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THE BERGMAN KERNEL ON FORMS: GENERAL THEORY

ANDREW RAICH

(Communicated by Harold P. Boas)

Abstract. The goal of this paper is to explore the Bergman projection on
forms. In particular, we show that some of most basic facts used to construct
the Bergman kernel on functions, such as pointwise evaluation in L2

0,q(Ω) ∩
ker ∂̄q , fail for (p, q)-forms, q ≥ 1, p ≥ 0. We do, however, provide a careful
construction of the Bergman kernel and explicitly compute the Bergman kernel

on (0, n−1)-forms. For the ball in C2, we also show that the size of the Bergman
kernel on (0, 1)-forms is not governed by the control metric, in stark contrast
to the Bergman kernel on functions.

1. Introduction

On a domain Ω ⊂ C
n, the Bergman projection Bq is the orthogonal projection

Bq : L2
0,q(Ω) → ker ∂̄q ∩L2

0,q(Ω). The basic theory of the classical Bergman projec-
tion B0 is, well, classical and can be found in several complex variables textbook,
e.g., [Kra01]. The Bergman projection B0 is one of the most basic objects in the
analysis of both one and several variables, and its mapping properties have been
exhaustively (though not conclusively) researched, as have formulas for its ker-
nel. See, for example, [Cat83, Cat87,KN65, FK72, PS77,McN89,NRSW89,CD06,
NS06,McN94,MS94,KR,Fef74,D’A78,D’A94] for just a small sampling of the re-
sults in the literature. Surprisingly, when q ≥ 1, only mapping properties have
been investigated — regularity properties for the Bergman projection often follow
from estimates of the ∂̄-Neumann operator and Kohn’s formula (see, for example,
[HR15,BS90,HM06]). There is essentially no literature about an explicit construc-
tion of the kernels, pointwise size estimates, or geometry.

A standard discussion of B0 includes a formal construction of the integral kernel,
its transformation law under biholomorphic mappings, and a computation of the
Bergman kernel on the ball (and perhaps the polydisk). One of the goals of this
paper is to show that several of the main features of B0 and its construction fail
for Bq, q ≥ 1. In particular, we show that:

(1) Pointwise evaluation is not a bounded linear functional on L2
0,q(Ω)∩ker(∂̄q).

(2) It is unrealistic for a transformation formula to hold for Bp,q(z, w) unless
p, q ∈ {0, n}.

(3) In C2, the Bergman kernel B1(z, w) on the ball does not behave according
to control geometry (in stark contrast to B0(z, w)).
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There is no additional information to be gained by looking at the Bergman
projection on L2

p,q(Ω), so we focus on the p = 0 case, except when we investigate
the existence of transformation formulas because the Bp,0 behaves poorly.

We start by carefully constructing Bq, which, while using the well-known Hilbert
space and distribution theory, does not seem to appear in the literature. We then
exploit Kohn’s formula and the knowledge of the ∂̄-Neumann problem in the top
degree to give a general formula for the Bergman projection Bn−1 and its associated
integral kernel Bn−1(z, w). We conclude the paper with a discussion on the ball.
We compute Bn−1 explicitly and then restrict ourselves to the C2 case. There,
we observe that the control geometry, which governs the size of B0(z, w), does not
reflect the scaling present in the kernel B1(z, w). We conclude with a remark about
future directions.

Fix q ≥ 1. The kernel, ker ∂̄q, is a closed subspace of L2
0,q(Ω), so the projection

Bq onto ker ∂̄q ∩ L2
0,q(Ω) can be given as a Fourier series in terms of a basis. The

construction of Bq can proceed as follows: suppose that {φj}∞j=1 is an orthonormal

basis of ker ∂̄q ∩ L2
0,q(Ω). The vector projection of f ∈ L2

0,q(Ω) onto spanφj is
(f, φj)φj , where the inner product

(f, φj) =

∫
Ω

〈f, φj〉 dV =

∫
Ω

f ∧ �φj ,

where � is the Hodge-� operator (see, e.g., [CS01, p. 208]) and dV is Lebesgue
measure. The orthogonal projection of f on ker ∂̄q ∩ L2

0,q(Ω) is therefore given by
the Fourier series

Bqf(z) =
∞∑
j=1

(f, φj)φj(z),

where the sum converges in L2
0,q(Ω).

Working formally, we see that

Bqf(z) =

∞∑
j=1

( ∫
Ω

f(w) ∧ �φj(w)
)
φj(z) =

∫
Ω

f(w) ∧
( ∞∑

j=1

�φj(w) ∧ φj(z)
)
.

This suggests that the Bergman kernel ought to be

Bq(z, w) =
∞∑
j=1

�φj(w) ∧ φj(z)

for any orthonormal basis {φj} of ker ∂̄q ∩L2
0,q(Ω). For this formula to be rigorous,

of course, the sum defining Bq(·, w) must converge in L2
0,q(Ω), be independent of the

orthonormal system {φj}, and be the orthogonal projection onto ker ∂̄q ∩ L2
0,q(Ω).

This is contained in Theorem 1.1, our structure theorem for the Bergman projection.
To state our results, we need the following notation. Let Iq = {J = (j1, . . . , jq) ∈
N

q : 1 ≤ j1 < · · · < jq ≤ n} be the set of increasing q-tuples and let

d̃z̄j = dz̄1 ∧ · · · ∧ d̂z̄j ∧ · · · ∧ dz̄n,

where d̂z̄j represents the omission of dz̄j from the wedge product. We will also use

[Î] to denote the (n− |I|)-tuple {1, . . . , n} \ I. Also, let dz̄J = dz̄j1 ∧ · · · dz̄jq .



THE BERGMAN KERNEL ON FORMS 4685

Theorem 1.1. Let Ω ⊂ Cn be a domain, and let 1 ≤ q ≤ n− 1. Then:

(1) There exists an integral kernel Bq(z, w) so that the Bergman projection
Bq : L2

0,q(Ω) → L2
0,q(Ω) ∩ ker ∂̄q is given by

Bqf(z) =

∫
Ω

f(w) ∧Bq(z, w)

for any f ∈ L2
0,q(Ω).

(2) Moreover, there exist bounded operators BJ′J : L2(Ω) → L2(Ω) so that if
f =

∑
J∈Iq

fJ dz̄J , then

Bqf(z) =
∑

J,J′∈Iq

BJ′JfJ (z) dz̄
J′
.

(3) Given any orthonormal basis {φj} ⊂ L2
0,q(Ω) ∩ ker ∂̄q,

Bq(z, w) =

∞∑
j=1

�φj(w) ∧ φj(z),

where the sum converges in L2
(0,q),(n,n−q)(Ω× Ω).

We have additional information about the operators BJ′J in the case that q =
n−1, though to state the theorem, we need to introduce two pieces of notation. The
operator Nn is a ∂̄-Neumann operator of degree n and has integral kernel Nn(z, w).
Also, the operator ϑq is the formal (or integration by parts) adjoint of ∂̄q. It differs
from the L2-adjoint of ∂̄q because forms in Dom(ϑq) only have an integrability
requirement. Forms in Dom(∂̄∗

q ) have both an integrability requirement and a
boundary condition.

Theorem 1.2. Let Ω ⊂ Cn be a domain, and let G(z, w) be the Green’s function
for the Laplacian �. Then

(1)

Bn−1f(z) = f(z)−
∫
Ω

f(w) ∧ ϑn−1,z∂
∗
n−1,wNn(z, w).

(2)

(1.1) B[k̂][ĵ](z, w) = δjkδz(w) + (−1)n+j+k−14
∂2G(z, w)

∂zk∂w̄j
,

where δjk is the Kronecker δ and δz(w) is the Dirac δ.
(3) In the case that Ω = B(0, 1) is the unit ball, then

B[k̂][ĵ](z, w) = δjkδz(w)

+ (−1)n+j+k−1 (n− 1)!

πn

[
δjk

|z − w|2n − n
(zk − wk)(z̄j − w̄j)

|z − w|2n+2

− δjk − z̄jwk

(|z − w|2 + (1− |w|2)(1− |z|2))n

+ n
((zk − wk) + wk(1− |z|2))((z̄j − w̄j)− z̄j(1− |w|2))

(|z − w|2 + (1− |w|2)(1− |z|2))n+1

]
.

Our final result is the failure of the boundedness of pointwise evaluation in
L2
0,q(Ω) ∩ ker ∂̄q, q ≥ 1. This result stands in stark contrast to the result for

B0. In fact, boundedness of pointwise evaluation in L2(Ω) is a critical fact for B0
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and (more generally) one of the defining assumptions in the expansive theory of
reproducing kernel Hilbert spaces; see, e.g., [BTA04]. To observe the first instance
of the boundedness of pointwise evaluation in the theory of the Bergman projection,
we simply need to recall the standard construction for B0. This construction works
equally well for reproducing kernels in reproducing kernel Hilbert spaces. Suppose
that the evaluation functional ez(ϕ) = ϕ(z) was a bounded, linear functional, i.e.,
|ez(ϕ)| ≤ C‖ϕ‖L2

0,q(Ω) for some constant C that may depend on z but not on ϕ.

This would mean that for any f ∈ ker ∂̄q ∩ L2
0,q(Ω), |f(z)| ≤ C‖f‖L2

0,q(Ω), where

C = C(z) does not depend on f . This is critical for the following reason: for any
{aj} ∈ 	2, f(z) =

∑∞
j=1 ajϕj(z) ∈ ker ∂̄q ∩ L2

0,q(Ω), with the consequence that

|K(z, z)| =
∞∑
j=1

|ϕj(z)|2 dV (z)

=
(

sup
{a}∈�2

‖a‖
�2

=1

∣∣∣ ∞∑
j=1

ajϕj(z)
∣∣∣)2

dV (z)

= sup
f∈ker ∂̄

‖f‖
L2=1

|f(z)|2 dV (z).

Consequently, boundedness on the diagonal implies finiteness of sup f∈ker ∂̄
‖f‖

L2=1

|f(z)|.
From Theorem 1.2, it is immediate that Bn−1(z, w) blows up as w → z.

Theorem 1.3. Let Ω ⊂ Cn be a domain. If 1 ≤ q ≤ n, then pointwise evaluation
is not a bounded, linear functional on L2

0,q(Ω) ∩ ker ∂̄q.

Proof. Since forms are not functions, we consider pointwise evaluation to be the
pointwise evaluation functionals ϕ 
→ ϕJ for each J ∈ Iq. Without loss of generality,
we may suppose that 0 ∈ Ω. Let q ≥ 1, J ∈ Iq, and ψ ∈ (C∞

c )0,q−1(Ω) so that

(∂̄ψ(0))J �= 0. Set ϕ(z) = ∂̄ψ(z)

‖(∂̄ψ)J‖L2(Ω)

. Then ϕε(z) = ε−
n
2 ϕ(z/ε) ∈ (C∞

c )0,q(Ω) ∩
ker ∂̄q since ∂̄2 = 0. Moreover, our normalization ensure ‖(ϕε)J‖L2(Ω) = 1 for all
ε > 0, but |(ϕε)J (z)| → ∞ as ε → 0. �

Remark 1.4. It is very unlikely that the Bergman kernel Bp,q(z, w) satisfies a nice
transformation formula under biholomorphisms unless p, q ∈ {0, n}. The transfor-
mation law for B0 essentially follows from the pullback relationship F ∗∂̄ = ∂̄F ∗ and
the fact that JRF = |JCF |2, where JRF is the determinant of the real Jacobian and
JCF is the determinant of the complex Jacobian. In general, while the pullback
interacts nicely with ∂̄, it behaves poorly with respect to L2-inner products. In
particular, if F : Ω1 → Ω2 is a biholomorphism and φ, ψ ∈ L2

p,q(Ω2), then

(
F ∗φ, F ∗ψ

)
=

∫
Ω1

F ∗φ(w) ∧ �
(
F ∗ψ(w)

)

=
∑

I,I′,K∈Ip
J,J′,L′∈Iq

∫
Ω1

(
φIJ ◦ F (w)

)(
ψI′,J′ ◦ F (w)

)∣∣∣∣ ∂F I

∂wK

∣∣∣∣
∣∣∣∣∂F J

∂wL

∣∣∣∣
∣∣∣∣ ∂F [Î]

∂w[K̂]

∣∣∣∣
∣∣∣∣∂F [Ĵ]

∂w[L̂]

∣∣∣∣ dV (w),
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where ∂F I

∂wK is the p × p minor of the complex Jacobian of the mapping F =
(F1, . . . , Fn) given by

∂F I

∂wK
=

( ∂FIj

∂wKk

)p

j,k=1
,

where I = (I1, . . . , Ip) and K = (K1, . . . ,Kp), and similarly for the other terms.
The complicated product of determinants only simplifies dramatically in the cases
p, q ∈ {0, n} to JRF and a change of variables may proceed as in the B0 case.

1.1. Existence of the Bergman kernel and the proof of Theorem 1.1. The
proof of Theorem 1.1 requires no complex analysis and follows in a straightforward
manner from functional analysis. Consequently, we sketch the details. Suppose
f =

∑
J∈Iq

fJ dz̄J . For each J, J ′ ∈ Iq, let BJ′J be the component piece of Bq that

takes the dz̄J coefficient of f and maps it to the dz̄J
′
coefficient of Bq{fJ dz̄J}.

It follows easily from the boundedness and linearity of Bq that the operator norm
‖BJ′J‖L2→L2 ≤ 1 and

Bqf =
∑

J,J′∈Iq

BJ′J{fJ} dz̄J
′
.

Since the maps BJ′J : L2(Ω) → L2(Ω) boundedly, they certainly map from
C∞

c (Ω) → D′(Ω). Consequently, the Schwartz Kernel Theorem ([Hör90, Theorem
5.2.1]) applies to each BJ′J . As a result, the Bergman kernel on (0, q)-forms exists
as a distributional kernel, and we can write (for f, g ∈ D0,q(Ω))

(Bqf, g) =

∫
Ω

∫
Ω

f(w) ∧Bq(z, w) ∧ ∗g(z) dV (w) dV (z) = Kq(f ⊗ g),

where the integral is understood in the distributional sense. This establishes parts
(1) and (2) of Theorem 1.1

We now turn to establishing greater regularity for Bq(z, w). Let {φj} be an
orthonormal basis of L2

0,q(Ω) ∩ ker ∂̄q,

KN (z, w) =
N∑
j=1

∗φj(w) ∧ φj(z),

and let KN be the operator with kernel KN . We will show that

KN (z, w) → Bq(z, w) in L2
(0,q),(n,n−q)(Ω).

Since KNf → Bf in L2
0,q(Ω) and {φj} are orthogonal, given ε > 0, there exists

N ′ > 0 so that if M ≥ N ≥ N ′, then∣∣∣KM (f ⊗ g)−KN (f ⊗ g)
∣∣∣ = ∣∣∣ ∫

Ω×Ω

M∑
j=N+1

f(w) ∧ ∗φj(w) ∧ φj(z) ∧ ∗g(z)
∣∣∣

< ε‖f‖L2(Ω)‖g‖L2(Ω).

Consequently, the sequence of operators {KN} with distributional kernels {KN}
forms a Cauchy sequence acting on L2

0,q(Ω) × L2
0,q(Ω) and therefore converges to

an operator B′ acting on L2
0,q(Ω)×L2

0,q(Ω) and with distributional kernel Bq(z, w).

Moreover, since KN (z, w) forms a Cauchy sequence in L2
0,q(Ω) ⊗ L2

n,n−q(Ω), it

follows that Bq(z, w) ∈ L2
0,q(Ω)⊗L2

n,n−q(Ω) ⊂ L2
(0,q),(n,n−q)(Ω×Ω). That this sum

is independent of the basis is a standard Hilbert space fact. This concludes the
proof of Theorem 1.1.
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2. The Bergman projection Bn−1 and the proof of Theorem 1.2,
parts (1) and (2)

Recall that the boundary condition for a form u =
∑

J∈Iq
uJ dz̄J ∈ L2

0,q(Ω) to

be an element of Dom(∂̄∗) is that

n∑
j=1

ujK
∂ρ

∂zj
= 0 in bΩ for all K ∈ Iq−1,

where

ujK =
∑
J∈Iq

εjKJ uJ .

If q = n the boundary requirement is exactly that u{1,...,n}
∂ρ
∂zj

= 0 for all j =

1, . . . , n, i.e., u = 0 on bΩ. This is the Dirichlet boundary condition, and the ∂̄-
Neumann problem reduces to the standard Dirichlet problem for the Laplacian. We

normalize the Laplacian � so that � = −4
∑n

j=1
∂2

∂zj∂z̄j
. Consequently, if G(z, w)

is the Green’s function for the Laplacian on Ω, then the ∂̄-Neumann operator on
the top degree is

Nn(z, w) = 4G(z, w) dw ∧ dz̄

with the notation dw = dw1 ∧ · · · ∧ dwn and dz̄ = dz̄1 ∧ · · · ∧ dz̄n. The integral
operator Nn applied to a (0, n)-form F = f dz̄ is then

NnF (z) =

∫
Ω

F (w) ∧Nn(z, w) ∧ dz̄ = 4
[ ∫

Ω

f(w)G(z, w) dV (w)
]
dz̄.

Thus we have an explicit integral kernel for Nn for every case for which there is an
explicit formula for G(z, w).

Recall Kohn’s formula for the Bergman projection:

Bq = I − ∂̄∗
qNq+1∂̄q = I − ϑqNq+1∂̄q.

We now compute Bn−1 and recall that G(x, y) = 0 whenever either x ∈ bΩ or
y ∈ bΩ. Suppose f ∈ L2

0,n−1(Ω). Then

Bn−1f(z) = f(z)− ϑn−1,z

∫
Ω

∂̄n−1,wf(w) ∧Nn(z, w)

= f(z)− ϑn−1,z

∫
Ω

f(w) ∧ ∂∗
n−1,wNn(z, w).

We would like to bring the operator ϑn−1,z inside the integral, but this requires
care because the Newtonian potential on Cn is

Φ(z) =
(n− 2)!

4πn

1

|z|2n−2

and two derivatives mean that the kernel would blow up like a singular integral. In
point of fact, this will not cause a problem because derivatives of two derivatives
of Φ(z) generate a Calderón–Zygmund singular integral. But care certainly must
be taken! In particular, the Green’s function G(z, w) is built from the Newtonian

potential and a harmonic function. Therefore, the singularity of ∂2G(z,w)
∂zj∂w̄k

can only
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come from the ∂2

∂zj∂w̄k

1
|w−z|2n−2 , which we now compute:

∂2

∂zj∂w̄k

1

|w − z|2n−2
= (n− 1)

δjk
|w − z|2n − n(n− 1)

(wk − zk)(wj − zj)

|w − z|2(n+1)
.

The case j �= k yields the kernel
(wk−zk)(wj−zj)

|w−z|2(n+1) which is a classic Calderón–

Zygmund convolution kernel — homogeneous of degree −2n and integrates to 0
over any sphere centered around the origin. The case j = k is only slightly more
complicated. Observe that if σ2n−1 is the surface area of the unit sphere in C

n,
then by symmetry∫
bB(0,1)

n− 1

|z|2n − n(n− 1)|zj |2
|z|2(n+1)

dσ(z) = (n− 1)σ2n−1 − n(n− 1)

∫
bB(0,1)

|zj |2 dσ(z)

= (n− 1)σ2n−1 − n(n− 1)

∫
bB(0,1)

1

n

n∑
k=1

|zj |2 dσ(z) = 0.

By homogeneity, the integral is 0 around any sphere, thus we can write

Bn−1f(z) = f(z)−
∫
Ω

f(w) ∧ ϑn−1,z∂
∗
n−1,wNn(z, w),

where the integral is taken in the sense of (tempered) distributions. A version of
this formula (written directly in terms of the Green’s function) appears in [Bel92,
Theorem 15.3] for domains in C and the Bergman projection B0. Breaking down
Bn−1 into its constituent parts, we compute

−ϑn−1,z∂
∗
n−1,wNn(z, w) = −ϑn−1,z∂

∗
n−1,w

{
4G(z, w) dw ∧ dz̄

}
= 4ϑn−1,z

{ n∑
k=1

(−1)k−1 ∂G(z, w)

∂w̄k
d̃wk ∧ dz̄

}

= (−1)n−14

n∑
j,k=1

(−1)j+k ∂
2G(z, w)

∂zj∂w̄k
d̃wk ∧ d̃z̄j ,

from which (1.1) follows.

2.1. The proof of Theorem 1.2, part (3). We now restrict ourselves to the case
Ω is the unit ball. The Green’s function

G(z, w) = Φ(z − w)− Φ(|w|(z − w̃)) = Φ(w − z)− Φ(|z|(w − z̃)),

where w̃ = w
|w|2 is the reflection of w across the unit sphere. Since

|z|2|w − z̃|2 − |w − z|2 = |z|2|w|2 + 1− |w|2 − |z|2 = (1− |w|2)(1− |z|2),

it follows that

(2.1) G(z, w) =
(n− 2)!

4πn

(
1

|z − w|2n−2
− 1

(|z − w|2 + (1− |w|2)(1− |z|2))n−1

)
.

In this case, note that

∂G(z, w)

∂w̄k
=

(n− 1)!

4πn

(
zk − wk

|z − w|2n − zk − wk + wk(1− |z|2)
(|z − w|2 + (1− |w|2)(1− |z|2))n

)
,
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and so ∂G(z,w)
∂w̄k

≡ 0 whenever w ∈ B(0, 1) and z ∈ bB(0, 1) (reflecting the fact that

Nn∂̄n−1 ∈ Dom(∂̄∗
n−1)). Also,

∂2G(z, w)

∂zj∂w̄k
=

(n− 1)!

4πn

[
δjk

|z − w|2n − n
(zk − wk)(z̄j − w̄j)

|z − w|2n+2

− δjk − z̄jwk

(|z − w|2 + (1− |w|2)(1− |z|2))n

+ n
((zk − wk) + wk(1− |z|2))((z̄j − w̄j)− z̄j(1− |w|2))

(|z − w|2 + (1− |w|2)(1− |z|2))n+1

]
,

from which part (3) of Theorem 1.2 follows.

3. Control geometry and the unit ball in C2

Observe that if z → bB(0, 1), then

B[k̂][ĵ](z, w) = δjkδz(w)− (−1)j+k 1

π2

[
z̄jwk

|z − w|4 − 2
z̄j(zk − wk)(1− |w|2)

|z − w|6

]

as z → bB(0, 1). Let ajk(z, w) =
z̄jwk

|z−w|4 − 2
z̄j(zk−wk)(1−|w|2)

|z−w|6 .

A defining function for B(0, 1) is r(z) = |z|2−1. Consequently, the (1, 0) complex
tangential vector field is L = z̄2

∂
∂z1

− z̄1
∂

∂z2
and the complex normal is given by S =

2z1
∂

∂z1
+ 2z2

∂
∂z2

. Observe that [L, L̄] = − ImS. If z = (0, 1) and w = (w1, 1− h),

then a1k((0, 1), w) = 0 and

a22
(
(0, 1), (w1, 1− h)

)
=

1 + h

(|w1|2 + |h|2)2 − 4hReh

(|w1|2 + |h|2)3

and

a21
(
(0, 1), (w1, 1− h)

)
= − w1

(|w1|2 + |h|2)2 +
4w1 Reh

(|w1|2 + |h|2)3 ,

while the Bergman kernel

B0

(
(0, 1), (w1, 1− h)

)
= − 2

π2h̄3
.

For the proper size estimate comparisons with B0(z, w), we recall the control metric
from [NSW85] and the Bergman kernel estimates of [NRSW89,McN89]. At (0, 1),
note that L = ∂

∂z1
and S = 2 ∂

∂z2
, which means that the distance from (0, 1) in

the w1-direction is weighted by order 1 and in the w2-direction by order 2. In
other words, d((0, 1), (w1, 1− h)) ≈ |w1|+ |h|1/2. It is clear that a2k(z, w) observes
different scaling and size estimates that B0(z, w) as |w1| appears with the same
weighting as |h|. Once again, B1 behaves quite differently than B0!

4. Conclusion

This paper checks the functional analysis to show that the Bergman projection
has a well-defined integral kernel and that Bn−1(z, w) is quite computable from the
Green’s function G(z, w). Of course, computing the Green’s function for domains
of interest in several complex variables (and domains in general) is a complicated
task. We will return to this topic in a future paper, in particular for the n = 2
case, as we can say much more.
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