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REPRESENTATION THEORY OF Lk (osp(1|2)) FROM VERTEX

TENSOR CATEGORIES AND JACOBI FORMS

THOMAS CREUTZIG, JESSE FROHLICH, AND SHASHANK KANADE

(Communicated by Kailash Misra)

Abstract. The purpose of this work is to illustrate in a family of interesting
examples how to study the representation theory of vertex operator super-
algebras by combining the theory of vertex algebra extensions and modular
forms.

Let Lk (osp(1|2)) be the simple affine vertex operator superalgebra of
osp(1|2) at an admissible level k. We use a Jacobi form decomposition to see

that this is a vertex operator superalgebra extension of Lk(sl2) ⊗ Vir(p, (p +
p′)/2) where k+3/2 = p/(2p′) and Vir(u, v) denotes the regular Virasoro ver-
tex operator algebra of central charge c = 1 − 6(u− v)2/(uv). Especially, for
a positive integer k, we get a regular vertex operator superalgebra, and this
case is studied further.

The interplay of the theory of vertex algebra extensions and modular data
of the vertex operator subalgebra allows us to classify all simple local (un-
twisted) and Ramond twisted Lk (osp(1|2))-modules and to obtain their super
fusion rules. The latter are obtained in a second way from Verlinde’s formula
for vertex operator superalgebras. Finally, using again the theory of vertex
algebra extensions, we find all simple modules and their fusion rules of the
parafermionic coset Ck = Com(VL, Lk (osp(1|2))), where VL is the lattice ver-

tex operator algebra of the lattice L =
√
2kZ.

1. Introduction

Understanding the representation theory of a given vertex operator algebra, es-
pecially the tensor structure, is in general a difficult problem. However, if the given
vertex operator algebra is related to a known one by a standard construction, then
it is conceivable that much of the representation theory of the given vertex op-
erator algebra can be obtained from the known one. In a series of recent works
[CKL,CKLR,CKM] we have used vertex tensor categories to derive structural re-
sults about vertex operator algebras and their extensions. The starting point is
actually the important work of Huang, Kirillov, and Lepowsky [HKL] saying that
vertex operator algebra extensions of sufficiently nice vertex operator algebras V
are in one-to-one correspondence with certain algebra objects A in the representa-
tion category C of V . Moreover, the (untwisted or local) modules of the extended
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vertex operator algebra are precisely objects in the category Rep0 A of the local A-
modules. This generalizes straightforwardly to extensions that are vertex operator
superalgebras [CKL]. There is then an induction functor F (a tensor functor) that
maps any object X of the base category C to a not necessarily local (super)algebra
object F(X) ∼=C A �C X; see [KO]. In a recent work [CKM], the induction func-
tor was studied from the vertex operator algebra perspective. Most notably it
was shown that Rep0 A is braided equivalent to the category of extended vertex
operator superalgebra modules and in addition the tensor product on Rep0 A is
exactly the P (1)-tensor product as defined in [HLZ] if mapping to local objects.
The purpose of this work is to illustrate the usefulness of these recent results in
very efficiently understanding the representation theories of two families of vertex
operator superalgebras associated to osp(1|2).

1.1. The affine vertex operator superalgebra Lk (osp(1|2)). It is well-known
that the simple affine vertex operator algebra of a simple Lie algebra g of level k is
regular if and only if k is a positive integer [FZ]. It is a presently unproven belief that
the same statement holds for affine vertex operator superalgebras Lk(osp(1|2n)) and
that these are the only affine vertex operator superalgebras that are regular. We

note that fusion rules associated to ̂osp(1|2) using coinvariants have been obtained
in [IK2]. This approach is believed but not known to give the vertex operator
algebra fusion rules.

Let Lk be the simple affine vertex operator superalgebra of osp(1|2) at level k
and Leven

k its even component. Characters of irreducible highest-weight modules of
̂osp(1|2) for admissible level k are known [KW]. They converge in certain domains

and allow for a meromorphic continuation to components of vector-valued Jacobi
forms. It is then a Jacobi form decomposition problem to express these characters
in terms of characters of Lk(sl2)⊗ Vir(p,Δ/2). Here, Vir(u, v) denotes the simple
and rational Virasoro vertex operator algebra of central charge 1−6(u−v)2/uv and
the parameters are related to the level via k+ 3

2 = p
2p′ and Δ = p+p′. Our starting

point is a character decomposition of simple highest-weight modules for ̂osp(1|2);
see Lemma 3.1. Since characters of non-isomorphic simple modules for both Lk(sl2)
and M(p,Δ/2) are linearly independent, we immediately get as a corollary that

Com (Lk(sl2),Lk) = Vir(p,Δ/2) and Com (Vir(p,Δ/2),Lk) = Lk(sl2).

This result appeared in the physics literature [CRS] and also in [CL].
Now let k ∈ Z>0. It is easy to see that Lk is C2-cofinite. Moreover, since an

extension of a rational and C2-cofinite vertex operator algebra is rational, by [DH,
HKL,KO] another corollary is that for k in Z>0 the vertex operator superalgebra
Lk is rational and C2-cofinite. We then use the induction functors from Lk(sl2)⊗
Vir(p,Δ/2) to Leven

k and to Lk to find a list of simple Leven
k modules. There is then

a powerful result [DMNO] that relates the Frobenius-Perron dimension of the base
category to the Frobenius-Perron dimension of the category of local modules for the
algebra object. This dimension can be computed using the categorical S-matrix,
that is, the Hopf link, but this is related to the modular S-matrix due to Huang’s
theorem [H1,H2]. We then use [DMNO] together with the modular data of Lk(sl2)⊗
Vir(p,Δ/2) to prove that we have found all simple Leven

k -modules. This immediately
gives a complete list of simple local and Ramond twisted Lk-modules. All these
results are obtained in Subsection 4.1. The properties of the induction functor
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derived in [CKM] then give us the fusion rules of simple Lk-modules (Subsection
4.2) and modular S-matrix (Subsection 4.3). Alternatively, the fusion rules can be
computed using Verlinde’s formula for vertex operator superalgebras as derived in
[CKM] as a consequence of the Verlinde formula for regular vertex operator algebras
due to Huang [H1,H2].

Extensions of these methods to admissible but non-integrable levels are under in-
vestigation. For an interesting recent analysis of level −5/4 using methods different
from ours see [RSW].

1.2. The Lk(osp(1|2)) parafermion vertex operator algebra. The Lk(osp(1|2))
parafermion vertex operator algebras are called graded parafermions in physics
[CRS,FMW]. Let V be a regular vertex operator (super)algebra containing a lat-
tice vertex operator algebra VL of a positive definite lattice L as a subvertex algebra.
The coset Com(VL, V ) is called the parafermion algebra of V . The best known case
is if V is a rational affine vertex operator algebra. In that case C2-cofiniteness
[ALY,DLY,DW] and rationality [DR] have been understood for a few years. If V
is the rational Bershadsky-Polyakov algebra, then these two properties have been
proven indirectly [ACL]. The very recent Theorem 4.12 of [CKLR] settles this state-
ment in generality, and so we have that Ck := Com (VL, Lk (osp(1|2))) is regular.

Here, the lattice is L =
√
2kZ. Section 4 of [CKM] then allows us to deduce a

complete list of inequivalent modules Cλ,r. These modules are parameterized by λ
in L′/L and r labelling the local Lk-modules. Their fusion rules are

Cν,r � Cλ,r′
∼=

2k+2⊕
r′′=1

Nr,r′
r′′Cλ+ν,r′′ ,

with Nr,r′
r′′ the fusion structure constants of Lk derived earlier. One can also

express characters of the Cλ,r and their modular transformations immediately in
terms of those of Lk. All these results are specific instances of results in Section 4
of [CKM] and are presented in Section 5.

2. A summary of certain results for vertex operator

(super)algebra extensions

For the ease of exposition, in this section we shall restrict ourselves to vertex op-
erator algebra extensions. All the relevant theorems in [CKM] have been formulated
in the super-case.

Let V be a C2-cofinite vertex operator algebra of CFT-type (that is, V is self-
contragredient, has no weight spaces of negative conformal weight, and the zeroth
weight space is one dimensional) and let C be the category of its finite length
modules. Due to [H3], C has a structure of a vertex tensor category in the sense of
Huang-Lepowsky [HL1], in particular a braided tensor structure which is essentially
all that we require in the present paper. The interested reader may see [HL2],
[CKM, Sec. 3.3], and [EGNO,BK] as further references.

Denote the monoidal product on C by �, unit object by 1 (note that 1 =

V , [HLZ, Sec. 12.2]), associativity isomorphisms by AX,Y,Z : X � (Y � Z)
∼=−→

(X � Y ) � Z, braiding by RX,Y : X � Y
∼=−→ Y � X, and unit isomorphisms by

lX : 1 � X
∼=−→ X and rX : X � 1

∼=−→ X. Vertex tensor categories always have
a balancing isomorphism, also called twist, denoted by θ, given by the action of
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e2πiL(0) (L(0) is the Virasoro zero mode) satisfying θX�Y = RY,X ◦RX,Y ◦(θX�θY )
for all objects X,Y of C.
Definition 2.1 ([KO, Def. 1.1]). (A, μ, ι) (where A ∈ Obj(C), μ : A � A → A,
ι : 1 ↪→ A) is an algebra object if: (1) μ is associative: μ ◦ (IdA�μ) = μ ◦ (μ �
IdA)◦AA,A,A : A� (A�A) → A. (2) μ is commutative: μ◦RA,A = μ : A�A → A.
(3) μ is unital: μ ◦ (ι � IdA) = lA : 1 � A → A. See [CKM, Def. 2.25] for
the notion of a superalgebra object, which essentially changes commutativity to a
supercommutativity.

Definition 2.2 ([KO, Defs. 1.2, 1.8]). Let RepA be the category whose objects are
(X,μX) with X ∈ Obj(C) and μX : A �X → X such that: (1) μX is associative:
μX ◦ (IdA �μX) = μX ◦ (μ� IdX) ◦ AA,A,X : A� (A�X) → X. (2) μX is unital:
μX ◦ (ι� IdX) = lX : 1�X → X. The morphisms in RepA are those morphisms in
C which commute with the algebra actions μX . Let Rep0 A be the full subcategory
of RepA whose objects satisfy μX ◦ RX,A ◦ RA,X = μX : A�X → X. Objects of

Rep0 A are often called local A-modules.

Theorem 2.3 ([HKL]). The algebra objects A with trivial twist, i.e., θA = IdA, are
in one-to-one correspondence with conformal embeddings V ↪→ A, and the category
Rep0 A is equivalent as an abelian category to the category of untwisted modules of
A as a vertex operator algebra.

Note that the relevant theorems in [HKL] are stated for haploid algebras (i.e.,
when one has hom(1, A) ∼= C) when C is semi-simple, but these assumptions are not
needed in their proof. Mild generalizations of these theorems to the superalgebra
case may be found in [CKL].

Now we let A be an algebra object with θA = IdA.
Recall from [KO, Thm. 1.5] that RepA can be endowed with a monoidal struc-

ture, say �A, with A as unit object. Under this structure, Rep0 A is a submonoidal
category and moreover it is also braided in a natural way. For a generalization of
this to super and not necessarily semi-simple cases, see [CKM, Sec. 2.6].

Theorem 2.4 ([CKM, Thm. 3.65]). The category Rep0 A endowed with the tensor
product �A is equivalent as a braided tensor category to the category of untwisted
modules for A viewed as a vertex operator algebra equipped with the P (1)-tensor
product defined as in [HLZ, Sec. 4.1].

Note that [CKM, Thm. 3.65] is actually formulated in the generality of A being
a superalgebra.

Definition 2.5 ([KO, Thm. 1.6]). We have the induction functor F : C → RepA,
where F(X) = A�X and μF(X) = (μ⊗ IdX) ◦ AA,A,X .

We have the following crucial property of the induction functor which we shall
use frequently:

Theorem 2.6 ([CKM, Thm. 2.59]). The induction functor is monoidal, i.e.,

F(X � Y ) ∼= F(X)�A F(Y ).

We also recall the following useful results for the induction functor.

Theorem 2.7. Let A be an algebra in C with a trivial twist and let X be a simple
object of C.
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(1) F(X) ∈ Rep0 A if A�X is graded by a single coset of integers. This is an
equivalent formulation of [CKM, Prop. 2.65].

(2) Suppose that V is simple, A is simple as a module over itself, and A ∼=
⊕i∈IAi where each Ai is a simple V -module. If Ai � X are simple and
mutually inequivalent V -modules, then F(X) is a simple object of RepA
(see [CKM, Thm. 4.4]).

Now, let V be rational, C2-cofinite of CFT-type. Then, C is semi-simple, has
finitely many isomorphism classes of simples, and by deep results of Huang [H1,H2],
it is in fact rigid (i.e., each objectX has a dualX∗; see [BK, Def. 2.1.1]) and modular
(see [BK, Def. 3.1.1]). For rigid tensor categories with a twist, one can define the
notion of trace; see [BK, Def. 2.3.3]. The Hopf links are defined as the following
traces:

(1) S�
X,Y = traceX�Y (RY,X ◦ RX,Y ).

C is called modular if the S-matrix formed by letting X, Y vary over isomorphism
classes of simple objects is invertible [BK, Def. 3.1.1].

Below, we shall require [KO, Thm. 4.5], which provides conditions under which
Rep0 A is also a modular tensor category. [CKM, Prop. 2.89] lets us deduce the
relation that the induction functor F respects S-matrices, and, moreover, [CKM,
Sec. 4.2] lets us deduce the Verlinde data. We also require the notion of Frobenius-
Perron dimensions (which are recalled below), an excellent resource for which is
[EGNO, Sec. 3.2].

3. Decomposition of Jacobi forms associated to osp(1|2)
We begin by recalling the necessary known data of the relevant vertex operator

algebras and Lie superalgebras from the literature.

3.1. Characters of affine Lie superalgebra ̂osp(1|2) modules. The conformal

field theory pendant of the affine vertex operator superalgebra of ̂osp(1|2) has ap-
peared in [ENO,ERS]. It will turn out that all we need in order to understand much
of the representation theory of admissible integer level Lk (osp(1|2)) is a certain de-
composition of the vacuum module character. Strong reconstruction theorem gives
that the simple quotient of the level k vacuum Verma module of an affine Lie su-
peralgebra carries the structure of a simple vertex operator superalgebra [FBZ].
By admissible levels we mean those where the vacuum Verma module itself is not
simple and the normalized character of its simple quotient is a modular function;

see [KW]. In the case of ̂osp(1|2) these are

(2) k +
3

2
=

p

2p′
,

where p > 1 and p′ are positive coprime integers with p + p′ ∈ 2Z and p, p+p′

2
coprime. The highest-weight representations Mjr,s are indexed by isospins jr,s,
with

1 ≤ r ≤ p− 1, 0 ≤ s ≤ p′ − 1, and r + s ∈ 2Z+ 1.

From [ERS,KW], the characters of these representations are given by

(3) ch[Mjr,s ] =

Θb+,a

(
z

2p′
,
τ

2

)
−Θb−,a

(
z

2p′
,
τ

2

)
Π(z, t)
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with standard Jacobi theta functions

Θr,s(z, τ ) =
∑
m∈Z

ws(m+ r
2s )qs(m+ r

2s )
2

and the Weyl superdenominator

Π(z, τ ) = Θ1,3

(z
2
,
τ

2

)
−Θ−1,3

(z
2
,
τ

2

)
= w

1
4 q

1
24

∞∏
n=1

(1− qn) (1− wqn)
(
1− w−1qn−1

)(
1 + w

1
2 qn

)(
1 + w− 1

2 qn−1
)

with w = e2πiz, q = e2πiτ , b± = ±p′r − ps, and a = pp′.

These characters are analytic functions in the domain 1 ≤ |w| ≤ |q−1| and can be
meromorphically continued to meromorphic Jacobi forms. Their modular trans-
formations are a straightforward computation: we will obtain them in the positive
integer level case directly from vertex tensor category theory.

3.2. The rational Virasoro vertex operator algebra Vir(p, u). A good ref-
erence here is [RC, IK1]. Let u, p ∈ Z≥2 be coprime. Then, the simple Virasoro
vertex operator algebra at central charge

c = 1− 6
(u− p)2

up

is regular [W]. Simple modules are denoted by Vr,s for 1 ≤ r ≤ u−1 and 1 ≤ s ≤ p−1
and one has the relations Vr,s

∼= Vu−r,p−s. We denote the set of inequivalent module
labels by Iu,p. We define numbers by

Nw t′′

t,t′ =

{
1 if |t− t′|+ 1 ≤ t′′ ≤ min{t+ t′ − 1, 2w − t− t′}, t+ t′ + t′′ odd,

0 otherwise

that allow us to express the fusion rules as follows:

Vr,s �Vir Vr′,s′
∼=

u−1⊕
r′′=1

p−1⊕
s′′=1

Nu r′′

r,r′ Np s′′

s,s′ Vr′′,s′′ .

With p, p′ as in Subsection 3.1 set Δ = p + p′ and u = Δ/2. Then characters are
[RC, IK1]

ch[Vr,s] =
(Θ2pr−Δs,Δp −Θ−2pr−Δs,Δp)

(
0, τ

2

)
η(q)

,(4)

and their modular S-transformation is

(5) ch[Vr,s]

(
−1

τ

)
=

∑
(r′,s′)∈Iu,p

Sχ
(r,s),(r′,s′) ch[Vr′,s′ ](τ )

with modular S-matrix entries

(6) Sχ
(r,s),(r′,s′) = −2

√
2

up
(−1)rs

′+sr′ sin
(πp
u
rr′

)
sin

(
πu

p
ss′

)
.

The conformal weights of Vr,s are given by hr,s =
(us−pr)2−(u−p)2

4up .
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3.3. Characters of admissible level Lk(sl2) modules. We use [KW,CR2] as
references. Let the level k be as in (2); i.e., k satisfies

k + 2 = k +
3

2
+

1

2
=

p

2p′
+

1

2
=

p+ p′

2p′
=

u

p′
.

The highest-weight representations of Lk(sl2) are D+
r,s with 1 ≤ r ≤ u − 1 and

0 ≤ s ≤ p′ − 1 where D+
r,0; = Lr,0 deserve a special name as they have finite-

dimensional grade zero subspace. Let

ϑ2(z, τ ) =
∑
n∈Z

w(n+
1
2 )q

1
2 (n+

1
2 )

2

, ϑ1(z, τ ) = −ϑ2

(
z +

1

2
, τ

)
be the standard theta functions; then characters are

ch[D+
r,s](z, τ ) =

(Θ2p′r−Δs,Δp′ −Θ−2p′r−Δs,Δp′)

(
z

2p′
,
τ

2

)
iϑ1(w, q)

.

If k ∈ Z>0, then the D+
r,0 := Lr,0 with 1 ≤ r ≤ k + 1 of conformal dimensions

r2 − 1

4(k + 2)
exhaust inequivalent simple modules up to isomorphisms, and their mod-

ular S-transformations are given by

ch[Lr,0]

(
0,−1

τ

)
=

k+1∑
r′=1

Sχ,sl2
r,r′ ch[Lr′,0](0, τ )(7)

with Sχ,sl2
r,r′ =

√
2

k + 2
sin

(
π

k + 2
rr′

)
.

Lemma 3.1. For k as in (2), we have the following character decomposition:

ch[Mjr,s ](w, q) =

Δ
2 −1∑
i=1

ch[D+
i,s](w

1
2 , q) ch[Vir

(p,Δ2 )
i,r ](q).

Proof. We compare left- and right-hand sides each multiplied by ϑ2

(
z
2 , τ

)
:

Θb±,a

(
z

2p′
,
τ

2

)
ϑ2

(z
2
, τ
)
=

∑
m,n∈Z

w
a

2p′

(
m+

b±
2a

)
+ 1

2 (n+
1
2 )q

a
2

(
m+

b±
2a

)2
+ 1

2 (n+
1
2 )

2

=
∑

m,n∈Z

w
p
2

(
m+

b±
2a

)
+ 1

2 (n+
1
2 )q

pp′
2

(
m+

b±
2pp′

)2
+ 1

2 (n+
1
2 )

2

=
∑

m,n∈Z

w
1
2

(
pm+

b±+p′

2p′ +n

)
q

1
2

(
pp′m2+mb±+

b2±
4pp′ +n2+n+ 1

4

)
.(8)

At this point, we make a change of variables. Let x = pm + n. We wish to
find y = cm + dn such that pp′m2 + n2 has no mixed terms in x and y. Let
Δ = c− dp be the determinant of this change of variables. Then m = Δ−1(y− dx)
and n = Δ−1(cx− py). From this, we see that

pp′m2 + n2 =

(
pp′d2 + c2

)
x2 + p (p′ + p) y2 − p (c+ p′d) xy

Δ2
.(9)

So, we see that c+p′d needs to vanish. Choosing c = p′ and d = −1, this condition
is fulfilled. Therefore, Δ = p+p′. The change of variables becomes m = Δ−1(x+y)
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and n = Δ−1(p′x − py). With the observations that p′ = −p (mod Δ) and p is
relatively prime to Δ, we see that this change of variables is an invertible map
ϕ : Z2 → L =

{
(x, y) ∈ Z2

∣∣x+ y ∈ ΔZ
}
. So, one may simply sum over L in x and

y. Simplifying (9), we now have

pp′m2 + n2 =
p′

Δ
x2 +

p

Δ
y2.

From this, one easily obtains the exponent for q:

pp′m2 + n2 +mb± +
b2± + pp′

4pp′
+ n =

p′

Δ

(
x+

b± + p′

2p′

)2

+
p

Δ

(
y +

b± − p

2p

)2

.

Returning to (8) and letting x = Δs+ i and y = Δt− i, for i = 1, . . . ,Δ, we get

Θb±,a

(
z

2p′
,
τ

2

)
ϑ2

(z
2
, τ
)
=

∑
(x,y)∈L

w
1
2

(
x+

b±+p′

2p′

)
q

p′
2Δ

(
x+

b±+p′

2p′

)2

q
p

2Δ

(
y+

b±−p

2p

)2

=
Δ∑
i=1

(∑
s∈Z

w
Δp′
2p′

(
s+

b±+p′(2i+1)

2Δp′

)
q

Δp′
2

(
s+

b±+p′(2i+1)

2Δp′

)2)(∑
t∈Z

q
Δp
2

(
t+

b±−p(2i+1)

2Δp

)2
)

=

Δ∑
i=1

Θb±+p′(2i+1),Δp′

(
z

2p′
,
τ

2

)
Θb±−p(2i+1),Δp

(
0,

τ

2

)

=
Δ∑
i=1

Θ−ps+p′(2i±r+1),Δp′

(
z

2p′
,
τ

2

)
Θ±p′r−p(2i+s+1),Δp

(
0,

τ

2

)
.

(10)

Note that the theta-functions in (10) are Δ-periodic in i, so the whole sum in (10)
is 1-periodic in i. Next, we want to consider the difference between the two results,
according to (3).

Let X :=

(
Θb+,a

(
z

2p′
,
τ

2

)
−Θb−,a

(
z

2p′
,
τ

2

))
ϑ2

(z
2
, τ
)
, which expands to

X =

Δ∑
i=1

Θ−ps+p′(2i+r+1),Δp′

(
z

2p′
,
τ

2

)
Θp′r−p(2i+s+1),Δp

(
0,

τ

2

)

−
Δ∑
i=1

Θ−ps+p′(2i−r+1),Δp′

(
z

2p′
,
τ

2

)
Θ−p′r−p(2i+s+1),Δp

(
0,

τ

2

)
.
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After applying some symmetries to the second term, such as negation of the second
factor’s first index, and mapping i 
→ −i− s− 1 we get

X =
Δ∑
i=1

(
Θ−ps+p′(2i+r+1),Δp′

(
z

2p′
,
τ

2

)
−Θ−ps−p′(2i+r+2s+1),Δp′

(
z

2p′
,
τ

2

))

·Θp′r−p(2i+s+1),Δp

(
0,

τ

2

)(11)

=
Δ∑
i=1

(
Θ−Δs+p′(2i+r+s+1),Δp′

(
z

2p′
,
τ

2

)
−Θ−Δs−p′(2i+r+s+1),Δp′

(
z

2p′
,
τ

2

))

·Θp′r−p(2i+s+1),Δp

(
0,

τ

2

)
.

(12)

By assumption, r + s ∈ 2Z+ 1. Thus, letting t = r+s+1
2 , we have

X =

Δ∑
i=1

(
Θ−Δs+2p′(i+t),Δp′

(
z

2p′
,
τ

2

)
−Θ−Δs−2p′(i+t),Δp′

(
z

2p′
,
τ

2

))
·Θp′r−p(2i+s+1),Δp

(
0,

τ

2

)

=

Δ∑
i=1

(
Θ2p′i−Δs,Δp′

(
z

2p′
,
τ

2

)
−Θ−2p′i−Δs,Δp′

(
z

2p′
,
τ

2

))
ΘΔr−2pi,Δp

(
0,

τ

2

)
.

(13)

For i = Δ, Δ
2 , the first factor vanishes. We can combine summands to obtain

X =

Δ
2 −1∑
i=1

(
Θ2p′i−Δs,Δp′

(
z

2p′
,
τ

2

)
−Θ−2p′i−Δs,Δp′

(
z

2p′
,
τ

2

))
ΘΔr−2pi,Δp

(
0,

τ

2

)

−
Δ
2 −1∑
i=1

(
Θ2p′i−Δs,Δp′

(
z

2p′
,
τ

2

)
−Θ−2p′i−Δs,Δp′

(
z

2p′
,
τ

2

))
ΘΔr+2pi,Δp

(
0,

τ

2

)

=

Δ
2 −1∑
i=1

(Θ2p′i−Δs,Δp′ −Θ−2p′i−Δs,Δp′)

(
z

2p′
,
τ

2

)
· (Θ2pi−Δr,Δp −Θ−2pi−Δr,Δp)

(
0,

τ

2

)
.

Comparing with the Lk(sl2) and Virasoro characters now easily gives the claim. �

Since characters of modules in the category O of Lk(sl2) at admissible level and
those of the rational Virasoro vertex algebra both determine representations, we
have the analogous result on the level of modules:

(14) Mjr,s =

Δ
2 −1⊕
i=1

D+
i,s ⊗ Vi,r.

Here we remark that in general, characters of simple vertex operator algebra mod-
ules are not necessarily linearly independent, and in the case Lk(sl2) for k ∈ Q\Z
this question is subtle. In that case there are simple modules whose characters
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only converge to an analytic function in a certain domain (depending on the mod-
ule). These characters can then be meromorphically continued to meromorphic
Jacobi forms, and many different module characters will have the same meromor-
phic continuation. These modules are then distinguished by the domain in which
the character converges to an analytic function. For each meromorphic Jacobi form
in question there is a unique simple module whose character converges in the do-
main 1 ≤ |w| ≤ |q−1| and coincides in that domain with the meromorphic Jacobi
form. These interesting subtleties are discussed thoroughly in [CR1,CR2].

4. Representation theory of Lk for k ∈ Z>0

Let k ∈ Z>0 and consider

(15) Lk =
k+1⊕
i=1

Li,0 ⊗ Vi,1 and Leven
k =

k+1⊕
i=1
i odd

Li,0 ⊗ Vi,1.

By Lemma 3.1, Lk can be endowed with the structure of Lk(osp(1|2)) and Leven
k

as its even subalgebra is simple as well by a mild extension of [DLM, Thm. 2.1] to
superalgebras. By an extension of [CarM, Thm. 4.2] to the superalgebra case as in
[CKLR, App. A, Rem. A.1], Lodd

k is an order two simple current of Leven
k where

(16) Lodd
k =

k+1⊕
i=1

i even

Li,0 ⊗ Vi,1.

Let Ck be the modular tensor category of the vertex operator algebra Lk(sl2) ⊗
Vir(p, Δ2 ). We can view Lk as a superalgebra object in both Ck and in the ver-
tex tensor category of Leven

k while Leven
k is also an algebra object in Ck. Let the

corresponding induction functors be Fk,Fodd
k ,Feven

k . Our aim is to use the the-
ory of vertex algebra extensions [CKM] recalled in Section 2 to understand the
representations of Lk.

Recall that the categorical twist θ acts on vertex operator algebra modules as
e2πiL(0) with L(0) the Virasoro zero-mode that provides the grading by conformal
weight of modules. Conformal dimension of Li,0 ⊗ Vi,r is

(17)
1

4

(
2i2 − 2ir +

(k + 2)(r2 − 1)

2k + 3

)
(mod Z).

We have that θLeven
k

= IdLeven
k

; i.e., Leven
k is integer graded. Also, the calculation

(20) below shows that “dimension” dimCk
(Leven

k ) is non-zero; recall also that Leven
k

is simple as a module over itself. These three facts ensure that as an algebra object
in the modular tensor category Ck, Leven

k satisfies the conditions of [KO, Lem. 1.20]
and hence those in [KO, Thm. 4.5]. We therefore deduce that the representation
category of untwisted modules of Leven

k (which is Rep0 Leven
k ) is modular. One

subtlety is that the tensor product on this category defined by [KO, Thm. 1.5] and
the one arising from vertex tensor categories could be different. However, this is
not the case as guaranteed by [CKM, Thm. 3.65].

Now, with 1 ≤ r ≤ 2k + 2, we have the following (possibly non-local) modules
for Lk via induction:

Mr = Fk (L1,0 ⊗ V1,r) =

k+1⊕
i=1

Li,0 ⊗ Vi,r = M even
r ⊕Modd

r
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with the Leven
k -modules

M even
r = Feven

k (L1,0 ⊗ V1,r) =

k+1⊕
i=1
i odd

Li,0 ⊗ Vi,r, Modd
r =

k+1⊕
i=1

i even

Li,0 ⊗ Vi,r.

All Mr and M even
r are simple Lk-, respectively, Leven

k −, modules by [CKM, Prop.
4.4]. [CKM, Lem. 4.26] now implies that Modd

r
∼= Lodd

k �Leven
k

M even
r ; in particular,

they are simple. We now have that Fk (M
even
r ) ∼= Mr.

Mr is local if it is graded by a coset of integers and twisted if both M even
r and

Modd
r are each graded by a single but different coset of integers. From (17) we have

that Mr is local if and only if r is odd, and otherwise it is twisted. We aim to
prove that Mr exhaust all local/twisted modules (up to isomorphisms) of Lk and
to determine their modular data and fusion rules.

Using the fact that induction is a tensor functor [CKM, Thms. 3.65 and 3.68]
we have that

M even
r �Leven

k
M even

r′ = Feven
k (L1,0 ⊗ V1,r)�Leven

k
Feven

k (L1,0 ⊗ V1,r′)(18)

= Feven
k ((L1,0 ⊗ V1,r)� (L1,0 ⊗ V1,r′)) = Feven

k (

k⊕
r′′=1

Nk+1 r′′

r,r′ L1,0 ⊗ V1,r′′)

=

k⊕
r′′=1

Nr′′

r,r′M
even
r′′ ,

and similarly,

Mr �Lk
Mr′ =

k⊕
r′′=1

Nr′′

r,r′Mr′′ .(19)

In particular, the abelian (super)categories generated by Mr and M even
r are closed

under taking tensor products in respective categories. Moreover, since Modd
r

∼=
Lodd
k �Leven

k
M even

r , the abelian category generated by M
even / odd
r also has the same

property and, moreover, it is closed under duals:

(M even
r )∗ = Feven

k (L1,0 ⊗ V1,r)
∗ = Feven

k ((L1,0 ⊗ V1,r)
∗) = Feven

k (L1,0 ⊗ V1,r)

= M even
r

(Modd
r )∗ = (Lodd

k �Leven
k

M even
r )∗ ∼= Lodd

k

∗ �Leven
k

(M even
r )∗ ∼= Modd

r ,

where the second equality in the first equation follows by [CKM, Prop. 2.17], and
for the second equation we use the fact that Leven

k is an order two simple current. In
effect, this category is a fusion category. We denote this category by Sk for future
use.

4.1. Frobenius-Perron dimension of Leven. We now use modular properties of
characters to classify all simple inequivalent modules of Leven

k and of Lk as well.
The categorical dimension of a vertex operator algebra module X is the Hopf

link (see (1)) S�
1,X which coincides with the modular S-matrix expression up to a

constant as S�
1,X =

Sχ
1,X

Sχ
1,1

. Here 1 stands for the tensor unit, i.e., the vertex operator
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algebra itself. Using (6) and (7), one has

(20) dimCk
Leven
k =

1

sin2
(

π
k+2

) k+1∑
l=1

l∈2Z+1

sin2
(

πl

k + 2

)
,

which we can simplify using the following lemma.

Lemma 4.1. The following hold:

(21)
k+1∑
l=1

l∈2Z+1

sin2
(

πl

k + 2

)
=

k + 2

4
and

k+1∑
l=1

sin2
(

πl

k + 2

)
=

k + 2

2
.

Proof. The second equation is

k+1∑
l=1

sin2
(

πl

k + 2

)
= −1

4

k+1∑
l=1

(
−2 + e2πi

l
k+2 + e−2πi l

k+2

)
=

k + 1

2
+

1

4
+

1

4
=

k + 2

2
.

If k is even, then the first equation follows immediately from the second one. For
odd k we compute

k+1∑
l=1

l∈2Z+1

sin2
(

πl

k + 2

)
=

k−1
2∑

r=0

sin2
(
π(2r + 1)

k + 2

)

=
k + 1

4
− 1

4

k−1
2∑

r=0

(
e

2πi(2r+1)
k+2 + e−

2πi(2r+1)
k+2

)
and
k−1
2∑

r=0

(
e

2πi(2r+1)
k+2 + e−

2πi(2r+1)
k+2

)
= 2

k+1∑
r=0

e
2πir
k+2 −

k+1
2∑

r=0

(
e

2πi(2r)
k+2 + e−

2πi(2r)
k+2

)
= −1.

�

The Frobenius-Perron dimension (FP for short) is the unique character of the
tensor ring such that for simple modules X, FP(X) ∈ R≥0 [ENO], [EGNO, Sec.
3.3]. For a modular tensor category C

(22) FP(C) =
∑

FP(X)2

is the FP-dimension of C where the sum is over all inequivalent simple objects of C.
For vertex operator algebras V , this dimension is easy to find provided there exists
a unique simple module Z such that it has strictly lowest conformal dimension
among all simple modules for V and provided the following limits exist [DJX]. In
that case for any simple object X one has

(23) adim(X) := lim
τ→0+

ch[X](τ )

ch[V ](τ )
= lim

τ→−∞

ch[X](−1/τ )

ch[V ](−1/τ )
=

Sχ
X,Z

Sχ
V,Z

and adim(X) = FP(X).

Recall that the M
even/odd
r form a subtensor category, called Sk, of the full cate-

gory of local modules of Leven
k . We will compute the FP(Sk) and show that it agrees

with FP(Rep0 Leven
k ) so that the two categories must coincide. We also recall:
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Theorem 4.2. [DMNO, Cor. 3.30] Let A be a connected (sometimes also called
haploid) étale (that is, commutative and separable) algebra in a modular tensor
category C, with Rep0 A denoting the category of its local (also known as untwisted
or dyslectic) modules in C. Then

FP
(
Rep0(A)

)
=

FP(C)
FPC(A)2

.

Lemma 4.3. The Frobenius-Perron dimensions of Ck and Leven
k are

FP(Ck) =
(k + 2)2(2k + 3)

16 sin4
(

π
k+2

)
sin2

(
π

2k+3

) and FPCk
(Leven

k ) =
k + 2

4 sin2
(

π
k+2

) .
Proof. We know the computation for FP(Ck); FPCk

(Leven
k ) is computed similarly.

Due to (22) and (23), we first determine the simple module of lowest conformal
weight for Lk(sl2)⊗Vir(2k + 3, k + 2).

The simple module of lowest conformal weight for Lk(sl2) is Lk(sl2) itself as this
is a unitary vertex operator algebra. For the Virasoro algebra Vir(2k + 3, k + 2),
we will prove that the conformal weights satisfy h1,2 ≤ hr,s and equality holds if
and only if Vr,s

∼= V1,2. The conformal weights of Vr,s are given by

hr,s =
((k + 2)s− (2k + 3)r)2 − (2k + 3− (k + 2))2

4(k + 2)(2k + 3)

where 1 ≤ r ≤ k + 1 =: t and 1 ≤ s ≤ 2k + 2 = 2t. Minimizing hr,s amounts to
minimizing Xr,s := |(k + 2)s − (2k + 3)r| = |t(s − 2r) + (s − r)|. We make cases
based on the value of 2r − s.

Case 1. 2r − s = 0: Since Xr,s = r, we see that the minimum here is X1,2 = 1.
Case 2. 2r− s = 1: Xr,2r−1 = |r− 1− t|, so the minimum here is Xt,2t−1 = 1. Note

that Vr,s
∼= Vt−r+1,2t−s+1, so V1,2

∼= Vt,2t−1.
Case 3. 2r − s = n ≥ 2: Xr,2r−n = |n(t+ 1)− r| ≥ (n− 1)t+ n ≥ t+ 2 > 2, which

is more than the minimum achieved previously.
Case 4. 2r − s = −n < 0: Xr,2r+n = |t(n + 1) + r| > 1, which is more than the

minimum achieved previously.

We get that the simple module Z in (23) is L1,0 ⊗ V1,2. We now have

FP(Ck) =
∑

1≤i,r≤k+1
1≤s≤2k+2,s odd

FP(Li,0 ⊗ Vr,s)
2 =

∑
1≤i,r≤k+1

1≤s≤2k+2,s odd

(
Sχ
Li,0⊗Vr,s,L1,0⊗V1,2

Sχ
L1,0⊗V1,1,L1,0⊗V1,2

)2

=
(k + 2)2(2k + 3)

16 sin4
(

π
k+2

)
sin2

(
π

2k+3

) ∑
1≤i,r≤k+1

1≤s≤2k+2,s odd

16 sin2
(

πi
k+2

)
sin2

(
πr
k+2

)
sin2

(
πs

2k+3

)
(2k + 3)(k + 2)2

,

(24)

where the first equality is due to (22), the second is due to (23), and the third is
due to the known S-matrices for Lk(sl2) and Virasoro algebras. FP(Ck) now follows
immediately using Lemma 4.1. �

We have shown that Sk, the full abelian subcategory formed by M
even/odd
r -

modules inside Leven
k -modules, is a fusion category. Considering the homomor-

phism of Grothendieck rings induced by the inclusion of Sk ↪→ Rep0 Leven
k , from
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[EGNO, Prop. 3.3.13(i)], we now immediately have that FP-dims of simples in
Sk are equal to their FP-dims as objects of Rep0 Leven

k and hence that FP(Sk) ≤
FP(Rep0 Leven

k ) with equality iff the two categories are equal.
Now, with the S-matrix calculations from (27) and (28), it is clear that X 
→
Sχ
X,Meven

2

Sχ
Leven

k ,Meven
2

∈ R>0 whenever X = M
even/odd
r and, moreover, this map preserves

tensor products by properties of S matrices for Leven
k . Therefore, by uniqueness of

FP dimensions, this map precisely gives us FP dimensions of modules in Sk (which
are equal to their FP-dims considered as modules for Leven

k ).
The following lemma is verified in a very similar manner as the previous one,

using the modular S-matrix derived in the next section.

Lemma 4.4. We have the following:

FP(Sk) =
2k + 3

sin2
(

π
2k+3

) .
Proof. From the S-matrices in the next section; (26), (27), and (28); and Lemma
4.1, we have that

FP(Sk) =
∑

1≤r≤2k+2

(
Sχ
Meven

r ,Meven
2

Sχ
Meven

1 ,Meven
2

)2

+

(
Sχ
Modd

r ,Meven
2

Sχ
Meven

1 ,Meven
2

)2

=
1

sin2
(
2π(k + 2)

2k + 3

) ∑
1≤r≤2k+2

2 · sin2
(
2rπ(k + 2)

2k + 3

)
=

2k + 3

sin2
(

π
2k+3

) .
�

Corollary 4.5. The Frobenius-Perron dimension of the category of local Leven
k -

modules, i.e., FP(Rep0 Leven
k ), and the one of the subtensor category given by the

M
even/odd
r , i.e., FP(Sk), coincide.

Proof. Theorem 4.2 and Lemma 4.3 give FP(Rep0 Leven
k ) = 2k+3

sin2( π
2k+3 )

. This equals

FP(Sk) by Lemma 4.4. �
We immediately deduce:

Corollary 4.6. The M
even/odd
r for 1 ≤ r ≤ 2k+ 2 form a complete list of inequiv-

alent simple local Leven
k -modules.

Corollary 4.7. Let 1 ≤ r ≤ 2k + 2. The Mr for r odd form a complete list (up
to parity and isomorphisms) of simple local Lk-modules and for r even of twisted
ones.

Remark 4.8. [CKM, Thm. 2.67] says that the induction functor is a braided tensor
functor when restricted to those objects that induce to local modules for an algebra
object (if inducing to modules for a superalgebra, one needs to start with an aux-
iliary supercategory). In our example of Feven

k this is the full abelian subcategory
of Ck formed by L1,0 ⊗ V1,r for r = 1, . . . , 2k + 2. Denote this category by Ceven

k,0 .
Further, let Seven be the full abelian subcategory formed by M even

r -modules inside
Leven
k -modules and let Ssuper be the full abelian subcategory of Seven formed by all

M even
r with r odd.
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Then the same argument as in the proof of [OS, Thm. 5.1] shows that the in-
duction functor Feven

k restricted to Ceven
k,0 is fully faithful, and thus this subcategory

is braided equivalent to Seven.
The argument of [OS, Thm. 5.1] also works for extensions by superalgebra ob-

jects (using then also [CKM, Lem. 2.61]), and thus one also gets a braided equiv-
alence between an auxiliary supercategory SSsuper (see [CKM, Defn. 2.11]) and
the category of local Lk-modules. As a consequence of these two equivalences of
braided tensor categories, we especially have that the category of local Lk-modules
is braided equivalent to the supercategory auxiliary to the full abelian subcategory
of the vertex tensor category of the Virasoro algebra Vir(p,Δ/2) formed by the V1,r

with r odd.

4.2. Fusion rules. Using that the induction functor is a P (z)-tensor functor we
get the fusion rules of Lk for free, namely

Mr �Lk
Mr′

∼=
2k+2⊕
r′′=1

Nr′′

r,r′Mr′′ ,(25)

which we have established in (19). Each Mr decomposes as Mr = M even
r ⊕Modd

r as
an Leven

k -module. As explained in [CKM] one also assigns a parity to each vertex
operator superalgebra module, and we have two choices: we can either give M even

r

even parity and Modd
r odd or the other way around. Let us denote the first choice

by M+
r and the second one by M−

r . An intertwining operator is then called even
if it respects the chosen parities and odd otherwise. The superdimension (sdim)
of a fusion rule is accordingly the difference of the dimension of even and odd
intertwining operators of the given type. From our discussion of Leven

k , we have the
sdim of type

sdim

(
Mε′′

r′′

Mε
r Mε′

r′

)
= N

− (r′′,ε′′)
(r,ε),(r′,ε′) = εε′ε′′Nr,r′

r′′ .

The fusion coefficients can also be computed using Verlinde’s formula; see [CKM,
Sec. 1.5].

4.3. Modular transformations. The results of this section follow by applying
[CKM, Sec. 4.2.1]. Let 1 ≤ r, r′ ≤ 2k+2. The character and supercharacter of M+

r

are defined as

ch±[M+
r ](τ, v) = ch[M even

r ](τ, v)± ch[Modd
r ](τ, v).

Define the numbers

(26) sr,r′ := (−1)r+r′
√

1

2k + 3
sin

(
πrr′(k + 2)

(2k + 3)

)
.

Then, [CKM, Prop. 2.89] and [KO, Thm. 4.5] give

Sχ
Meven

r ,Meven
r′

=
1

D(Rep0 Leven
k )

S�
Meven

r ,Meven
r′

=
dimCk

(Leven
k )

D(Ck)
S�
Meven

r ,Meven
r′

=
dimCk

(Leven
k )

D(Ck)
S�
L1,0⊗V1,r,L1,0⊗V1,r′

= dimCk
(Leven

k )Sχ
L1,0⊗V1,r,L1,0⊗V1,r′

= sr,r′ .

(27)
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The exact definition of the number D may be found in [KO]; however, the only thing
we need is the relation used in the second equality, which is due to [KO, Thm. 4.5].
Using [CKM, Lem. 4.26] we get

(28) Sχ

Meven
r ,Modd

r′
=

{
sr,r′ r even,

−sr,r′ r odd

and

Sχ

Modd
r ,Modd

r′
=

{
sr,r′ r + r′ even,

−sr,r′ r + r′ odd .

We then have for r odd:

ch+[M+
r ]

(
−1

τ
,
z

τ

)
= e2πik

z2

τ

∑
r′ even

2sr,r′ ch
−[M+

r′ ](τ, z),

ch−[M+
r ]

(
−1

τ
,
z

τ

)
= e2πik

z2

τ

∑
r′ odd

2sr,r′ ch
−[M+

r′ ](τ, z)

(29)

and for r even:

ch+[M+
r ]

(
−1

τ
,
z

τ

)
= e2πik

z2

τ

∑
r′ even

2sr,r′ ch
+[M+

r′ ](τ, z),

ch−[M+
r ]

(
−1

τ
,
z

τ

)
= e2πik

z2

τ

∑
r′ odd

2sr,r′ ch
+[M+

r′ ](τ, z).

(30)

Assemble the Sχ into a (4k+4)×(4k+4)-matrix with first (2k+2) rows and columns
corresponding to M even

r and the remaining rows and columns with corresponding
Modd

r . By changing the basis of the Grothendieck ring so that M even
r ,Modd

r are
replaced by M even

r +Modd
r and M even

r −Modd
r as in [CKM, eqns. (4.9), (4.10)] we

form the (4k+4)× (4k+4) matrices S̃ and S̃−1. Following the notation in [CKM],
Verlinde’s formula [CKM, eqn. (4.11)] reads

N
+ (r′′,+)
(r,+),(r′,+) = δ(r + r′ + r′′ = 1 mod 2)

∑
t even

S̃r,t · S̃r′,t · (S̃−1)t,r′′

S̃1,t

,

N
− (r′′,+)
(r,+),(r′,+) = δ(r + r′ + r′′ = 1 mod 2)

∑
t odd

S̃r,t · S̃r′,t · (S̃−1)t,r′′

S̃1,t

.

(31)

5. Parafermions

Lk contains the lattice vertex operator algebra VL of the lattice L =
√
2kZ as

a vertex operator subalgebra. Let Ck := Com (VL,Lk) be the parafermion coset.
It is rational by [CKLR, Cor. 4.13] and since Ck = Com(VL,Leven

k ). Every even
weight module of Lk(sl2) is graded by 2L′, and every odd weight module is graded by
L′\2L′, so it follows especially that Lk is graded by L′ and hence, for 1 ≤ r ≤ 2k+2,

Mr
∼=

⊕
λ∈L′/L

Vλ+L ⊗ Cλ,r.

We restrict to local modules Mr; that is, r is odd. The results of [CKLR,CKL,
CKM] together (see [CKM, Sec. 4.3.1]) now imply that all Cλ,r are simple Ck-
modules. The grading lattice being the full dual lattice L′ implies ([CKM, Thm.
4.39]) that Cλ,r

∼= Cν,s if and only if λ = ν and r = s. Moreover, these are all
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inequivalent simple modules; this follows from Theorem 4.3, Lemma 4.9, and the
proof of Theorem 4.12 of [CKLR]. We remark that these theorems are formulated
for vertex operator algebras; however, modifying the proofs to the supersetting is
not difficult. The easier alternative is to apply the results of [CKLR,CKL,CKM] to
Leven
k where each simple Ck-module appears as a submodule of two distinct Leven

k -
modules. One of these Leven

k -modules then lifts to a local Lk-module and the other
to a twisted one.

In order to relate the fusion rules for Ck with those of Lk (or Leven
k ), we view

Lk (or Leven
k ) as an algebra (or superalgebra) in the tensor category of the regular

vertex operator algebra VL ⊗Ck we use [CKM, Thm. 4.41]. This theorem uses the
fact that the induction functor is monoidal and that the fusion for VL is group-like.
[CKM, Thm. 4.41] translated to the current notation gives us precisely

(32) Cν,r � Cλ,r′
∼=

2k+2⊕
r′′=1

Nr,r′
r′′Cλ+ν,r′′ .

From [CKM, Thm. 4.42], we have that

ch+[M+
r ](τ, u) =

∑
ν∈L′/L

θL+ν(u, τ )

η(τ )
ch[Cν,r](τ ),

ch−[M+
r ](τ, u) =

∑
ν∈L′/L

θL+ν(u, τ )

η(τ )
(−1)δ( ν �∈(2L′)/L ) ch[Cν,r](τ ),

ch[Cν,r](τ ) =
η(τ )

2k · θL+ν(0, τ )

∑
γ∈L′/L

e−πi〈ν,γ〉 ch+[M+
r ](τ, γ)

= (−1)δ( ν �∈(2L′)/L ) η(τ )

2k · θL+ν(0, τ )

∑
γ∈L′/L

e−πi〈ν,γ〉 ch−[M+
r ](τ, γ).

For the T transformations, we get

eπi(〈λ,λ〉−
1
12 )TCλ,r

= TMr
,

and finally, we can calculate the S-transformations by inducing up to Leven
k -modules

and then using equations (26), (27), and (28) as in [CKM, Thm. 4.42]:

Sχ,C
Cλ,r1

,Cμ,r2
· e2πi〈λ,μ〉 ·

√
k/2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sr,r′ if λ, μ ∈ 2L′/L,

(−1)rsr,r′ if λ ∈ 2L′/L, μ �∈ 2L′/L

or μ ∈ 2L′/L, λ �∈ 2L′/L,

(−1)r+r′sr,r′ if λ, μ �∈ 2L′/L.
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