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LINEAR REPRESENTATIONS OF 3–MANIFOLD GROUPS

OVER RINGS

STEFAN FRIEDL, MONTEK GILL, AND STEPHAN TILLMANN

(Communicated by David Futer)

Abstract. The fundamental groups of compact 3–manifolds are known to
be residually finite. Feng Luo conjectured that a stronger statement is true,
by only allowing finite groups of the form PGL2(R), where R is some finite
commutative ring with identity. We give an equivalent formulation of Luo’s
conjecture via faithful representations and provide various examples and a
counterexample.

1. Introduction

In this paper, by 3–manifold we mean connected 3–manifold. A hyperbolic
structure of finite volume on an orientable 3–manifold M gives rise to a develop-

ing map dev: M̃ → H
3, where M̃ is the universal cover of M , and an embedding

hol : π1(M) → Isom+(H3) = PSL2(C), which is the holonomy representation asso-
ciated to the geometric structure and chosen developing map. For details, see, for
example, [20, Chapter 3] or [15, Chapter 8]. In the case that M is triangulated, the

decomposition of M into simplices lifts to one of M̃ which gives rise to a labelling

of the 0-skeleton of the lifted triangulation by elements of ∂H
3
= CP 1, and this

labelling encodes all the information necessary to construct the holonomy repre-
sentation; see [21] for the case of torus cusps and [11] for the closed case. In [10],
Luo generalises these labellings to labellings over P1(R), the projective line over
an arbitrary commutative ring with identity R, and constructs representations into
PGL2(R). An example illustrating the strength of Luo’s generalisation is given in
§3.8. Luo makes the following conjecture:

Conjecture 1.1 (Luo [10]). If M is a compact 3–manifold and γ ∈ π1(M) \ {1},
there exist a finite commutative ring R with identity and a homomorphism π1(M) →
PGL2(R) whose kernel does not contain γ.

Investigation of this conjecture leads us to consider linearity of groups over arbi-
trary commutative rings with identity, as opposed to just over fields or, equivalently,
over integral domains, as is traditionally done. The strength of allowing zero divi-
sors is illustrated in §§3.7-3.8.

At this point it is helpful to introduce the following definition.
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Definition 1.2. Given a groupG, say thatG is residually PGL2–finite if for any g ∈
G\{1}, there exists a finite commutative ring R with identity and a homomorphism
G → PGL(2, R) whose kernel does not contain g. Define, in an analogous manner,
residually PSL2–finite, residually SL2–finite, and residually GL2–finite.

Luo’s conjecture thus says that fundamental groups of compact 3–manifolds are
residually PGL2–finite. In §2, we show that for most groups the different notions
of residual finiteness are equivalent. More precisely, we show that for a finitely
generated group G, we have the following implications:

residually SL2–finite residually GL2–finite

Z(G) = 1

residually PSL2–finite

Z(G) 2-t.f.

residually PGL2–finite

Z(G) = 1

where 2-t.f. means 2-torsion-free and Z(G) denotes the centre of G.
In the following let K be one of the symbols SL2, GL2, PSL2, PGL2. In this

paper we investigate different types of groups and check whether they are residually
K–finite. If a group is residually K–finite, then one can usually show it by writing
a representation. On the other hand, the proof of Proposition 2.6 gives a practical
approach to showing that a group is not residually K–finite.

As applications we consider several classes of groups in §3, giving both positive
and negative results. For example in Theorem 3.1 we show that the symmetric
group Sn in n letters is residually PGL2–finite if and only if n < 5. We also show
that some 3–manifold groups are residually K–finite for all choices of K. Our main
result though is that Conjecture 1.1 does not hold. More precisely, we prove the
following result in §4.

Theorem 1.3. There exists a closed graph manifold M such that π1(M) is not
residually K–finite for K = SL2, GL2, PSL2, PGL2.

We conclude this introduction with a short discussion of the linearity of funda-
mental groups of 3–manifolds. The fact that our counterexample is a closed graph
manifold is perhaps not surprising since it is still unknown whether fundamental
groups of closed graph manifolds are linear. This raises the following question.

Question 1.4. Does there exist a counterexample to Conjecture 1.1 that is a prime
3–manifold but that is not a graph manifold?

We also recall that Thurston [8, Problem 3.33] asked whether every finitely
generated 3–manifold group has a faithful representation in GL(4,R). Button [4]
recently answered this question in the negative. More precisely, he showed that
there exists a closed graph manifold M such that π1(M) does not admit a faithful
representation into GL(4,R).

We conclude this introduction with the following questions.

Question 1.5. Does there exist a natural number n such that the fundamental
group of every compact 3–manifold admits a faithful representation into GL(n,C)?

Question 1.6. Does there exist a natural number n such that the fundamental
group of every compact 3–manifold is residually GLn–finite?
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2. Alternative characterisations

We have the following result of Baumslag, proven in [2, Theorem 5.3, p. 64].

Theorem 2.1. If a commutative ring R with identity is finitely generated, then it
is residually finite; that is, for each non-zero r ∈ R, there exist a finite commutative
R′ with identity and a ring map ϕ : R → R′ which respects the identities, such that
ϕ(r) �= 0.

Let K be one of the symbols SL2, GL2, PSL2, PGL2. The following is essentially
how, in [2, Theorem 5.6, p. 66], Baumslag proved that finitely generated groups
of matrices over an arbitrary commutative ring are residually finite. Earlier, in
[12], Mal’cev had proved this result in the case of integral domains by a somewhat
different method.

Proposition 2.2. Given a finitely generated group G, an element g ∈ G \ {1},
and a homomorphism ρ : G → K(R) for a commutative but not necessarily finite
ring R such that ρ(g) �= 1, there exists a homomorphism ρ′ : G → K(R′) for a
finite commutative R′ such that ρ′(g) �= 1. In particular, if there exists a faithful
representation G → K(R) for some commutative but not necessarily finite R, then
G is residually K–finite.

Proof. Suppose first that K is one of SL2, GL2. Let {g1, . . . , gk} be a set of gen-

erators for G. For i = 1, . . . , k, let Ai = ρ(gi) and let R̃ be the ring generated by
the entries of A1, . . . , Ak as well as the elements (detA1)

−1, . . . , (detAk)
−1. In the

case that K = SL2, the inclusion of the determinants is superfluous. Note that R̃
contains the entries of A−1

1 , . . . , A−1
k . As such, we can restrict ρ to attain a faithful

representation ρ′ : G → SL2(R̃), and because R̃ is a finitely generated ring, it is
residually finite by Theorem 2.1.

(i) If ρ′(g) = ρ(g) has a non-zero off-diagonal entry, say a, and we let φ : R̃ →
R′ be such that φ(a) �= 0 and R′ is finite, then the image of g under the

map G
ρ′

−→ K(R̃)
φ∗−→ K(R′) is non-trivial. Note that the image matrix

under φ∗ still has determinant 1 or a unit because φ preserves 1 and units.

Suppose then that ρ′(g) is diagonal, say diag(a, b).

(ii) If a − b �= 0, then we can choose φ : R̃ → R′ such that φ(a − b) �= 0 and

R′ is finite. Then the image of g under the map G
ρ′

−→ K(R̃)
φ∗−→ K(R′) is

non-trivial.
(iii) If a = b, say with both equal to c �= 1, and we let φ : R̃ → R′ be such

that φ(c − 1) �= 0 and R′ is finite, then the image of g under the map

G
ρ′

−→ K(R̃)
φ∗−→ K(R′) is non-trivial.

Now suppose that K is one of PSL2, PGL2. Let A1, . . . , Ak be matrices that

are representatives of ρ(g1), . . . , ρ(gk) respectively and let R̃ be the ring generated

by the entries of A1, . . . , Ak; note that R̃ contains the entries of representatives

for ρ(g−1
1 ), . . . , ρ(g−1

k ). Let ι : K(R̃) → K(R) denote the obvious embedding which

leads to an isomorphism K(R̃) ∼= im(ι) and note that im(ρ) ⊆ im(ι); thus by

restriction and composition we get a representation ρ′ : G → K(R̃) such that ρ′(g) �=
1. The remainder of the argument is now precisely as in the cases (i) and (ii)
above. �
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Thus, if we define “residually K” to mean the same thing as residualK–finiteness
but with the finiteness requirement on the ring dropped, we have:

Corollary 2.3. A finitely generated group G is residually K–finite if and only if
it is residually K.

We also have:

Proposition 2.4. Let G be a group. If G is residually K–finite, then it admits a
faithful representation G → K(R) for some not necessarily finite R.

Proof. We start out with the following two observations:

(1) K is functorial in the ring; i.e., a ring homomorphism ϕ : S → S′ induces a
group homomorphism ϕ∗ : K(S) → K(S′).

(2) If Si, i ∈ I, is a family of rings, then∏
i∈I

K(Si) → K
(∏
i∈I

Si

)
: (Ai)i∈I �→

∏
i∈I

Ai,

where the product matrix Πi∈IAi is formed entrywise in the direct product
of the rings Si, is well-defined, and is a group isomorphism.

Now we turn to the actual proof of the proposition. For any g �= 1 in G, we have a
representation ρg : G → K(Rg) where Rg is finite and ρg(g) �= 1. Let R =

∏
g �=1 Rg.

We compose (ρg)g �=1 : G →
∏

g �=1 K(Rg) with the group homomorphism given in

(2) and we obtain representation ρ : G → K(R).
We claim that ρ is faithful. Let g ∈ G be non-trivial. Then the image of ρ(g)

under the projection map K(R) → K(Rg) equals ρg(g); hence it is non-trivial. �

Combining Propositions 2.2 and 2.4, we have:

Corollary 2.5. Suppose G is a finitely generated group. Then G is residually K–
finite if and only if it admits a faithful representation G → K(R) for some not
necessarily finite R.

Thus we can check residual K–finiteness by looking for faithful representations.
The next result provides a tautological representation through which all represen-
tations factor. In particular, we only need to study this tautological representation.

Proposition 2.6. Suppose G is a finitely generated group. Then there exist a
commutative ring SK , an ideal IK � SK , and a map ϕK : G → K(SK/IK) such
that any representation G → K(R) factors through ϕK ; that is, for each ρ : G →
K(R), there exists a mediating map ψ : K(SK/IK) → K(R) such that the following
diagram commutes:

G K(SK/IK)
ϕK

ρ

K(R).

ψ

Proof. Let G = 〈g1, . . . , gn | ri = e, i ∈ I〉 and suppose first that K = SL2. Let

SSL2
= Z[x1a, x1b, x1c, x1d, . . . , xna, xnb, xnc, xnd]
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and then define

p(gi) =

(
xia xib

xic xid

)
, p(g−1

i ) =

(
xid −xib

−xic xia

)
.

Define also p(ri) by setting p to be multiplicative and then setting

ISL2 = 〈{det p(gi)− 1}i ∪ {(p(ri)− 1)k,l}i,k,l〉 .
Then we set

ϕSL2
: G → SL2(SSL2

/ISL2
) : gi �→

(
xia xib

xic xid

)
,

which can be checked to be well-defined. Now, suppose that ρ : G → SL2(R) is
given. Let ρ(gi) = (aikl)kl and define q : SSL2/ISL2 → R by

1, x1a, x1b, x1c, x1d, . . . , xna, xnb, xnc, xnd �→1, a111, a
1
12, a

1
21, a

1
22, . . . , a

n
11, a

n
12, a

n
21, a

n
22.

The map q is well-defined because ai11a
i
22 − ai12a

i
21 − 1 = 0 for each i and because

computation of ρ(rj) and ρ(sj) will give the required remaining equations defining
I. This map q induces a map

ψ : SL2(SSL2/ISL2)
q∗−→ SL2(R)

by applying q to each entry, and one can then verify that ψ ◦ ϕSL2
= ρ holds.

If K = GL2, we alter the definitions as follows:

SGL2 = Z[x1a, x1b, x1c, x1d, . . . , xna, xnb, xnc, xnd, y1, . . . , yn],

p(gi) =

(
xia xib

xic xid

)
, p(g−1

i ) = yi

(
xid −xib

−xic xia

)
;

p(ri) are defined by setting p to be multiplicative:

IGL2
= 〈{(det p(gi))yi − 1}i ∪ {(p(ri)− 1)k,l}i,k,l〉 ,

ϕGL2
: G → GL2(SGL2

/IGL2
) : gi �→

(
xia xib

xic xid

)
;

and finally given ρ : G → GL2(R) and ρ(gi) = (aikl)kl, q : SGL2
/IGL2

→ R :

1, xia, xib, xic, xid, yi �→ 1, ai11, a
i
12, a

i
21, a

i
22, (a

i
11a

i
22 − ai12a

i
21)

−1,

and ψ = q∗.
If K = PSL2, we alter the definitions as follows:

SPSL2 = Z[x1a, x1b, x1c, x1d, . . . , xna, xnb, xnc, xnd, {λi}i∈I ],

p(gi) =

(
xia xib

xic xid

)
, p(g−1

i ) =

(
xid −xib

−xic xia

)
;

p(ri) are defined by setting p to be multiplicative:

IPSL2 =
〈
{det p(gi)− 1}i ∪ {λ2

i − 1}i ∪ {(p(ri)− λi)k,l}i,k,l
〉
,

ϕPSL2
: G → PSL2(SPSL2

/IPSL2
) : gi �→

[
xia xib

xic xid

]
;

and finally given ρ : G → PSL2(R), ρ(gi) = [aikl]kl, and that the corresponding
representative for p(ri) is equal to μi times the identity matrix, q : SPSL2

/IPSL2
→

R : 1, xia, xib, xic, xid, yi �→ 1, ai11, a
i
12, a

i
21, a

i
22, μi, and ψ = q∗.

If K = PGL2, we alter the definitions as follows:

SPGL2
= Z[x1a, x1b, x1c, x1d, . . . , xna, xnb, xnc, xnd, y1, . . . , yn, {λi}i∈I ],
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p(gi) =

(
xia xib

xic xid

)
, p(g−1

i ) =

(
xid −xib

−xic xia

)
;

p(ri) are defined by setting p to be multiplicative:

IPGL2 = 〈{(det p(gi))yi − 1}i ∪ {(p(ri)− λi)k,l}i,k,l〉 ,

ϕPGL2
: G → PGL2(SPGL2

/IPGL2
) : gi �→

[
xia xib

xic xid

]
;

and finally given ρ : G → PGL2(R), ρ(gi) = [aikl]kl, and that the corresponding
representative for p(ri) is equal to μi times the identity matrix, q : SPGL2/IPGL2 →
R : 1, xia, xib, xic, xid, yi, λi �→ 1, ai11, a

i
12, a

i
21, a

i
22, (a

i
11a

i
22 − ai12a

i
21)

−1, μi, and ψ =
q∗. �
Remark 2.7. We could use any other characteristic zero ring instead of Z for the
coefficients in SK . We will sometimes use C instead.

Proposition 2.8. Suppose G is a finitely generated group. Then G is residually
K–finite if and only if the map ϕK : G → K(SK/IK) above is an injection.

Proof. By Corollary 2.5, if G is residually K–finite, there exists a faithful ρ : G →
K(R) for some R so that, as ρ factors through ϕK , ϕK too is an injection. Con-
versely, if ϕK is faithful, we apply Corollary 2.5 again with ϕK as the injection to
conclude that G is residually K–finite. �
Proposition 2.9. Let G be a finitely generated group. We have the following
implications for G:

residually SL2–finite residually GL2–finite

Z(G) = 1

residually PSL2–finite

Z(G) 2-t.f.

residually PGL2–finite.

Z(G) = 1

Hereby recall that 2-t.f. means 2-torsion-free and Z(G) denotes the centre of G.

Note that in passing across these implications, it may be necessary to alter the
ring over which the relevant matrix group is considered when one considers the
associated faithful representations. We give a simple example. The group SL2(C)
contains a unique element of order two and hence has no embedding of Z2 ⊕ Z2.
Now Z2⊕Z2 embeds into PSL2(C), but this embedding cannot be lifted to one into
SL2(C).

Proof. Throughout the proof let G be a finitely generated group. It is clear that
residual SL2–finiteness and residual PSL2–finiteness imply, respectively, residual
GL2–finiteness and residual PGL2–finiteness. To see that if G is 2-torsion-free,
residual SL2–finiteness implies residual PSL2–finiteness, note that via Corollary 2.5
the former gives us a faithful representation into SL2(R) for some R and 2-torsion-
freeness of Z(G) implies that the image of this representation cannot contain non-
identity scalar matrices. A similar proof shows that if G is centreless, residual
GL2–finiteness implies residual PGL2–finiteness.

Next, we show that residual PGL2–finiteness implies residual PSL2–finiteness.
Let {g1, . . . , gk} be a generating set for G; via Corollary 2.5, we have a faithful
ρ : G → PGL2(R) for some R. Choose representatives of the generators ρ(g1), . . . ,
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ρ(gk) of ρ(G), let ai = det(ρ(gi)), and let R′ = R[x1, . . . , xk]/I where I =
(x2

1 − a−1
1 , . . . , x2

k − a−1
k ).

Claim. The obvious map ε : R → R′ is injective.

Recall that by definition R[x1, . . . , xk] is the free R-module on the monomials∏
xni
i . We denote by ϕ the R-module homomorphism R[x1, . . . , xk] → R that is

uniquely determined by

m∏
i=1

xni
i �→

⎧⎨⎩ 0, if one of the ni is not even,
m∏
i=1

a
−ni/2
i , if all of the ni are even.

We claim that ϕ vanishes on I. Since ϕ is R-linear it suffices to show that for any j
and any monomial

∏
xni
i we have ϕ

(
(x2

j − a−1
j )

∏
xni
i

)
= 0. But this follows easily

from considering separately the two cases in which the ni are all even and in which
one is not even. It is clear that for any r ∈ R we have ϕ(ε(r)) = r. This shows that
ε is injective. This concludes the proof of the claim.

It follows from the claim that the ι : PGL2(R) → PGL2(R
′) which applies the

previous map εR → R′ to each entry is injective. This gives us a faithful represen-
tation ι ◦ ρ : G → PGL2(R

′). For each i, choosing the same representatives of the
ρ(gi) as earlier we note that the representative xi(ι ◦ ρ)(gi) has unit determinant.
Thus the image of ι ◦ ρ lies in the copy of PSL2(R

′) inside PGL2(R
′).

Finally we will show that residual PSL2–finiteness implies residual SL2–finiteness.
This will, using the other implications proven so far, show also that, under the same
conditions, residual PGL2–finiteness implies residual GL2–finiteness. To show this,
we show that, given a representation ρ : G → PSL2(R), there exist an R′ and a
map ϕ : G → SL2(R

′) through which ρ factors. This will complete the proof be-
cause if G is residually PSL2–finite, it admits a faithful ρ : G → PSL2(R); this ρ
factors through a representation ρ′ : G → SL2(R

′) which is then also faithful, and
so G is residually SL2–finite. The construction involved is the same as that for the
K = PSL2 case in the proof of Proposition 2.6. Let G = 〈g1, . . . , gn | {ri}i∈I〉, let

S = Z[x1a, x1b, x1c, x1d, . . . , xna, xnb, xnc, xnd, {λi}i∈I ],

and then define

p(gi) =

(
xia xib

xic xid

)
, p(g−1

i ) =

(
xid −xib

−xic xia

)
.

Define also p(ri) by setting p to be multiplicative and then define

I =
〈
{det p(gi)− 1}i ∪ {λ2

i − 1}i ∪ {(p(ri)− λi)k,l}i,k,l
〉
.

Now set R′ = S/I and

ϕ : G → SL2(R
′) : gi �→

(
xia xib

xic xid

)
,

which, as can be checked, gives a homomorphism. Now, given ρ : G → PSL2(R),
let (aikl)kl be representatives for ρ(gi) and let μi ∈ R× be the element such that
the corresponding representative for ρ(ri) is equal to μi times the identity matrix.
Note that μ2

i = 1. Define q : R′ → R : 1, xia, xib, xic, xid, λi �→ 1, ai11, a
i
12, a

i
21, a

i
22, μi

and set ψ = q∗ : SL2(R
′) → SL2(R) → PSL2(R). Then ρ = ψ ◦ ϕ. �
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Corollary 2.10.

(1) If the fundamental group of a compact 3–manifold is residually PSL2–finite
or residually PGL2–finite, it is also residually K–finite for the other K.

(2) If M is an aspherical 3–manifold that is not a Seifert fibred manifold, then
all of the above four notions of residually finiteness agree.

Proof. The first part follows from Proposition 2.9 and the observation that all
compact 3–manifold groups are finitely presented; for a proof of this latter fact, see
[9], where it is shown that compact topological manifolds have the homotopy type
of a finite CW-complex.

The second statement follows again from Proposition 2.9 and the fact that
fundamental groups of aspherical 3–manifolds are torsion-free and that the only
3–manifolds with a non-trivial center are Seifert fibred manifolds. We refer to
[1, Theorem 2.5.5, (C.3)] for proofs of these two statements. �

3. A trip to the zoo

In this section we examine Luo’s conjectured property for various classes of
groups, using the results from the previous section.

3.1. Symmetric groups. Luo conjectured that every compact 3–manifold group is
residually PGL2–finite. As a first observation, recall that every compact 3–manifold
group is residually finite. See [7] for the case of Haken manifolds, which can be
extended to the general case via geometrisation as discussed in [7] and [19, Theorem
3.3]. Correctness of Luo’s conjecture would provide a list of specific finite groups
which detect non-triviality. Now, as finite groups embed into symmetric groups, if
we had that Sn, the symmetric group on n letters, is residually PGL2–finite for all
n, we would have verified Luo’s conjecture. However, we have the following result,
which was obtained independently in [13] by the same method.

Theorem 3.1. Sn is residually PGL2–finite if and only if n < 5.

Proof. Given positive integers n < m, Sn embeds into Sm (as the stabilizer of the
final m− n letters). Thus it suffices to prove that S4 is residually PSL2–finite and
that S5 is not. The former follows from the fact that S4 is isomorphic to PSL2(F3),
where F3 is the field with 3 elements; see [16, Chapter 8] (the isomorphism arises
from the faithful natural action of the latter on the projective line P1(F3), which
has 4 elements). For the latter, we use the following presentation for S5:〈

x1, x2, x3, x4

∣∣∣∣∣
x2
i = 1 1 ≤ i ≤ 4,

(xixi+1)
3 = 1 1 ≤ i < 3,

(xixj)
2 = 1 1 ≤ i < j − 1 ≤ 3

〉
,

where xi is the transposition (i i+1). This is a particular case of Moore’s presen-
tations for the symmetric groups; see [14]. The required result is verified using the
characterisation of residual PSL2–finiteness provided by Proposition 2.8 above. A
computation using SageMath [17] certified that S5 fails residual PSL2–finiteness
in particular for the element x1x2. The code can be found in [6]. It follows from
Proposition 2.9 that S5 also fails residual PGL2–finiteness. �

Remark 3.2. The alternating groups A5 and A6 are residually PSL2–finite. This
follows from the existence of isomorphisms A5

∼= PSL2(F4) ∼= PSL2(F5) and A6
∼=

PSL2(F9), where F4, F5, and F9 are the fields with 4, 5, and 9 elements, respectively;
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see [16, Chapter 8]. The property of being residually PSL2–finite is therefore not
inherited from finite index subgroups, even in the case of index two.

3.2. General linear groups. Note that Sn embeds into GLn(R) for any non-zero
commutative ring with identity R by mapping each permutation to the correspond-
ing permutation matrix. Thus if we define residually PGLn–finite in a manner
similar to that in Definition 1.2, we find that Sn is residually PGLn–finite. To see
this, note that the canonical surjection GLn(R) → PGLn(R) is injective on the
copy of Sn in GLn(R). Thus we see that Luo’s conjecture holds if we weaken it to
allow arbitrary dimension of matrices. On the other hand, the observation that Sn

embeds into GLn(R), along with the above theorem, also gives the following:

Corollary 3.3. For any commutative ring with identity R, GLn(R) is not residu-
ally PGL2–finite for n ≥ 5.

This raises the following question.

Question 3.4. Let R be a ring, let n ∈ N and k < n. Is it possible that GLn(R)
is residually GLk–finite?

3.3. Abelian groups.

Proposition 3.5. Every finitely generated abelian group G is residually K–finite
for all K = SL2, GL2, PSL2, PGL2.

Proof. It is easy to see that Z and Z/nZ are residually K–finite for each K via
matrices of the form (

1 n
0 1

)
where the ring of entries is Z in the case of Z and Z/nZ in the case of Z/nZ.
Now, given a finitely generated abelian group G, decompose G via the classification
theorem for finitely generated abelian groups and then use the projections onto each
factor. �

Thus, given a finitely generated group G and an element g ∈ G that is not
contained in the commutator subgroup [G,G], by passing to the abelianisation, we
can construct a finite commutative ring R and a homomorphism G → K(R) that
does not kill g. As such, it is only elements in the commutator subgroup that we
ever need to worry about.

3.4. Dihedral groups. Denote by D2k = 〈a, b | ak = b2 = 1, bab = a−1〉 the
dihedral group of order 2k. A faithful representation D2k → PSL2(C) is defined by

a �→ ±
(
ξ 0
0 ξ−1

)
and b �→ ±

(
0 1

−1 0

)
,

where ξ = exp(πi/k). Whence D2k is residually K–finite for all K = SL2, GL2,
PSL2, PGL2. This family includes examples with 2-torsion in their centre.

3.5. Finitely generated free groups and surface groups.

Proposition 3.6. Finitely generated free groups and the fundamental groups of
compact, connected surfaces (possibly with non-empty boundary) are residually K–
finite for all K = SL2, GL2, PSL2, PGL2.
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Proof. The case of finitely generated free groups corresponds to the case of surfaces
with non-empty boundary. It therefore suffices to consider surfaces. If the Euler
characteristic is non-negative, then the fundamental group is either abelian or it is
the fundamental group of a Klein bottle. In the first case, the conclusion follows
from Proposition 3.5, and in the second from Proposition 3.8 below.

If the Euler characteristic is negative, then the fundamental group is torsion-
free and the holonomy representation for a complete hyperbolic structure gives a
faithful representation into PSL2(R). Whence we are done upon application of
Corollary 2.5 and Proposition 2.9. �
3.6. Hyperbolic manifolds and trivial product geometries.

Proposition 3.7. If the compact orientable geometric 3–manifold M is modelled
on H3, H2×E, or S2×E, then π1M is residually SL2–, PSL2–, GL2–, PGL2–finite.

Proof. If M is modelled on H
3, the holonomy representation gives an embedding

of π1(M) into Isom+(H3) ∼= PSL(2,C). Thus π1(M) is residually PSL2–finite, and
Proposition 2.9 completes the result. Note here that another way to see that π1(M)
is also residually SL2–finite is via a well-known result due to Thurston that we can
lift the holonomy representation into PSL(2,C) to one into SL(2,C); see [18].

If M is modelled on H2 × E, the holonomy representation gives an embedding
of π1(M) into Isom+(H2 × E1) = Isom+(H2)× Isom+(E1) ∼= PSL(2,R)× R. Note
that R embeds into PSL(2,R), exactly via the usual matrix representation for
v ∈ Isom+(E1) as (

1 v
0 1

)
.

Now we post-compose the above embedding with the projections of PSL2(R) ×
R onto either factor and then use Proposition 2.2. This gives us that π1(M) is
residually PSL2–finite, and Corollary 2.10 does the rest of the work.

If M is modelled on S2 × E and orientable, the holonomy representation gives
an embedding of π1(M) into Isom+(S2) × Isom+(E) ∼= SO(3,R) × R. Again, due
to the presence of the projections, we need only worry about the two factors in
the product, and we can deal with the R factor as we did in the previous case. To
deal with the SO(3,R) factor, we recall the well-known double covering SU(2,C) →
SO(3,R) which gives an isomorphism SO(3,R) ∼= PSU(2,C) ≤ PSL2(C), and so
using Proposition 2.2 and Corollary 2.10, we conclude that π1(M) satisfies the
conclusion. �

We briefly discuss the remaining five Thurston geometries, which are not treated
in this note for the sake of brevity. The fundamental group of a closed, orientable
Seifert fibred manifold M fits into an exact sequence

π1(S
1) → π1(M) → πorb

1 B → 1,

where B is the (possibly non-orientable) base orbifold associated to the fibration
and πorb

1 B is the orbifold-fundamental group. For a uniform treatment of Seifert
fibred manifolds it suffices to establish a result for 2–orbifolds analogous to the one
above for surfaces, and hence one only needs to worry about the cyclic subgroup
generated by the fibre. In the case of certain spherical manifolds, one encounters
central 2–torsion, resulting in an additional technical obstacle. The remaining
class of geometric 3–manifolds are solvmanifolds. These are either mapping tori
of Anosov automorphisms of the 2–torus or double covered by such a mapping
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torus (see [1, Theorem 1.8.2]). In particular the fundamental group has a simple
description which would be amenable to a direct approach.

3.7. The integral Heisenberg group and Klein bottle group. We now con-
sider the integral Heisenberg group H and the Klein bottle group K, which have
the well-known presentations 〈a, b, c | [a, b] = c, c central〉 and 〈a, b | aba−1b = 1〉
respectively.

Proposition 3.8. The groups H and K are residually PSL2–finite and so residually
K–finite for each of K = SL2,GL2,PSL2,PGL2.

Proof. The second statement follows from Corollary 2.10(1) once we establish
the first. We do this by producing embeddings H → PSL2(R),K → PSL2(S) and
invoking Corollary 2.5. Our ring R is the ring C[x, y, z]/I, where I :=
(x(1 − y2)2, yz − 1), and we first define a representation ρ : H → SL2(R) as fol-
lows:

a �→
(

1 x
0 1

)
, b �→

(
y 0
0 z

)
, c �→

(
1 x(1− y2)
0 1

)
.

A direct calculation shows that this is a well-defined representation. An element
of H is a word w in the letters a, b, c. Because c is central, one can write w = w′cq

for some q ∈ Z and word w′ in a, b. Because [a, b] = c and so ab = c(ba), one can
interchange a, b in w′ at the cost of introducing a c which can once again be pushed
off to the right so that one can write w = ambncp for some m,n, p ∈ Z. By direct
computation, one can check that

w = ambncp �→
(

yn px(1− y2)yn +mxzn

0 zn

)
.

Now we note the following, which shows that ρ is faithful:

(H1) We have x(1− y2) /∈ I (this was verified with SageMath; see [6]).
(H2) We claim that yn �= ±1 unless n = 0. To show this, we need to show

that yq ± 1, zq ± 1 /∈ I for any q ≥ 1. This is clear because, e.g., we have
the homomorphism C[x, y, z] → C : 1, x, y, z �→ 1, 0, 2, 1/2 which kills I but
none of yq±1, zq±1 for any q ≥ 1. Thus, if n �= 0, we have that ρ(w) �= ±id.

(H3) Suppose then that n = 0, so that w = amcp. Then the top-right entry is

px(1− y2) +mx. Suppose that this is zero. Upon multiplying by (1− y2),
we find that mx(1 − y2) ∈ I. By (i), we have that m = 0. But then we
find that px(1 − y2) ∈ I and so, again by (i), p = 0. Thus w must be the
identity in this case, and so ρ is faithful.

Finally, we can projectivise and pass to PSL2(R) without losing faithfulness because
the above shows that if the diagonal elements are ever ±1, we must have a non-zero
off-diagonal element.

Next, for the Klein bottle group, we take S to be the ring C[x, y, z]/J where
J := (xy − 1, (x − y)z) and we first define a representation ρ′ : K → SL2(S) as
follows:

a �→
(

x 0
0 y

)
, b �→

(
1 z
0 1

)
.

Again, it is straightforward to verify that this is well-defined. An element of K is a
word w in the letters a, b. Because ab = b−1a, we can commute a and b at the cost
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of altering exponents. Thus one can write w = ambn for some m,n ∈ Z. By direct
computation, one can check that

w = ambn �→
(

xm xmnz
0 ym

)
.

Now we note the following, which shows that ρ′ is faithful:

(K1) We claim that xm �= ±1 unless m = 0. To show this, we need to show
that xq ± 1, yq ± 1 /∈ J for any q ≥ 1. This is clear because, e.g., we
have the homomorphism C[x, y, z] → C : 1, x, y, z �→ 1, 2, 1/2, 0 which kills
J but none of xq ± 1, yq ± 1 for any q ≥ 1. Thus, if m �= 0, we have that
ρ′(w) �= ±id.

(K2) Suppose then that m = 0, so that w = bn. Then the top-right entry
is nz. We claim that this is non-zero unless n = 0. To show this, we
claim that z /∈ J , which follows because, e.g., we have the homomorphism
C[x, y, z] → C : 1, x, y, z �→ 1, 1, 1, 2 which kills J but not z. Thus, if the
image is to be trivial, w must be the identity, and so ρ′ is faithful.

Finally, again, we can projectivise and pass to PSL2(S) without losing faithful-
ness because the above shows that if the diagonal elements are ever ±1, we must
have a non-zero off-diagonal element. �

Note that the combination of (H1) and (H2) in the proof shows that R is not an
integral domain. Similarly, as the homomorphism in (K1) also shows that x−y /∈ J ,
the combination of (K1) and (K2) shows that S is also not an integral domain. In
fact, no such faithful representations H → SL2(R

′) or K → SL2(S
′) exist for any

integral domains R′, S′, or, equivalently, for any fields. To see this, given any field
F, set the following:

DF :=

{(
x 0
0 x−1

) ∣∣∣∣∣ x∈F \ {0}
}
, UF :=

{(
ε x
0 ε

) ∣∣∣∣∣ ε∈{−1, 1} and x ∈ F

}
.

We have the following lemma, which can be proved via straightforward calculations:

Lemma 3.9. Let F be a field. Let A,B ∈ SL2(F) be commuting matrices. Then:

(i) If A ∈ DF with A �= ±id, then B ∈ DF.
(ii) If A ∈ UF with A �= ±id, then B ∈ UF.

Proposition 3.10. Let F be a field and consider representations ρ : H → SL2(F)
and σ : K → SL2(F). If ρ(c) �= ±id, then one of the following occurs:

(i) ρ factors through the abelianisation of H.
(ii) ρ(a) = ±id or ρ(b) = ±id.

Similarly, if σ(b) �= ±id, then one of the following occurs:

(iii) σ factors through the abelianisation of K.
(iv) σ(a2) = ±id.

In particular, H and K do not admit faithful representations into SL2(F) for any
field F.

Proof. Let ρ : H → SL2(F) be a representation with ρ(b) �= ±id and ρ(a), ρ(b) �=
±id. Let F be the algebraic closure of F and then postcompose with the inclusion
SL2(F) → SL2(F). We have some A ∈ SL2(F) such that under the composite

ρ′ : K
ρ−→ SL2(F)

⊆−→ SL2(F)
A(−)A−1

−→ SL2(F)
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we have ρ′(c) ∈ D
F
or ρ′(c) ∈ U

F
. We first consider the case that ρ′(c) ∈ D

F
. Since

in H, c commutes with a and b, it follows from Lemma 3.9 and the assumption
that ρ(c) �= ±id that ρ′(a), ρ′(b) ∈ D

F
. This implies that ρ′ factors through the

abelianisation of H, and, upon inverting the conjugation, it follows that ρ itself then
factors through the abelianisation of H. The case that ρ′(c) ∈ U

F
can be treated in

an analogous manner.
In the case of K, note that a2 and b commute. Let σ : K → SL2(F) be a represen-

tation with σ(b) �= ±id and σ(a2) �= ±id. Again by passing to an algebraic closure
and conjugating, we can assume that σ(b) ∈ D

F
or σ(b) ∈ U

F
and need only con-

sider the first case. It follows from Lemma 3.9 and the assumption that σ(b) �= ±id
that σ(a2) ∈ D

F
. Since σ(a) also commutes with σ(a2) and σ(a2) �= ±id, we have

σ(a) ∈ D
F
. This implies that σ factors through the abelianisation of K. �

3.8. Quaternionic space. This example illustrates the use of Luo’s construction
to obtain positive results using triangulations. Figure 1 below depicts an oriented
triangulation of quaternionic space S3/Q8 from Regina, [3], where it is identified
as “SFS [S2: (2,1) (2,1) (2,-1)]: #1” in “Closed Census (Orientable)”. The orien-
tations on the simplices here are vi → vi+1 and v′i → v′i+1. The action of Q8 on S3

is the natural one after identifying S3 with {(z, w) ∈ C2 | |z|2 + |w|2 = 1} and Q8

with a subgroup of SL2(C) via

1 �→
(

1 0
0 1

)
, i �→

(
i 0
0 −i

)
, j �→

(
0 1

−1 0

)
, k �→

(
0 i
i 0

)
.

The face-pairings, specified via the vertices vi, v
′
i, are as follows: ϕ1 : v0, v1, v2 �→

v′3, v
′
0, v

′
1; ϕ2 : v0, v1, v3 �→ v′1, v

′
2, v

′
0; ϕ3 : v0, v2, v3 �→ v′2, v

′
0, v

′
3; ϕ4 : v1, v2, v3 �→

v′3, v
′
2, v

′
1. From these one can compute the edge cycles, i.e., the cyclic sequences of

edges identified to one another; these are indicated by colour in Figure 1. We search
for solutions to Thurston’s equations by labelling the edges of our triangulation by
arbitrary elements of some ring R as in Figure 1.

v3

r′′

v1

r
v0

r

v2

r′

r′′

r′

v′3

s′′

v′1

s
v′0

s

v′2
s′

s′′

s′

Figure 1. Triangulation of quaternionic space S3/Q8

Following the edge cycles, the gluing equations are then: r2(s′)2 = 1, (r′)2s2 =
1, (r′′)2(s′′)2 = 1. Combining these with the parameter relations, one finds that
the parameter relations together with r2(s′)2 = 1, 2(rs′ − 1) = 0 are necessary and
sufficient conditions on the labels. Thus in the case of a ring in which 2 is not a
zero divisor, we have s′ = r−1, and the following, for r �= 0, 1, are all the solutions
to Thurston’s equations:

(1) (r, r′, r′′, s, s′, s′′) =
(
r,

1

1− r
,
r − 1

r
, 1− r,

1

r
,

r

r − 1

)
.
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Allowing ourselves extra flexibility, there are other possible solutions. For example,
setting R = F4[x]/(x

2), where F4 = {0, 1, a, b} is the field with four elements and
r = a, s′ = b+ x, gives a solution to Thurston’s equations, namely,

(2) (r, r′, r′′, s, s′, s′′) = (a, a, a, b+ bx, b+ x, b+ ax).

Now we compute the associated holonomy representations. First, consider the
generic solution (1) over C, for r = z. As in [10], we first build a corresponding
solution to the homogeneous Thurston equations and then the holonomy representa-
tion ρ, choosing q0 = {{v0, v1}, {v2, v3}} and q′0 = {{v′0, v′1}, {v′2, v′3}} as the initial
normal quadrilaterals and [1, 0]t, [0, 1]t, [1, 1]t as the initial labels for v0, v1, v2. Do-
ing so, we find that the resulting labels for v3, v

′
0, v

′
1, v

′
2, and v′3 are, respectively,

[1, z]t, [0, 1]t, [1, 1]t, [1, z]t, [1, 0]t. The images of the generators ϕ2, ϕ3, ϕ4, or more
precisely the elements of π1(S

3/Q8) ∼= Q8 which they represent, are then as follows:

ρ(ϕ2) =

[
z −1
z −z

]
, ρ(ϕ3) =

[
1 −1
z −1

]
, ρ(ϕ4) =

[
0 1
z 0

]
.

It is clear that ρ(ϕ2), ρ(ϕ3), ρ(ϕ4) are pairwise distinct and one can check that any
two of these (in either order) multiply to give the third. Thus, for any z �= 0, 1, the
image of the holonomy representation is the Klein four group.

Consider now the solution (2) over F4[x]/(x
2). We will see that we can achieve

a larger image by not working over C and using this labelling. Repeating the
above procedure, we find that v0, v1, v2, v3, v

′
0, v

′
1, v

′
2, v

′
3 receive the labels [1, 0]t,

[0, 1]t, [1, 1]t, [1, a]t, [0, 1]t, [1, 1]t, [1, a + bx]t, [1, 0]t, respectively. The associated
holonomy representation ρ′ is generated by

ρ′(ϕ2) =

[
a 1
a a+ bx

]
, ρ′(ϕ3) =

[
1 1

a+ bx 1 + ax

]
, ρ′(ϕ4) =

[
x 1 + x

a+ bx 0

]
.

It can now be checked that

ρ′(ϕ2)
2 = ρ′(ϕ3)

2 = ρ′(ϕ4)
2 =

[
1 bx
x 1

]
,

and if we denote this common square J , that J2 = 1 and ρ′(ϕ2)ρ
′(ϕ3)ρ

′(ϕ4) = J .
It follows that this holonomy representation is faithful with image isomorphic to
Q8, where an explicit isomorphism is given by J, ρ′(ϕ2), ρ

′(ϕ3), ρ
′(ϕ4) �→ −1, i, j, k.

4. A counterexample to Luo’s conjecture

Let M be the (4, 1)-Dehn filling, using the knot theoretic framing, of the figure-8
knot complement. We will show that M is a counterexample to Luo’s conjecture.
In SnapPy [5] one can construct a triangulation of M , and this triangulation can
then be imported into Regina [3]. Regina then gives the following presentation for
Γ = π1(M):

Γ = 〈a, b | a−1b2a−3b2 = 1, ba−2ba−2b3a−2 = 1〉.

We rewrite this presentation by making the substitutions a � b−1, b � a−1 and
set c = b2a−2. This leads to the following presentation:

Γ = 〈a, b, c | ca2 = b2, c−1b = bc, ac−1a−1 = cac〉.
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This can be rewritten as

〈a, b, c | c = b2a−2, 1 = bcb−1c︸ ︷︷ ︸
Klein bottle

,

trefoil complement︷ ︸︸ ︷
a2 = (ac)3 〉,

which highlights the presence of a trefoil knot complement and a Klein bottle. In
fact, M can be constructed as the identification of a trefoil knot complement and
a twisted I-bundle over a Klein bottle. Letting Γ1 = 〈u, v | u3 = v2〉 and Γ2 =
〈j, k | jkj−1k = 1〉, the peripheral subgroups 〈v−1u, u3〉 ∼= Z⊕Z and 〈k, j2〉 ∼= Z⊕Z

are glued via the identifications v−1u ↔ k, u3 ↔ k−1j2.
We return to the second presentation for Γ above and construct the universal

representation of Proposition 2.6. This gives ϕSL2
: Γ → SL2(SSL2

/ISL2
), where

SSL2 = Z[i, j, k, l, p, q, r, s, w, x, y, z],

a �→
(

i j
k l

)
, b �→

(
p q
r s

)
, c �→

(
w x
y z

)
,

and the ideal ISL2
is generated by il − kj − 1, ps − rq − 1, wz − yx − 1, and 12

equations arising from the relations. We find that b4 has image(
(p2 + qr)2 + qr(p+ s)2 q(p+ s)(p2 + 2qr + s2)
r(p+ s)(p2 + 2qr + s2) qr(p+ s)2 + (qr + s2)2

)
=:

(
f1 f2
f3 f4

)
.

It can be verified via SageMath [17] that f1 − 1, f2, f3, f4 − 1 ∈ ISL2
so that

ϕSL2
(b4) = 1 and hence ϕSL2

is not injective. See [6]. Thus b4 is killed in any
representation Γ → SL2(R), Γ is not residually SL2–finite and so, using the argu-
ment of the proof of Proposition 2.9, is also not residually PSL2–finite. Note that
by §3.7, the obstruction here is not produced by the presence of the Klein bottle
subgroup.
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