ∈ V ;
then

0 =
1

μ(x0)

∑
y∼x0

wx0y(u(y)− u(x0)) ≤ 0.

Hence for all y ∼ x0, u(y) = u(x0), which implies that u ≡ u(x0) and also con-
tradicts the fact that u is nonconstant. So we conclude that λ > 0. A similar
discussion shows that the maximum and minimum of u are positive and negative,
respectively. �

3. Gradient estimate

Assume that λ is a nonzero constant and u is a nonconstant function satisfying
(2.7). Due to Lemma 2.6, we may normalize u to satisfy min u = −1 and maxu ≤ 1.
The main result in this section is the following gradient estimate for u.

Theorem 3.1. Let G(V,E) be a connected finite graph satisfying the
CDE(m,−K) condition for some m > 0, K ≥ 0, and let u : V → R be a so-
lution to (2.7) satisfying minu = −1 and maxu ≤ 1. Then for all a > 1 and all
x ∈ V ,

Γ(
√
a+ u)

a+ u
(x) ≤ mK

2
+

(ma+ 1)λ

2(a− 1)

+
1

2

√
m2(K +

λ

a− 1
)2 +

m

a− 1
(2Kλ+

a

a− 1
λ2).(3.1)

Proof. For a > 1 let v = a+ u. Then v satisfies

(3.2) �μv = −λ(v − a).

Let

(3.3) F (x) =
2Γ(

√
v)−�μv

v
=

−2�μ
√
v√

v
.

We assume that F achieves its maximum at x0. If F (x0) ≤ 0, then for all x ∈ V ,
F (x) ≤ 0, due to the fact that v(x) ≥ a− 1. Thus we have

Γ(
√
a+ u)

a+ u
(x) ≤ −λ(v − a)

2v
≤ λ

2(a− 1)
,
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and (3.1) follows. Hence we can assume that F (x0) > 0, which implies that
�μ

√
v(x0) < 0. By the maximum principle we have that at x0,

(�μv)F ≥ �μ(vF ) = �μ(2Γ(
√
v)−�μv)

= 4Γ̃2(
√
v) + 2Γ(

√
v,

�μv√
v
)− (�μ�μv)

≥ 4

m
(�μ

√
v)2 − 4KΓ(

√
v)− 2λΓ(

√
v,

v − a√
v

)− λ2(v − a)

=
4

m
(�μ

√
v)2 − 4KΓ(

√
v)− 2λΓ(

√
v) + 2λaΓ(

√
v,

1√
v
)− λ2(v − a).(3.4)

By (2.3), (3.2), and (3.3) we have

(3.5) �μ

√
v = −1

2

√
vF,

(3.6) Γ(
√
v) =

1

2
vF − 1

2
λ(v − a).

Due to the fact that v(x) ≥ a− 1 for all x ∈ V , we have that for all x ∈ V ,

Γ(
√
v,

1√
v
)(x) =

1

μ(x)

∑
y∼x

wxy(
√
v(y)−

√
v(x))(

1√
v(y)

− 1√
v(x)

)

= − 1

μ(x)

∑
y∼x

wxy
(
√
v(y)−√

v(x))2√
v(y)

√
v(x)

≥ − 1

(a− 1)μ(x)

∑
y∼x

wxy(
√
v(y)−

√
v(x))2

≥ − 1

a− 1
Γ(

√
v)(x).(3.7)

Plugging (3.5), (3.6), and (3.7) into (3.4), we have that at x0,

v

m
F 2 − (2Kv +

aλ

a− 1
v + aλ)F + (2Kλ+

a

a− 1
λ2)(v − a) ≤ 0.

Due to the fact that a− 1 < v ≤ a+ 1, we have that at x0,

1

m
F 2 − (2K +

2aλ

a− 1
)F − 1

a− 1
(2Kλ+

a

a− 1
λ2) ≤ 0,

which implies that

F (x0) ≤ mK +
maλ

a− 1
+

√
m2(K +

λ

a− 1
)2 +

m

a− 1
(2Kλ+

a

a− 1
λ2).

Hence for all x ∈ V ,

F (x) ≤ mK +
maλ

a− 1
+

√
m2(K +

λ

a− 1
)2 +

m

a− 1
(2Kλ+

a

a− 1
λ2),
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which implies that

Γ(
√
a+ u)

a+ u
(x) ≤ −λ(v − a)

2v
+

mK

2
+

maλ

2(a− 1)

+
1

2

√
m2(K +

λ

a− 1
)2 +

m

a− 1
(2Kλ+

a

a− 1
λ2)

≤ mK

2
+

(ma+ 1)λ

2(a− 1)

+
1

2

√
m2(K +

λ

a− 1
)2 +

m

a− 1
(2Kλ+

a

a− 1
λ2).

Here in the last inequality we have used the fact that v(x) ≥ a− 1. �

4. Proof of Theorem 1.1

Based on the gradient estimate established in Theorem 3.1, we can derive the
lower bound estimate of the first nonzero eigenvalue of the μ-Laplacian stated in
Theorem 1.1.

Proof. We firstly assume that x ∼ y. Note that for any a, b > 0, ln b
a ≤ b−a

a . By
(3.1) we have

ln

√
v(y)√
v(x)

≤
√
v(y)−√

v(x)√
v(x)

≤ [
2μmaxΓ(

√
v)(x)

wmin
]
1
2

1√
v(x)

≤

√
2C(m,K, λ)μmax

wmin
,

where

C(m,K, λ) =
mK

2
+

(ma+ 1)λ

2(a− 1)
+

1

2

√
m2(K +

λ

a− 1
)2 +

m

a− 1
(2Kλ+

a

a− 1
λ2).

When x and y are not adjacent, we simply let x = x0;x1; · · ·;xk = y denote a
path P between x and y. Then

ln

√
v(y)√
v(x)

=

k∑
i=1

ln

√
v(xi)√

v(xi−1)

≤
k∑

i=1

√
2C(m,K, λ)μmax

wmin

= k

√
2C(m,K, λ)μmax

wmin
.

Choosing a suitable P so that k = dist(x, y), we will get that

ln

√
v(y)√
v(x)

≤ dist(x, y)

√
2C(m,K, λ)μmax

wmin
≤ d

√
2C(m,K, λ)μmax

wmin
.
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We assume that u(x) = −1, u(y) = max u; then

ln

√
a√

a− 1
≤ ln

√
a+maxu√

a− 1
= ln

√
v(y)√
v(x)

≤ d

√
2C(m,K, λ)μmax

wmin
.(4.1)

A direct calculation shows that

1

2

√
m2(K +

λ

a− 1
)2 +

m

a− 1
(2Kλ+

a

a− 1
λ2) ≤ mK

2
+

(ma+ 1)λ

2(a− 1)
.

Hence

C(m,K, λ) ≤ mK +
(ma+ 1)λ

a− 1
.

Plugging into (4.1) leads to

(ln

√
a√

a− 1
)2 ≤ d2

2μmax

wmin
[mK +

(ma+ 1)λ

a− 1
]

≤ d2
2μmax

wmin
[mK +

(m+ 1)aλ

a− 1
].

Hence

λ ≥ t

m+ 1
[

wmin

8d2μmax
(ln

1

t
)2 −mK],

where

t =
a− 1

a
∈ (0, 1).

Maximizing the right-hand side as a function of t by setting

t = exp (−1−

√
1 +

8μmaxmKd2

wmin
),

we obtain the estimate

λ ≥ wmin

4(m+ 1)μmaxd2
(1 +

√
1 +

8μmaxmKd2

wmin
)

× exp (−1−

√
1 +

8μmaxmKd2

wmin
),(4.2)

which implies (1.1). �
The proof of Theorem 1.1 implies Corollary 1.2. In fact, letting K = 0 in (4.2)

leads to (1.2).

5. Proof of Theorem 1.3

In this section we will prove Theorem 1.3.

Proof. Let φ = u− (a+ ε), where 0 < ε < 1 small enough so that

(5.1)

√
1 + a+ ε

2 + a+ ε
(−1− ε) > −1.

Then φ satisfies

(5.2) �μφ = −λ(φ+ a+ ε).

Let

(5.3) P = Γ(φ) + λ(1 + a+ ε)φ2.
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Then

(5.4) �μP = �μΓ(φ) + λ(1 + a+ ε)(2φ�μφ+ 2Γ(φ)).

Due to (2.2) we have

�μΓ(φ) ≥ 2(�μφ)
2 + 2Γ(φ,�μφ).(5.5)

By (5.2), (5.3), (5.4), (5.5), we have

�μP ≥ 2λ(a+ ε)Γ(φ)− 2(1 + a+ ε)(a+ ε+ φ)λ2φ+ 2λ2(φ+ a+ ε)2

= 2λ(a+ ε)P + 2λ2[(a+ ε)φ− 2(a+ ε)φ2

+(a+ ε)2 − (a+ ε)2φ− (a+ ε)2φ2]

≥ 2λ(a+ ε)P − 2λ2[2(a+ ε) + (a+ ε)2].

We assume that P achieves its maximum at x0; then�μP (x0) ≤ 0, which implies
that

P (x0) ≤ (2 + a+ ε)λ.

Hence for all x ∈ V ,

P (x) ≤ (2 + a+ ε)λ,

which implies that

Γ(φ)(x) ≤ (2 + a+ ε)λ− (1 + a+ ε)λφ2(x)

or

(5.6) Γ(v)(x) ≤ (1 + a+ ε)λ(1− v2(x)),

where

(5.7) v =

√
1 + a+ ε

2 + a+ ε
φ =

√
1 + a+ ε

2 + a+ ε
(u− a− ε).

We firstly assume that x ∼ y. Note that for any a, b satisfying 0 ≤ a ≤ b < 1,

(5.8) arcsin b− arcsin a =
b− a√
1− ξ2

≤ b− a√
1− b2

,

where ξ ∈ (a, b). We claim that

arcsin v(y)− arcsin v(x) ≤

√
2μmax(1 + a+ ε)λ

wmin
.(5.9)

In fact, by (5.8) we have

arcsin v(y)− arcsin v(x) ≤ v(y)− v(x)√
1− v2(x)

.

Due to the definition of Γ, we conclude that

arcsin v(y)− arcsin v(x) ≤

√
2μmaxΓ(v)(x)

wmin

1√
1− v2(x)

≤

√
2μmax(1 + a+ ε)λ

wmin
.

Here we have used (5.6).
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When x and y are not adjacent, we simply let x = x0;x1; · · ·;xk = y denote a
path P between x and y. By (5.9) we have

arcsin v(y)− arcsin v(x) =

k∑
i=1

(arcsin v(xi)− arcsin v(xi−1))

≤
k∑

i=1

√
2μmax(1 + a+ ε)λ

wmin

= k

√
2μmax(1 + a+ ε)λ

wmin
.

Choosing a suitable P so that k = dist(x, y), we will get that

arcsin v(y)− arcsin v(x) ≤ dist(x, y)

√
2μmax(1 + a+ ε)λ

wmin

≤ d

√
2μmax(1 + a+ ε)λ

wmin
.

We assume that u(x) = a− 1, u(y) = a+ 1; then,

arcsin

√
1 + a+ ε

2 + a+ ε
(1− ε) + arcsin

√
1 + a+ ε

2 + a+ ε
(1 + ε) ≤ d

√
2μmax(1 + a)λ

wmin
.

Letting ε ↘ 0 we conclude that

2 arcsin

√
1 + a

2 + a
≤ d

√
2μmax(1 + a)λ

wmin
,

which implies (1.4). �

Remark 5.1. Since 0 ≤ a ≤ 1, we easily deduce from (1.4) that

λ ≥ π2wmin

16μmaxd2
,

which implies that (1.4) is better than (1.3) for the case that m = 1.

6. Proof of Theorem 1.4

In this section we shall prove Theorem 1.4, based on the important identity (2.3)
observed in [5].

Proof. Let λ be the first nonzero eigenvalue of the μ-Laplacian on a connected finite
graph and let u be the corresponding eigenfunction. We assume that

Q = Γ(u) +
λ

m
u2.

By (2.3) we have

2u�μu = �μu
2 − 2Γ(u).
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Hence

�μQ = �μΓ(u) +
λ

m
�μu

2

= �μΓ(u) +
λ

m
(2u�μu+ 2Γ(u)).

Note that

Γ2(u) =
1

2
(�μΓ(u)− 2Γ(u,�μu))

≥ 1

m
(�μu)

2 +KΓ(u).

Hence

�μQ ≥ 2

m
(�μu)

2 + 2KΓ(u) + 2Γ(u,�μu) +
λ

m
(2u�μu+ 2Γ(u))

= −2(m− 1)

m
(λ− m

m− 1
K)Γ(u).(6.1)

If λ ≤ m
m−1K, then Q is a subharmonic function. By the boundedness of the

graph and the maximum principle, Q must be identically constant and all the
inequalities in (6.1) are equalities. In particular, the right-hand side of (6.1) must
be identically 0. Hence λ = m

m−1K since u is nonconstant. �
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