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Abstract. For each 1 < p < ∞, the optimal extension of the classical Hardy
operator from Lp(R+) into itself has been identified by Delgado and Soria.
By relaxing the target space to be Lp

loc(R
+) we determine the optimal Hardy

operator which maps into this target space.

1. Introduction and summary of results

Let f ∈ L1
loc(R

+) with R+ := [0,∞). The Cesàro average of f is the function
Cf ∈ L0(R+) defined by

(1.1) Cf : x �→ 1

x

∫ x

0

f(y) dy, x ∈ (0,∞),

where L0(R+) is the space of all C-valued, measurable functions defined on R+.
For some authors the linear map C : f �→ Cf is called the (infinite range) Cesàro
operator, [7], [8], [21], and for others it is called the Hardy operator, [6], [14], [16].
Evidently C is an integral operator with kernel K(x, y) := 1

xχ(0,x]
(y) on R+ ×R+.

The boundedness of the operator C : Lp(R+) → Lp(R+), for 1 < p < ∞, denoted
by Cp for the sake of clarity, is due to G. H. Hardy, [17, p. 240], who showed that its
operator norm is ‖Cp‖op = p′, where 1

p +
1
p′ = 1. Considering Cp as an operator on

the (complex) Banach function space (briefly, B.f.s.) Lp(R+), it is clear from (1.1)
that Cp is a positive operator, i.e., Cpf ≥ 0 for every function 0 ≤ f ∈ Lp(R+).
The spectrum σ(Cp) and the point spectrum σpt(Cp) of Cp are known, [7, Theorem
2], [8], [21, p. 28]; namely,

(1.2) σ(Cp) =
{
λ ∈ C : |λ− p′

2
| = p′

2

}
and σpt(Cp) = ∅.

At the level of individual functions we see that C : L1
loc(R

+) → L0(R+). Fixing
the target space to be the B.f.s. Lp(R+) ⊆ L0(R+), 1 < p < ∞, Hardy’s inequality
shows that C maps Lp(R+) ⊆ L1

loc(R
+) continuously into this target space. Recall-

ing that Lp(R+) has order continuous norm, briefly o.c.-norm (i.e., order bounded,
increasing sequences of R-valued functions in Lp(R+) are norm convergent), one
may ask if there exists a largest B.f.s. (with o.c.-norm) inside L1

loc(R
+) which con-

tains Lp(R+) and which C maps continuously into the target space Lp(R+). Clearly
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this is the B.f.s.

(1.3) [Cp, L
p(R+)] :=

{
f ∈ L1

loc(R
+) : C|f | ∈ Lp(R+)

}
,

equipped with the norm ‖f‖ := ‖C|f |‖Lp(R+). An alternate description of this
largest (or optimal) domain space is presented in [14, Proposition 3.4 & Example
3.5]. Since the appearance of [14], several authors have made a detailed analysis
of the spaces (1.3) and exposed many of their Banach space properties; see, for
example, [2], [3], [4], [19], [22], [23] and the references therein.

This note is inspired by an alternate description of the space (1.3) which is also
presented in [14, §3]. Considering the δ-ring of sets

R := {A ∈ B(R+) : μ(A) < ∞ and ∃ ε > 0 with μ(A ∩ [0, ε]) = 0},
where B(R+) is the σ-algebra of Borel subsets of R+ and μ is Lebesgue measure, it
is shown that the finitely additive set function

νp : A �→ CpχA
, A ∈ R,

is actually σ-additive on R, i.e., νp is an Lp(R+)-valued vector measure on R. Via
the theory of vector measures defined on δ-rings (see [12], [13], [25], [26], [27], and
the references therein) it is shown that there is a B.f.s. L1(νp), consisting of all the
νp-integrable functions, having o.c.-norm in which the R-simple functions are dense
and such that Lp(R+) ⊆ L1(νp) with a continuous inclusion, [14, Proposition 2.3
& Example 3.5]. Moreover, the associated integration map Iνp

: L1(νp) → Lp(R+),

given by Iνp
(f) :=

∫
R+ f dνp, for f ∈ L1(νp), is linear, continuous and provides an

integral representation of Cp; namely,

(1.4) Iνp
(f) = Cpf =

∫
R+

fdνp, f ∈ Lp(R+) ⊆ L1(νp),

i.e., Iνp
is an Lp(R+)-valued, linear extension of Cp, [13, Corollary 2.4]. Moreover,

L1(νp) is optimal with these properties. So,

(1.5) L1(νp) = [Cp, L
p(R+)],

[14, Example 3.5]. According to [14, Proposition 2.3], the containment Lp(R+) ⊆
L1(νp), 1 < p < ∞, is proper, i.e., Iνp

genuinely extends Cp.
The above description of the optimal domain [Cp, L

p(R+)] for Cp via the vector
measure νp defined on the δ-ring R is forced by the fact that there exist sets
A ∈ B(R+) for which χ

A
/∈ Lp(R+), and so Cp does not act on χ

A
. However,

since χ
A
∈ L1

loc(R
+), the function Cχ

A
is surely well defined via (1.1) and belongs

to L0(R+); actually, it clearly belongs to L∞(R+) for every A ∈ B(R+). Since
integration with respect to vector measures defined over the more traditional class of
σ-algebras is better understood and has significant advantages to the more intricate
and involved theory based on δ-rings, it seems that a consideration of the Fréchet
function space (briefly, F.f.s.) Lp

loc(R
+) ⊆ L0(R+) as the target space for C (instead

of the B.f.s. Lp(R+)) is worthwhile and not without interest. Recall that Lp
loc(R

+),
1 < p < ∞, is the F.f.s. consisting of all functions f ∈ L0(R+) satisfying

(1.6) qj(f) :=
(∫ j

0

|f(x)|p dx
)1/p

< ∞ ∀j ∈ N,

and is endowed with the metrizable, locally convex topology generated by the fun-
damental, increasing sequence of seminorms {qj}∞j=1. It is important to note that
each qj , for j ∈ N, is a Riesz seminorm, meaning that qj(f) ≤ qj(g) whenever
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f, g ∈ Lp
loc(R

+) satisfy |f | ≤ |g| on R+ (pointwise μ-a.e.), and that Lp
loc(R

+) is an
ideal of functions in L0(R+), i.e., f ∈ L0(R+) and g ∈ Lp

loc(R
+) with |f | ≤ |g|

implies that f ∈ Lp
loc(R

+). By the definition of the seminorms (1.6) and Hardy’s
inequality, [17, p. 240], the positive linear operator C : L1

loc(R
+) → L0(R+) maps

the F.f.s. Lp
loc(R

+), 1 < p < ∞, continuously into itself; this operator will be
denoted by C[p]. An important feature is that the F.f.s. Lp

loc(R
+) has a Lebesgue

topology (i.e., sequences of [0,∞)-valued functions in Lp
loc(R

+) which decrease to
0 μ-a.e. are convergent to 0 in the topology of Lp

loc(R
+)). One may again ask: Is

there an optimal domain space for C[p] lying within L1
loc(R

+), having a Lebesgue
topology and containing Lp

loc(R
+), to which C[p] : Lp

loc(R
+) → Lp

loc(R
+) has a

linear, continuous, Lp
loc(R

+)-valued extension?
For Banach function spaces and vector measures defined on σ-algebras an ex-

isting theory is available; see [9], [30], and the references therein. This theory has
recently been extended to the setting of Fréchet function spaces, [5], which we will
make use of in determining the optimal extension of C[p] : L

p
loc(R

+) → Lp
loc(R

+),

1 < p < ∞. A relevant aspect is that the spectrum of C[p] (acting in Lp
loc(R

+)) is

significantly different from that of Cp (acting in Lp(R+)); see (1.2). Namely,

(1.7) σpt(C[p]) =
{
λ ∈ C : |λ− p′

2
| < p′

2

}
and σ(C[p]) = σpt(C[p]),

[1, Theorem 4.2]. This will generate some new features.
Let us summarize our main results. For fixed 1 < p < ∞, define

(1.8)
[
C[p], L

p
loc(R

+)
]
:=

{
f ∈ L1

loc(R
+) : C|f | ∈ Lp

loc(R
+)

}
.

It turns out that the set function mp : B(R+) → Lp
loc(R

+) given by

(1.9) mp(A) := Cχ
A
, A ∈ B(R+),

is a σ-additive vector measure on the σ-algebra B(R+); see the discussion prior to
and after Proposition 3.1. Associated with mp is its space L1(mp) of all mp-
integrable functions; it is an F.f.s. only (in particular, f ∈ L1(mp) whenever
f ∈ L0(R+) and 0 ≤ g ∈ L1(mp) satisfy |f | ≤ g) with a Lebesgue topology and con-
tains Lp

loc(R
+) continuously. Moreover, the integration operator Imp

: L1(mp) →
Lp
loc(R

+) given by

(1.10) Imp
(f) :=

∫
R+

f dmp, f ∈ L1(mp),

is linear, continuous and an extension of C[p] from Lp
loc(R

+) to L1(mp), which

provides an integral representation of C[p]. In fact, L1(mp) is the largest F.f.s. over

(R+,B(R+), μ) with a Lebesgue topology and containing Lp
loc(R

+) to which C[p]

has a continuous, Lp
loc(R

+)-valued, linear extension (namely, Imp
). In addition, it

turns out that

(1.11) L1(mp) =
[
C[p], L

p
loc(R

+)
]

and that

(1.12) Imp
(f) = Cf, f ∈ L1(mp);

see Theorem 3.3. Moreover, both the containments

(1.13) Lp
loc(R

+) ⊆ L1(mp) ⊆ L1
loc(R

+)
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hold (cf. Corollary 3.4) and are proper and continuous; see Corollary 3.7 and Propo-
sition 3.8. In view of (1.3), (1.5) and the containment Lp(R+) ⊆ Lp

loc(R
+) we have

(1.14) L1(νp) ⊆ L1(mp).

It is also the case (see Corollary 3.5) that

Imp
(f) = Iνp

(f), f ∈ L1(νp).

In particular, Iνp
(f) = Cf , for f ∈ L1(νp), which extends (1.4). Moreover, the

containment (1.14) is proper ; see the discussion after Proposition 3.8. A curious
feature is that L1(νp) � Lp

loc(R
+) and conversely, that Lp

loc(R
+) � L1(νp). The

second containment in (1.13), valid for each p ∈ (1,∞), is actually stronger; namely,⋃
1<p<∞

L1(mp) � L1
loc(R

+);

see Corollary 3.7. This is a consequence of (1.7), which implies that L1(mp) �
L1(mq) whenever 1 < q < p < ∞; see Proposition 3.6.

2. Integral extension of the Hardy operator Cp

In addition to R there are two further δ-rings which are natural candidates for
generating an integral representation for Cp : Lp(R+) −→ Lp(R+). Indeed, consider
the δ-ring of sets Rf := {A ∈ B(R+) : μ(A) < ∞}, in which case R � Rf and

(2.1)
{
χ
A
: A ∈ Rf

}
⊆ L1(νp), p ∈ (1,∞).

To see this note that if A ∈ Rf , then χ
A
∈ Lp(R+) and hence, also CpχA

∈ Lp(R+).

According to (1.3) and (1.5) it follows that χ
A

∈ L1(νp). This establishes (2.1).

Clearly, the finitely additive set function ν̃p : Rf → Lp(R+) defined by

(2.2) ν̃p(A) := Iνp
(χ

A
), A ∈ Rf ,

agrees with νp on R ⊆ Rf . The following fact is recorded in [14, Remark 3.3]; we
include a proof for the sake of completeness.

Proposition 2.1. For each 1 < p < ∞, the set function ν̃p : Rf → Lp(R+) is
σ-additive.

Proof. Let {A(n)}∞n=1 ⊆ Rf be pairwise disjoint sets with
⋃∞

n=1 A(n) =: A ∈ Rf .

Then χ
A\

⋃n
i=1 A(i)

↓ 0 νp-a.e. Since L1(νp) has o.c.-norm, [12, Section 2], it follows

that χ⋃n
i=1 A(i)

→ χ
A

in L1(νp) for n → ∞. By continuity of the integration

operator Iνp
: L1(νp) → Lp(R+), [12, p. 434], the limit

lim
n→∞

n∑
k=1

ν̃p(A(k)) = lim
n→∞

Iνp

(
χ⋃n

i=1 A(i)

)
= Iνp

(χ
A
) = ν̃p(A),

exists in the norm of Lp(R+) and equals
∑∞

k=1 ν̃p(A(k)). �

Another natural δ-ring to consider is Rb := {A ∈ B(R+) : A is bounded
in R+}. Note that R � Rb and Rb � R. Given any δ-ring S ⊆ B(R+), let Sloc

denote the σ-algebra of all sets A ∈ B(R+) such that A∩B ∈ S for every B ∈ S. Ob-
serve that Rloc = (Rb)

loc = (Rf )
loc = B(R+), even though R � Rf and Rb � Rf .

Since R ⊆ Rf and Rloc = (Rf )
loc, it is clear from [12, p. 433] that the variation

measure |〈νp, g〉| (resp., |〈ν̃p, g〉|) of each scalar measure 〈νp, g〉 : A �→ 〈νp(A), g〉,
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A ∈ R (resp., 〈ν̃p, g〉 : A �→ 〈ν̃p(A), g〉, A ∈ Rf ), for each g in the dual Banach

space (Lp(R+))∗ = Lp′
(R+), satisfies

(2.3) |〈νp, g〉|(A) ≤ |〈ν̃p, g〉|(A), A ∈ B(R+).

Recall that

L1
w(νp) :=

{
f ∈ L0(R+) :

∫
R+

|f | d|〈νp, g〉| < ∞ ∀g ∈ Lp′
(R+)

}
,

with L1
w(ν̃p) defined similarly, [12, p. 434]. Moreover, for f ∈ L1

w(νp) (resp., f ∈
L1
w(ν̃p)) its norm is defined by

(2.4) ‖f‖L1
w(νp) := sup

{∫
R+

|f | d|〈νp, g〉| : ‖g‖Lp′ (R+) ≤ 1
}
,

respectively, by

(2.5) ‖f‖L1
w(ν̃p) := sup

{∫
R+

|f | d|〈ν̃p, g〉| : ‖g‖Lp′ (R+) ≤ 1
}
.

Since the reflexive Banach space Lp(R+) contains no isomorphic copy of c0, it is
known that L1(νp) = L1

w(νp) and that L1(ν̃p) = L1
w(ν̃p), with the norms in L1(νp)

and L1(ν̃p) given by (2.4) and (2.5), respectively, [25, Theorem 5.1]. In view of (2.3)
it is then clear that L1(ν̃p) ⊆ L1(νp) with ‖f‖L1(νp) ≤ ‖f‖L1(ν̃p), for f ∈ L1(ν̃p).

Recall if ϕ =
∑n

i=1 aiχA(i)
is an R-simple function (resp., Rf -simple function),

then ϕ ∈ L1(νp) (resp., ϕ ∈ L1(ν̃p)) with
∫
A
ϕ dνp :=

∑n
i=1 aiνp(A ∩ A(i)) (resp.,∫

A
ϕ dν̃p :=

∑n
i=1 aiν̃p(A ∩ A(i))), for each A ∈ Rloc = B(R+) (resp., each A ∈

(Rf )
loc = B(R+)), [12, p. 434]. In particular, if ϕ is R-simple, then it is also Rf -

simple and
∫
A
ϕ dνp =

∫
A
ϕ dν̃p, for A ∈ B(R+). Now, let f ∈ L1(νp). According

to [12, Proposition 2.3] there is a sequence {ϕn}∞n=1 of R-simple functions such
that ϕn → f (μ-a.e.) on R+ and {

∫
A
ϕn dνp}∞n=1 converges in Lp(R+), for each

A ∈ Rloc. Then {ϕn}∞n=1 is also a sequence of Rf -simple functions and, via (2.2)
and the previous comments, satisfies

∫
A
ϕn dνp =

∫
A
ϕn dν̃p, for all n ∈ N and all

A ∈ Rloc = (Rf )
loc. In particular, {

∫
A
ϕn dν̃p}∞n=1 converges in Lp(R+), for each

A ∈ (Rf )
loc. Applying Proposition 2.3 of [12] to ν̃p : Rf → Lp(R+) it follows that

f ∈ L1(ν̃p). Hence, L1(νp) ⊆ L1(ν̃p). So, we have established the following fact
which shows that no extra ν̃p-integrable functions are generated. Of course, ν̃p is
just νp but considered as being defined on the larger δ-ring Rf � R.

Proposition 2.2. For each 1 < p < ∞, we have

L1(νp) = L1(ν̃p) = [Cp, L
p(R+)].

Let us return to the δ-ring Rb. Since Rb ⊆ Rf , Proposition 2.1 implies that
ν̂p : Rb → Lp(R+) defined by

ν̂p(A) := Iνp
(χ

A
), A ∈ Rb,

is σ-additive and agrees with ν̃p restricted to Rb ⊆ Rf . This also follows from
Proposition 3.1(a) of [13] because the (non-negative) Hardy kernel K(x, y) :=
1
xχ(0,x]

(y) on R+×R+ is admissible in the sense of [13, Section 3], i.e.,
∫
A
K(x, y) dy

< ∞ for each x ∈ (0,∞) and A ∈ Rb. As already noted, (Rb)
loc = (Rf )

loc even
though Rb � Rf . The same argument used to prove Proposition 2.2 can also be
applied to the pair of vector measures ν̂p : Rb → Lp(R+) and ν̃p : Rf → Lp(R+)
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(in place of the pair νp : R → Lp(R+) and ν̃p : Rf → Lp(R+)) to establish the
following result.

Proposition 2.3. For each 1 < p < ∞, we have

L1(ν̂p) = L1(ν̃p) = [Cp, L
p(R+)].

It is immediate from Propositions 2.2 and 2.3 that

(2.6) L1(νp) = L1(ν̂p) = L1(ν̃p) = [Cp, L
p(R+)], 1 < p < ∞.

A pleasant consequence of (2.6) is that the “same” vector measure A �−→ CpχA
,

when interpreted to be defined on any one of the three distinct δ-rings R,Rb,Rf ,
generates in each case the same optimal domain space [Cp, L

p(R+)] and the same
integral representation of Cp. It is also worth noting that ν̃p cannot be extended to
an Lp(R+)-valued vector measure defined on the σ-algebra B(R+). Indeed, since
0 ≤ χ

[0,a]
≤ Cpχ[0,a]

we have

‖ν̃p([0, a])‖Lp(R+) = ‖Cpχ[0,a]
‖Lp(R+) ≥ ‖χ

[0,a]
‖Lp(R+) = a1/p ∀ a > 0.

Hence, the range ν̃p(Rf ) of ν̃p is an unbounded subset of Lp(R+). Since the range
of every σ-additive, Banach-space-valued vector measure defined on a σ-algebra is
a bounded set, [15, p. 14 Corollary 7], it follows that ν̃p does not have a σ-additive
extension to B(R+).

3. Optimal extension of the Hardy operator C[p]

With the choice of the B.f.s. Lp(R+) ⊆ L0(R+) as the target space for C :
L1
loc(R

+) → L0(R+) it is not possible to exhibit an integral representation for Cp :
Lp(R+) → Lp(R+) via an Lp(R+)-valued vector measure based on the σ-algebra
B(R+) = Rloc = (Rf )

loc. However, if the F.f.s. Lp
loc(R

+), 1 < p < ∞, is taken
as the target space for C : L1

loc(R
+) → L0(R+), then this phenomenon disappears.

In order to investigate this situation we summarize some relevant aspects from the
theory of integration with respect to Fréchet-space-valued vector measures defined
on σ-algebras.

Let X be a (complex) locally convex Fréchet space with {qn}∞n=1 a fundamen-
tal (i.e.,

⋂∞
n=1 q

−1
n ({0}) = {0}), increasing sequence of seminorms generating the

locally convex topology of X. The topological dual space of X, consisting of all
continuous linear functionals on X, is denoted by X∗. Let m : Σ → X be a vector
measure defined on a σ-algebra of subsets Σ of a non-empty set Ω; this will always
mean that m is σ-additive on Σ. For each n ∈ N, the qn-semivariation of m is the
subadditive set function qn(m) : Σ → [0,∞) defined by

qn(m)(A) := sup
x∗∈U◦

qn

|〈m,x∗〉|(A), A ∈ Σ,

where |〈m,x∗〉| is the variation measure of the complex measure 〈m,x∗〉 : A �→
〈m(A), x∗〉, A ∈ Σ, for each x∗ ∈ X∗, and U◦

qn := {x∗ ∈ X∗ : |〈x, x∗〉| ≤ 1 for

all x ∈ Uq} is the polar set of Uqn := q−1
n ([0, 1]). A set A ∈ Σ is called m-null if

qn(m)(A) = 0, for all n ∈ N.
A C-valued, Σ-measurable function f on Ω is called m-integrable if
(I-1)

∫
Ω
|f | d|〈m,x∗〉| < ∞, for all x∗ ∈ X∗, and
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(I-2) for each A ∈ Σ there exists a vector
∫
A
f dm ∈ X satisfying〈∫

A

f dm, x∗
〉
=

∫
A

f d〈m,x∗〉, x∗ ∈ X∗;

see [20], [24]. If f only satisfies (I-1), then it is called scalarly m-integrable. Two
Σ-measurable functions are identified if they are equal m-a.e. The space L1

w(m)
of all (classes of) scalarly m-integrable functions becomes an F.f.s. when equipped
with the sequence of Riesz seminorms

q̃n(f) := sup
x∗∈U◦

qn

∫
Ω

|f | d|〈m,x∗〉|, f ∈ L1
w(m) ∀ n ∈ N.

It turns out that the space L1(m) consisting of all m-integrable functions is a closed
subspace of L1

w(m), is itself an F.f.s. and contains the space simΣ of all Σ-simple
functions as a dense subspace. As standard references we refer to [10], [20], when X
is a real Fréchet space (with all Σ-measurable functions in L0(Σ) being R-valued)
and to [18] for Fréchet spaces over C. If X does not contain an isomorphic copy of
the Banach sequence space c0, then necessarily L1

w(m) = L1(m), [25, Theorem 5.1].
Moreover, L1(m) always has a Lebesgue topology; this follows from [18, Proposition
1(iv)]. The integration operator Im : L1(m) → X, defined by

Im(f) :=

∫
Ω

f dm, f ∈ L1(m),

is always linear and continuous. This follows from the inequalities

sup
A∈Σ

qn

(∫
A

f dm
)
≤ q̃n(f) ≤ 4 sup

A∈Σ
qn

(∫
A

f dm
)
, f ∈ L1(m),

valid for each n ∈ N, [24].
Let (Ω,Σ, μ) be a positive, σ-finite measure space and let X(μ) be an F.f.s.

over (Ω,Σ, μ); for the definition see, for example, [10], [11], when X(μ) is a real
space, and [5, Section 2.3] for X(μ) a complex space. Given a Fréchet space X,
an F.f.s. X(μ) containing simΣ, and a continuous linear operator T : X(μ) → X,
the finitely additive set function mT : Σ → X defined by mT (A) := T (χ

A
), for

A ∈ Σ, is called the vector measure associated with T ; it is necessarily σ-additive
if X(μ) has a Lebesgue topology. Whenever mT is σ-additive the operator T is
called μ-determined if mT and μ have the same null sets. The following Optimal
Domain Theorem occurs in [5, Theorem 3.3.1]. For X(μ) a B.f.s. over a finite,
positive measure space and X a Banach space, this result first occurred in [9]; see
also [30, Ch.4].

Proposition 3.1. Let (Ω,Σ, μ) be a positive, σ-finite measure space. Let X be
a Fréchet space, X(μ) be an F.f.s. over (Ω,Σ, μ) with a Lebesgue topology such
that simΣ ⊆ X(μ) and let T : X(μ) → X be a μ-determined, continuous linear
operator. Then L1(mT ) is the largest amongst all F.f.s.’ over (Ω,Σ, μ) having a
Lebesgue topology into which X(μ) is continuously included and to which T admits
an X-valued, continuous linear extension. Moreover, such an extension of T is
unique and is precisely the integration operator ImT

: L1(mT ) → X, i.e.,

ImT
(f) = T (f) =

∫
Ω

fdmT , f ∈ X(μ).



4700 W. J. RICKER

We will require the above notions and facts for the particular setting of the
σ-finite measure space (R+,B(R+), μ) with X = X(μ) = Lp

loc(R
+), for any fixed

1 < p < ∞, and with T : X(μ) → X being the Hardy operator C[p]. The asso-

ciated measure mT is then precisely mp : B(R+) → Lp
loc(R

+); see (1.9). Clearly,
simB(R+) ⊆ X(μ). Since each B.f.s. Lp([0, j]), for j ∈ N, has o.c.-norm, it is routine
to verify that X(μ) has a Lebesgue topology, [5, Example 2.3.2(iv)]. Consequently,
mp is σ-additive. It only remains to check that mp and μ have the same null sets.
This was already implicitly assumed to be so for νp and μ; it is stated to be the
case on p. 126 of [14] but, without a proof. It is clear from (1.1), with f = χ

A
, that

μ(A) = 0 implies Cχ
B
= 0 in L0(R+) for every B ∈ B(R+) with B ⊆ A and hence,

that A is both νp-null and mp-null. Conversely, suppose that A ∈ Rloc = B(R+)
is νp-null (see [12, p. 433] for the definition) or mp-null. Then, in both cases,
Cχ

A
= 0 (in L0(R+)) which implies, via Lemma 3.2 below, that the continuous

function Cχ
A
: (0,∞) → [0,∞) is identically 0 on (0,∞). So,

∫ x

0
χ
A
(t) dt = 0 for

every x > 0, with 0 ≤ χ
A
∈ L∞(R+), which implies that μ(A) = 0. Hence, both

C[p] and Cp are μ-determined.

Lemma 3.2. Let f ∈ L1
loc(R

+). Then the function Cf : (0,∞) → C defined via
(1.1) is continuous.

Proof. As x �→ 1
x is continuous, it suffices to show that h(x) :=

∫ x

0
f(t) dt is

continuous on (0,∞); see (1.1). Fix x > 0. If xn → x− in [0, x), then

|h(x)− h(xn)| =
∣∣∣ ∫ x

xn

f(t) dt
∣∣∣ ≤ ∫ x

0

χ
[xn,x]

(t)|f(t)| dt.

But, χ
[xn,x]

|f | → 0 pointwise μ-a.e. on [0, x] with χ
[xn,x]

|f | ≤ |f | and |f | ∈
L1([0, x]). Then the dominated convergence theorem yields that limn→∞ h(xn) =
h(x), i.e., h is left-continuous at x. A similar argument shows that h is also right-
continuous at x. �

Fix 1 < p < ∞. Then Lp(R+) is a dense subspace of Lp
loc(R

+) and the natural
inclusion Lp(R+) ⊆ Lp

loc(R
+) is continuous with

qj(f) ≤ ‖f‖Lp(R+), f ∈ Lp(R+) ∀ j ∈ N.

As a general reference for (locally convex) Fréchet spaces we refer to [28], for exam-
ple. Since {qj}∞j=1 (cf. (1.6)) is a fundamental, increasing sequence of seminorms

generating the locally convex topology of the Fréchet space Lp
loc(R

+), it follows
from [28, Corollary 22.7] that every element of (Lp

loc(R
+))∗ has the form

f �→ 〈f, ξ〉 :=
∫
R+

f(t)ξ(t) dt, f ∈ Lp
loc(R

+),

for some unique, compactly supported function ξ ∈ Lp′
(R+), [5, Example 2.3.2(i)].

It follows from (1.1) and this description of (Lp
loc(R

+))∗ ⊆ L0(R+) that the dual
operator C∗

[p] : (L
p
loc(R

+))∗ → (Lp
loc(R

+))∗ is given by

(3.1)
(
C∗

[p]ξ
)
(x) =

∫ ∞

x

ξ(t)

t
dt, x ∈ (0,∞), ξ ∈ (Lp

loc(R
+))∗.
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Suppose supp(ξ) ⊆ [0, j] for some j ∈ N. Clearly, supp(C∗
[p]ξ) ⊆ [0, j]; see (3.1). It

follows from (3.1) that the complex measure 〈mp, ξ〉 is given by

〈mp, ξ〉(A) =

∫
A∩[0,j]

(∫ ∞

x

ξ(t)

t
dt
)
dx, A ∈ B(R+).

Hence, 〈mp, ξ〉 has its support in [0, j], is absolutely continuous with respect to μ
and its variation measure |〈mp, ξ〉| has Radon-Nikodỳm derivative

d|〈mp, ξ〉|
dμ

(x) = χ
[0,j]

(x)
∣∣∣ ∫ ∞

x

ξ(t)

t
dt
∣∣∣, x ∈ R+.

In view of Proposition 3.1 and the discussion immediately afterwards, the following
optimality result for the Hardy operator C[p] : L

p
loc(R

+) → Lp
loc(R

+) is the main
result of this section.

Theorem 3.3. Let 1 < p < ∞. Then (1.11) is valid, that is,

L1(mp) = [C[p], L
p
loc(R

+)].

Moreover, the optimal extension (see (1.10)) Imp
: L1(mp) → Lp

loc(R
+) of C[p] is

given by (1.12); namely,

Imp
(f) = Cf =

∫
R+

fdmp, f ∈ L1(mp).

Proof. We first prove (1.12). If s =
∑n

j=1 αjχA(j)
∈ simB(R+), then

(3.2) Imp
(s) =

n∑
j=1

αjImp

(
χ
A(j)

)
=

n∑
j=1

αjCχ
A(j)

= Cs.

Claim. If 0 ≤ f ∈ L1(mp), then f ∈ L1
loc(R

+) and Imp
(f) = Cf .

To establish the Claim, choose B(R+)-simple functions 0 ≤ sn ↑ f pointwise
on R+. Using the identity (3.2) and the dominated convergence theorem for mp,
[24, Theorem 2.2], we have (in the topology of Lp

loc(R
+)) that

Imp
(f) = lim

n→∞
Imp

(sn) = lim
n→∞

Csn.

Choose a subsequence {Csn(k)}∞k=1 of {Csn}∞n=1 such that Csn(k) → Imp
(f) point-

wise μ-a.e. on R+, for k → ∞. Since Imp
(f) ∈ Lp

loc(R
+), necessarily |Imp

(f)(x)| <
∞ (μ-a.e.). On the other hand, the monotone convergence theorem implies, for
each fixed x > 0, that

lim
k→∞

(Csn(k))(x) =
1

x
lim
k→∞

∫ x

0

sn(k)(t) dt =
1

x

∫ x

0

f(t) dt.

Accordingly, for μ-a.e. x ∈ R+, we see that 1
x

∫ x

0
f(t) dt is finite as it coincides with

Imp
(f)(x). Choose a sequence xr ↑ ∞ in R+ for which

∫ xr

0
f(t) dt is finite for each

r ∈ N (and recall that f ≥ 0) implies that f ∈ L1
loc(R

+) and, from the previous
discussion, that Cf = Imp

(f) as elements of Lp
loc(R

+). This establishes the Claim.

Since C is linear on L1
loc(R) and Imp

is linear on L1(mp) and each f ∈ L1(mp)

has a decomposition as a sum of four non-negative functions from L1(mp), we can
conclude that (1.12) actually holds for all f ∈ L1(mp).

Concerning (1.11), let f ∈ L1(mp). Then also |f | ∈ L1(mp) and hence, by the
above Claim we conclude that C|f | = Imp

(|f |) ∈ Lp
loc(R

+) with |f | ∈ L1
loc(R

+).
According to (1.8) we see that f ∈ [C[p], L

p
loc(R

+)].
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Conversely, let f ∈ L1
loc(R

+) satisfy C|f | ∈ Lp
loc(R

+). Choose a sequence
{tn}∞n=1 ⊆ simB(R+) with 0 ≤ tn ↑ |f | pointwise on R+. Fix A ∈ B(R+). For
each x > 0, it follows from (1.1) that

∣∣(C(|f |χ
A
)
)
(x)−

(
C(tnχA

)
)
(x)

∣∣ ≤ 1

x

∫ x

0

(|f |(u)− tn(u)) du.

Since 0 ≤ tn ≤ |f | with tn → |f | pointwise on [0, x] and the restriction |f |[0,x] ∈
L1([0, x]), the dominated convergence theorem yields that limn→∞(C(tnχA

))(x) =

(C(|f |χ
A
))(x). Hence, C(tnχA

) → C(|f |χ
A
) pointwise on R+ as n → ∞. Moreover,∣∣C(|f |χ

A
)− C(χ

A
tn)

∣∣ ≤ C(|f |χ
A
) + C(χ

A
tn) ≤ 2C|f |, n ∈ N,

shows that |C(|f |χ
A
) − C(χ

A
tn)|p ≤ 2p(C|f |)p on R+, for all n ∈ N. But,

C|f | ∈ Lp
loc(R

+) and so 2p(C|f |p) ∈ L1([0, j]), for each j ∈ N. Since |C(|f |χ
A
) −

C(χ
A
tn)|p → 0 pointwise on R+ for n → ∞, the dominated convergence theorem

yields

lim
n→∞

∫ j

0

|C(|f |χ
A
)− C(χ

A
tn)|p dμ = 0, j ∈ N,

that is, limn→∞ qj(C(|f |χ
A
)−C(χ

A
tn)) = 0 for all j ∈ N. This implies (see (3.2))

that {Imp
(χ

A
tn)}∞n=1 = {C(χ

A
tn)}∞n=1 is a convergent sequence in Lp

loc(R
+). But,

A ∈ B(R+) is arbitrary and so |f | ∈ L1(mp), [24, Theorem 2.4(3)]. Then, also
f ∈ L1(mp). Thereby (1.11) is verified. �

Corollary 3.4. Let 1 < p < ∞. Then

(3.3) Lp
loc(R

+) ⊆ L1(mp) ⊆ L1
loc(R

+).

Proof. The first inclusion in (3.3) follows from X(μ) ⊆ L1(mT ); see Proposition 3.1
when applied to the operator T := C[p] with X(μ) = X = Lp

loc(R
+). The second

inclusion in (3.3) follows via the Claim in the proof of Theorem 3.3 (as f ∈ L1(mp)
if and only if 0 ≤ |f | ∈ L1(mp)). �

Corollary 3.5. Let 1 < p < ∞. Then (1.14) is valid, that is,

(3.4) L1(νp) ⊆ L1(mp).

Moreover,

(3.5) Iνp
(f) = Imp

(f) = Cf, f ∈ L1(νp),

with Imp
(f) ∈ Lp(R+) ⊆ Lp

loc(R
+).

Proof. Let f ∈ L1(νp) = [Cp, L
p(R+)], [14, Example 3.5], in which case C|f | ∈

Lp(R+); see (1.13). Since Lp(R+) ⊆ Lp
loc(R

+), we also have C|f | ∈ Lp
loc(R

+) and
so, by (1.11) and (1.12), it follows that f ∈ L1(mp) and Imp

(f) = Cf . This
establishes (3.4).

It remains to show that Iνp
(f) = Imp

(f) whenever f ∈ L1(νp). According to the
discussion immediately prior to Proposition 2.2 there exists a sequence {ϕn}∞n=1 of
R-simple functions such that ϕn → f pointwise μ-a.e. on R+ and {

∫
A
ϕn dνp}∞n=1

converges in Lp(R+), for each A ∈ Rloc = B(R+). But, Lp(R+) ⊆ Lp
loc(R

+) con-
tinuously and so {

∫
A
ϕn dνp}∞n=1 converges in Lp

loc(R
+), for all A ∈ B(R+). Via
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the definition of
∫
A
ϕn dνp (see again the discussion immediately prior to Proposi-

tion 2.2) it is clear that
∫
A
ϕ dνp =

∫
A
ϕn dmp, for n ∈ N. Hence, {

∫
A
ϕn dmp}∞n=1

converges in Lp
loc(R

+), for each A ∈ B(R+). It follows that f ∈ L1(mp) and

Imp
(f) = lim

n→∞

∫
R+

ϕn dmp = lim
n→∞

∫
R+

ϕn dνp = Iνp
(f) ∈ Lp(R+),

[24, Theorem 2.4(3)], with both limits existing in Lp(R+) ⊆ Lp
loc(R

+). This estab-
lishes (3.5). �

It is time to analyze (1.7). Fix 1 < p < ∞. Then λ ∈ C satisfies |λ − p′

2 | <
p′

2

(i.e., Re( 1λ ) >
1
p′ =

(p−1)
p ) precisely when λ ∈ σpt(C[p]) with

fλ(x) := x
1
λ−1, x ∈ R+,

being an eigenfunction of λ (and belonging to Lp
loc(R

+)), [1, Section 4]. Suppose now
that 1 < q < p, in which case 1 < p′ < q′ < ∞. Choose any real number α ∈ (p′, q′),
i.e., 1

q′ < Re( 1
α ) <

1
p′ . Then (1.7) implies that α ∈ σpt(C[q]) \ σpt(C[p]) with fα ∈

Lq
loc(R

+)\Lp
loc(R

+) satisfying Cfα = αfα. Hence, also Cfα ∈ Lq
loc(R

+)\Lp
loc(R

+).
It follows from (1.11) that fα ∈ L1(mq) \ L1(mp). Moreover, L1(mp) ⊆ L1(mq) is
clear from (1.8), (1.11) and the inclusion Lp

loc(R
+) ⊆ Lq

loc(R
+). Noting that

‖h‖Lq([0,j]) ≤ js‖h‖Lp([0,j]), h ∈ Lp([0, j]) ∀ j ∈ N,

with s = 1
q −

1
p , it follows via the definition of the seminorms q̃n for n ∈ N that the

inclusion L1(mp) ⊆ L1(mq) is continuous. So, we have verified the following result.

Proposition 3.6. Let 1 < q < p. Then , with a continuous inclusion,

L1(mp) � L1(mq).

Combining Corollary 3.4 and Proposition 3.6 with a standard fact concerning
certain nested sequences of Fréchet spaces (see [29, Lemma 4.15], for example)
yields the following fact.

Corollary 3.7. The proper inclusion
⋃

1<p<∞ L1(mp) � L1
loc(R

+) holds.

The function

(3.6) f(x) := (1− x)−1/pχ
(0,1)

(x), x ∈ R+, 1 < p < ∞,

belongs to L1(νp)\Lp(R+); see the proof of Proposition 2.3 in [14]. Since
∫ 1

0
|f |p dμ

= ∞, we see that also f /∈ Lp
loc(R

+). Combined with Corollary 3.4 and Corollary 3.5
this yields the following result.

Proposition 3.8. For each 1 < p < ∞ it is the case that

Lp
loc(R

+) � L1(mp).

The function (3.6) also shows that

L1(νp) � Lp
loc(R

+), 1 < p < ∞.

On the other hand for each a > 0 the function χ
[a,∞)

∈ Lp
loc(R

+). Since (Cχ
[a,∞)

)(x)

= (1 − a
x )χ[a,∞)

(x) for x > 0 does not belong to Lp(R+) it follows that χ
[a,∞)

/∈
L1(νp) = L1(ν̃p); see (1.3) and (1.5). Hence,

Lp
loc(R

+) � L1(νp), 1 < p < ∞.
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So, there is no relationship between the optimal domain of Cp : Lp(R+) → Lp(R+)
and the domain of definition of C[p] : L

p
loc(R

+) → Lp
loc(R

+).
In conclusion we wish to clarify a subtle point; namely, whether the formula

(1.4) remains valid for all f ∈ L1(νp). That this is actually so is stated in the last
paragraph on p. 126 of [14], via the formula

(3.7) Sf =

∫
f dνX , f ∈ L1(νX);

for our setting here S := C and X = Lp(R+), 1 < p < ∞, is the relevant space.
The reference given for the formula (3.7) is Proposition 3.1(b) of [13]. However,
in that result the vector measure ν (in our setting ν̂p) is defined on Rb and not
on R as in [14] (in our setting νp); as seen previously these two δ-rings are not
comparable. However, thanks to (2.6) and Corollary 3.5 we see that (1.4) is indeed
valid for all f ∈ L1(νp) and not just for f ∈ Lp(R+).
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