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ESSENTIAL NORMAL AND SPUN NORMAL SURFACES

IN 3-MANIFOLDS
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(Communicated by David Futer)

Abstract. Normal and spun normal surfaces are key tools for algorithms in
3-dimensional geometry and topology, especially concerning essential surfaces.
In a recent paper of Dunfield and Garoufalidis, an interesting criterion is given
for a spun normal surface to be essential in an ideal triangulation of a 3-

manifold with a complete hyperbolic metric of finite volume. Their method
uses ideal points of character varieties and Culler–Shalen theory. In this paper,
we give a simple proof of a criterion which applies for both triangulations
of closed 3-manifolds and ideal triangulations of the interior of compact 3-
manifolds, giving a sufficient condition for a normal or a spun normal surface
to be essential. Our criterion implies that of Dunfield and Garoufalidis. We
also give a necessary and sufficient condition for a normal surface in a closed
3-manifold to be essential, using sweepouts and almost normal surface theory.

1. Introduction

A fundamental question in the topology of closed 3-manifolds concerns the ex-
istence of embedded essential (incompressible) surfaces. A closed irreducible 3-
manifold is called Haken if it contains such a surface. In [19], it was shown that
if a closed irreducible 3-manifold M is homotopy equivalent to a Haken 3-manifold
N , then there is a homeomorphism between M and N . Recently Agol has solved
the virtual Haken conjecture in [1], showing that any closed irreducible 3-manifold
with infinite fundamental group is finitely covered by a Haken 3-manifold.

However, from an algorithmic viewpoint, it is computationally challenging to
decide whether or not a given 3-manifold admits an essential surface. The funda-
mental result in this direction is that of Jaco and Oertel [9] that if there is such a
surface, it occurs at a vertex of the projective solution space of normal surfaces, de-
fined by Haken. (See [17] for an excellent survey of normal and spun normal surface
theory). However, it is still an interesting challenge to decide if an embedded nor-
mal surface is essential; see [3] where it is shown that the Weber–Seifert hyperbolic
3-manifold is non-Haken, i.e., has no such surfaces, answering a question posed by
Thurston. Also see [2], where an impressive list of essential surfaces in knot com-
plements is achieved, using a number of innovations in normal surface theory and
crushing triangulations. It is possible to combine the techniques of [2] and those
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in our final section. So instead of working with the result of cutting open along a
normal surface, one could instead cut open and crush the triangulation and work
with the resulting ideal triangulation. This may well be a more computationally
efficient process.

In [5], an interesting criterion is given which is sufficient to guarantee that an
embedded spun normal surface in an ideal triangulation is essential. The criterion
is that such a surface is a vertex class of the projective solution space and it has
quadrilaterals in every tetrahedron and which meet every edge of the triangula-
tion. The authors show experimentally by searching amongst ideal triangulations
of a given 3-manifold that such normal surfaces can often be found, hence giv-
ing interesting essential surfaces at various boundary slopes in, e.g., knot and link
complements. The main tool used in [5] is the ideal points of character varieties,
following [4].

In this paper, our aim is to extend the criterion of [5] by first applying to em-
bedded spun normal surfaces which are not necessarily vertices of the projective
solution space and second to embedded normal surfaces in triangulations of closed
3-manifolds.

We give two versions of our results in the case of closed 3-manifolds. The second
version uses sweepout technology and may be more useful for implementation. See
[7], [6] for a detailed discussion of sweepouts and a more refined algorithm to decide
when two embedded normal surfaces represent isotopic essential surfaces.

For general results about embedded spun normal surfaces, including existence
theory for essential surfaces, see [11–13,17,20]. In [14], we will give a version of [9]
for spun normal surfaces, showing that if there is an embedded essential spun normal
surface at a particular boundary slope for a manifold with an ideal triangulation
with one ideal vertex, then there is such a surface at a vertex of the projective
solution space.

2. Essential spun normal and normal surfaces

In this section, we will give our main result which describes a criterion for an
embedded normal or spun normal surface to be essential in a given triangulation.
This is an extension of the criterion of [5] as shown in the example presented in the
next section. Throughout this paper, all normal and spun normal surfaces will be
embedded.

Definition 1. Suppose thatM is a compact 3-manifold with incompressible bound-
ary. A properly embedded surface F is essential if it is incompressible and ∂-
incompressible. By this we mean the induced maps π1(F ) → π1(M) and π1(F, ∂F )
→ π1(M,∂M) are both injections.

Definition 2. Let M be the interior of a compact 3-manifold with an ideal tri-
angulation �. A spun normal surface S in M is an embedded surface formed
from elementary disks in the tetrahedra consisting of finitely many quadrilaterals
and infinitely many triangular disks. A nonempty intersection of S with a regu-
lar neighborhood of an ideal vertex forms an infinite cylinder, which is made of
an infinite number of copies of trivial normal tori, by cutting and pasting along a
family of parallel essential simple closed curves. The remainder of S outside these
cylinders which spiral towards ideal vertices is compact and called the core.
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Definition 3. The complexity of an embedded surface which is transverse to a
triangulation � of a 3-manifold is given by the lexicographically ordered pair (w, l)
where w is the weight, i.e., the number of intersections of the surface with the
edges, and l is the number of loops of intersection of the surface with the faces of
the triangulation.

Theorem 1. Suppose that M is either a closed 3-manifold or the interior of a com-
pact 3-manifold with incompressible tori or Klein bottles as boundary components.
Let � be a finite or ideal triangulation of M , respectively, and let Σ be a connected
normal or spun normal surface. The following is a sufficient condition for Σ being
essential:

(1) Every tetrahedron of � contains a quadrilateral of Σ, and
(2) suppose Σ′ is a connected normal or spun normal surface which has Euler

characteristic greater than that of Σ. Then any surface normally isotopic to Σ′

intersects Σ.

Proof. Let Σ be chosen to satisfy conditions (1) and (2). If Σ is 1-sided, we replace

it by the boundary Σ̃ of a small regular neighbourhood. This gives a new normal or
spun normal surface satisfying conditions (1) and (2). Moreover, it is well known

that Σ is essential if and only if Σ̃ is essential. So we may assume from now on that
Σ is 2-sided.

The first step is to remove a small open regular neighbourhood of each vertex,
chosen disjoint from Σ, and then split along Σ to form a 3-manifold M∗. There is
a decomposition of M∗ into cells and copies of products of a triangular disk and a
half open interval [0, 1) adjacent to the normal tori linking ideal vertices where all
cells are truncated triangular prisms, which we call truncated prisms, or products
of triangular or quadrilateral disks and closed intervals, which we call product cells
(see Figure 1).

Figure 1. Cell types after truncating and splitting along Σ: shad-
owed faces are in Σ ⊂ ∂M∗ if the triangulation is ideal or in Σ or
a vertex linking normal 2-sphere in the closed case

Each boundary face of such cells is called an external face if it is in ∂M∗ or
an internal face if in intM∗. We call an arc in an internal face a vertical arc or
simply vertical if the ends are in two different edges in ∂M∗, a horizontal arc or
simply horizontal if the ends are in two different edges of intM∗, a mixed arc or
simply mixed if one end is in ∂M∗ and the other in intM∗, and trivial otherwise
(See Figure 2.). We also describe loops in the interior of internal faces as trivial.

Suppose there is a compressing disk D for Σ. By the usual transversality ar-
gument, reducing the complexity of the compressing disk at each stage, we can
remove all trivial loops, together with trivial and mixed arcs of intersection of D
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Figure 2. Arc types in internal faces

a

b

compress along a

isotope along b

isotope to boundary

Figure 3. Simplifying intersections of D with product regions

Figure 4. Intersections of D with product cells

with product cells (See Figure 3.). Subsequently, a least complexity choice of D will
meet the vertical boundaries of product cells in vertical arcs and horizontal simple
closed curves on the internal boundary annuli (see Figure 4). Note that such a least
complexity disk D will also have no mixed arc of intersection cutting off a vertex
in an internal quadrilateral or hexagonal face of a truncated prism.

The key idea is then to study how the compressing diskD meets each product cell
or truncated prism. There are two types of intersection (which we call horizontal
and vertical) of the intersection disks of D with a product cell and three types
(which we call type 1, type 2, and type 3) with a truncated prism (see Figure 4,
Figure 5, and Figure 6).

We first show that there are no vertical arcs in the intersection of D with faces
of product cells and truncated prisms. Suppose that there is such an arc. Since the
ends of a vertical arc are in ∂M∗, such an arc bisects D into two bigons. Choose an
outermost bigon B in D cut off by some vertical arc α, possibly with horizontal and
mixed arcs inside the bigon B, but no other vertical arcs except for α. Consider
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Figure 5. Intersection disks of type 1 and type 2

Figure 6. Intersection disks of type 3 in a truncated prism

the intersection disk d of B (so also of D) with the cell containing the vertical arc
α (see Figure 7). We can immediately rule out d being vertical in a product cell
or of type 3 in truncated prism, as in both cases there would be additional vertical
arcs in B other than α. But all other intersection disk types have no vertical arcs,
so we conclude that D has no vertical arc intersections.

Therefore it follows that every intersection disk of D with a cell must be hor-
izontal if the cell is a product, or of type 1 or type 2 if the cell is a truncated
prism. Now we claim that compressing Σ along D results in a normal surface Σ′

with χ(Σ′) > χ(Σ) and Σ′ can be normally isotoped off Σ, contrary to hypothesis.
This is easy to see, since we can directly check that the result of such a compres-

sion in all the cells met by D gives a new normal surface. If ∂D is nonseparating,
then we can take Σ′ as the result of compression along D. If ∂D is separating,
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Figure 7. Outermost vertical arc and bigon in D

we can pick Σ′ as either component of the result of compression along D. So the
conclusion is that Σ is incompressible, and this completes the proof. �

Corollary 1. Suppose that M is a closed 3-manifold or the interior of a compact 3-
manifold with incompressible tori or Klein bottles as boundary components. Assume
that � is a finite or ideal triangulation of M , respectively, and let Σ be a normal or
spun normal surface. If every tetrahedron of � contains a quadrilateral of Σ and
[Σ] is a vertex class in the projective solution space for Q normal and spun normal
surface theory, then Σ is essential.

Proof. Suppose that a normal or spun normal surface Σ satisfies the conditions of
the corollary. We claim it satisfies condition (2) of Theorem 1.

Assume that there is a normal or spun normal surface Σ∗ which is disjoint from
Σ. Note that since Σ has at least one quadrilateral in each tetrahedron of � and
Σ∗ is disjoint from Σ, the quadrilateral types of Σ∗ must form a subset of the
quadrilateral types of Σ. Then it is clear that a multiple of [Σ] must contain all
the quadrilaterals of [Σ∗]. Hence we can write n[Σ] = [Σ∗] + [Σ′] for some normal
or spun normal class [Σ′]. But since [Σ] is a vertex class, [Σ′] = [0]. So [Σ∗] = [Σ],
and this completes the proof of the corollary. �

Remark 1. Note that in [5], the conditions to imply that a spun normal surface
is essential are that every tetrahedron and edge are met by a quadrilateral of the
spun normal surface and that the surface is a vertex solution. Corollary 1 clearly
extends the result of [5] to apply to closed as well as ideal triangulations and does
not require the condition that all edges are met by quadrilaterals. (However, it
is easy to see that if there is an edge not met by quadrilaterals, then the surface
cannot be a vertex solution, by the same argument as in the corollary. So this
condition is actually redundant.)

3. Example

Consider the six tetrahedron triangulation of the 3-torus M , shown in Figure 8
as a 3-cube with opposite faces identified in the usual way. There is an embedded
normal torus Σ which has a quadrilateral in each tetrahedron. Σ has a further 12
triangular disks shown as Areas 1 and 2 in Figure 8.

This is clearly essential and by Poincaré duality represents a class in H2(M)
dual to a cohomology class which evaluates to one on each of the homology classes
of the coordinate edge loops e1, e2, e3. We claim first that [Σ] is not a vertex class.
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(Area 1)

(Area 2)

6 quadrilaterals

6 triangles

6 triangles

Figure 8. Σ in 3-torus triangulated with 6 tetrahedra

To see this, note that each of the bisecting tori Ti, for 1 ≤ i ≤ 3, are readily proved
to be vertex solutions for the projective solution space (see Figure 9).

T1 T2 T3

Figure 9. Bisecting tori each having 2 quadrilaterals and 4 triangles

But then [Σ] = [T1] + [T2] + [T3] (see Figure 10), and so [Σ] is not a vertex solu-
tion. Clearly there is a facet F of the projective solution space which has vertices
including [Ti], for 1 ≤ i ≤ 3, and [Σ] is an interior point of F .

1

2

3

4

5

6

Figure 10. 6 quadrilaterals in Σ



4974 ENSIL KANG AND J. HYAM RUBINSTEIN

Figure 11. Σ with 6 quadrilaterals and 12 triangles

Finally we claim that there are no normal surfaces disjoint from Σ other than
Σ. Suppose that there was such a normal surface Σ

′
. Clearly its quadrilateral disk

types would have to be a subset of those of Σ so that Σ
′
has normal class in F .

Note that each of the 3 edges coming from the boundary of the 3-cube in Figure
10 are met by precisely 2 quadrilaterals from Σ. Here we are only considering the
original edges of the 3-cube, not the diagonals of the faces. (The 12 edges are
identified to form 3 edges in the triangulation of the 3-torus.) By the Q-matching

equations of [18] along the edges, if [Σ
′
] has one of the quadrilateral types meeting

one of these 3 edges, it must contain the other quadrilateral type meeting the edge.
Moreover, the multiplicity of each of these two quadrilateral types must be the same.
Hence we conclude that there is an equation of the form [Σ

′
] = k1[T1]+k2[T2]+k3[T3]

for some nonnegative integers k1, k2, and k3, since these two quadrilateral types are
precisely those in one of the three tori [Ti], for i = 1, 2, 3. But this then implies that

[Σ
′
] is a multiple m of a torus T

′
, since we can cut and paste k1[T1], k2[T2], and

k3[T3] to form a normal torus T
′
with multiplicity m equal to the greatest common

divisor of k1, k2, and k3.
But then the homology class of T

′
is different from Σ unless k1 = k2 = k3. If

these tori are in different classes, they have nontrivial intersection, contrary to the
assumption. If they are in the same class, then Σ

′
is a multiple of Σ.

So this shows that the conditions of Theorem 1 are strictly weaker than those of
[5].

4. Sweepouts

In [15], [16], [7], sweepouts are used to produce almost normal surfaces. Employ-
ing this technology, we can give a necessary and sufficient condition for a normal
surface in a closed triangulated 3-manifold M to be essential. See [6] for a more
refined result, namely an algorithm to decide if two normal surfaces are isotopic or
nonisotopic essential surfaces.

Definition 4. An embedded surface Σ′ in a closed triangulated 3-manifold M is
almost normal if it satisfies one of the following two conditions:
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• Σ′ is obtained from an embedded normal surface by attaching a small tube
inside a tetrahedron Δ running between two normal disks. Moreover, the
tube is unknotted, i.e., there is a subarc λ of an edge, which meets Σ′ only
at the endpoints of λ and there is an arc μ running along Σ′ crossing the
tube once so that ∂λ = ∂μ and λ ∪ μ bound an embedded disk in Δ.

• There is a properly embedded octagon in one of the tetrahedra Δ whose
boundary consists of 8 normal arcs in the faces of Δ and the remainder of
Σ′ consists of normal triangular and quadrilateral disks in the tetrahedra
of M .

We now sketch the main ideas of the next result.

Definition 5. A pair (Σ,Σ
′
) of disjoint closed embedded 2-sided surfaces in a closed

triangulated 3-manifold is called adjacent if Σ is normal, Σ
′
is almost normal, and

Σ,Σ
′
cobound a product region R containing no normal or almost normal surfaces

except those normally isotopic to components of ∂R, i.e., Σ or Σ
′
.

To simplify the discussion, we will assume that M has a 0-efficient 1 vertex
triangulation, as in [10]. Any closed irreducible 3-manifold has such a triangulation
[10], where irreducible means any embedded 2-sphere bounds a 3-ball.

Let Σ̃ denote the boundary of a small regular neighbourhood of Σ when Σ is a
1-sided embedded normal surface. We replace Σ by Σ̃ in our discussion if Σ is 1-
sided, since it is sufficient to decide if Σ̃ is essential, and so we only need to consider
2-sided surfaces. Let M∗ be the result of splitting M open along Σ. Then M∗ has
one or two components, depending on whether Σ is nonseparating or separating,
respectively.

Our key idea is that if Σ is normal and not essential, then there must be an
adjacent pair (Σ,Σ

′
). So we immediately see that if there is no such adjacent pair,

then Σ is essential; see Corollary 2. However, to make this into a necessary and
sufficient criterion for a normal surface Σ to be essential, we iterate the process and
look at maximal sequences of adjacent pairs starting with Σ.

Theorem 2. Suppose that M is a closed irreducible 3-manifold and Σ is a 2-sided
normal surface in M . Then Σ is essential if and only if one of the two alternate
sets of the following conditions are satisfied:

(1) M is not a surface bundle over a circle with fiber Σ.
(2) There are two (possibly empty) sequences of disjoint almost normal and

normal surfaces Σ
′

i,Σi for i = 1, 2, . . . , s, each homeomorphic to Σ.

(3) Each of the pairs (Σ
′

i,Σi), (Σi,Σ
′

i+1), and (Σ,Σ
′

1) is adjacent, and all the
product regions the pairs cobound have disjoint interiors.

(4) There are no additional almost normal surfaces Σ
′′

homeomorphic to Σ

with the property that Σs,Σ
′′
are adjacent.

The second possibility is:

(1) M is a surface bundle over a circle with fiber Σ.
(2) There is one nonempty sequence of disjoint almost normal and normal sur-

faces Σ
′

i,Σi for i = 1, 2, . . . , s each homeomorphic to Σ and Σs = Σ.

(3) Each of the pairs (Σ
′

i,Σi), (Σi,Σ
′

i+1), and (Σ,Σ
′

1) is adjacent, and all the
product regions the pairs cobound have disjoint interiors.

Proof. We first prove that these conditions imply that Σ is essential. The argument
is by contradiction. Suppose that Σ is not essential but satisfies the conditions of the
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theorem. Then Σ has a compressing disk. Note that all the surfaces Σ, . . . ,Σs,Σ
′

s

are topologically parallel, i.e., cobound product regions with each other. Moreover,
clearly M is not a surface bundle over a circle with fiber Σ. So we know that either
Σ is separating or nonseparating but not a fiber of a bundle structure, and the first
set of conditions (1), (2), (3), and (4) are satisfied.

By adding a thickening of a maximal collection of compressing disks to a regular
neighbourhood of Σs, we can find a region R in each component of M∗ with the
following properties:

• ∂R contains Σs but R contains none of the other surfaces Σi,Σ
′

i.
• ∂R possibly contains some components which are essential surfaces in M∗.
• R is a handlebody or compression body.

sM

*M

M"

M1
M ’1

R

...
M

Figure 12. Sequence of adjacent pairs (Σ
′

i,Σi)

Next, we use the sweepout method of [15] or [16] or [7] across R. Notice that all
the components of ∂R can be chosen to be normal surfaces, since the extra boundary
components are essential surfaces in M∗ and so can be normalised. The approach in
[7] applies to this situation of sweeping across a handlebody or compression body
with normal boundary surfaces. The conclusion is that there is some minimax
complexity surface amongst all sweepouts, which is almost normal. Let Σ∗ denote
this almost normal minimax surface (see Figure 12).

By a simple iteration of this process, we can deduce that a (possibly new) almost

normal surface Σ
′′
is generated which is homeomorphic to Σ and is in fact adjacent

to Σs. For if Σ∗ is obtained by compressing Σs, then it is incompressible in the
smaller compression body region R∗ between Σ∗ and Σs. So we can push Σ∗ into
R∗ and normalise it to form a normal surface Σ̂ parallel to Σ∗. But now we can run
a new sweepout in the compression body between Σs and Σ̂ to form a new almost
normal surface Σ∗∗. After a finite number of steps, this process must terminate,
by Haken–Kneser finiteness (see [8]). But the only way it can terminate is if an
almost normal surface is constructed which normalises to Σs. (For if at any step
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an almost normal surface is formed, for which normalisation towards Σs produces
a normal surface different from Σs, then a further sweepout step is possible.) We

can now take this as our choice for Σ
′′
.

Notice that since normalisation of Σ
′′
towards Σs gives Σs, there are no embedded

normal (or almost normal) surfaces in the product region between Σs and Σ
′′
. For

such a surface would be a barrier to normalisation. (See [10] for a discussion
of barriers for normalisation.) So we have found an almost normal surface in R
adjacent to Σs, contrary to the assumption and which completes the proof sketch.

We now consider the converse, namely, that if Σ is essential, it satisfies the
conditions of the theorem. Consider first the case that M is a surface bundle over a
circle with fiber Σ. Then the existence of the sequence of adjacent pairs of normal
and almost normal copies of Σ follows by the standard sweepout method; see [7].

Next assume that M is not a surface bundle over a circle with fiber Σ. The
argument in this case is by contradiction, i.e., assume that the conditions fail but
Σ is essential. Suppose we have found zero, one or two sequences of normal and
almost normal surfaces for M∗ satisfying the conditions (2) and (3) of the theorem,
but condition (4) fails. We can also assume our sequences are as long as possible, so
no further adjacent pairs can be added. By assumption, there is an almost normal
surface Σ

′′
disjoint from our sequence, so that Σ

′′
is homeomorphic to Σ or Σ̃ and

bounds a region with Σs so that the pair (Σs,Σ
′′
) are adjacent.

But now we can push off Σ
′′
away from the product region cobounded with Σs to

reduce complexity, i.e., by performing the usual normalisation moves. Since Σ and
the surface Σ

′′
parallel to either Σ or Σ̃ are essential, normalisation must produce

a new normal surface homeomorphic to Σ or Σ̃. So we have extended our sequence
with a new adjacent pair, satisfying conditions (2) and (3) of the theorem.

Therefore there is no maximal sequence satisfying conditions (2) and (3). But an
elementary application of Haken–Kneser finiteness methods shows that the process
of building such a sequence must terminate after a finite number of steps, depending
only on the triangulation (see [8]). So this completes the proof of the theorem. �
Corollary 2. Suppose that M is a closed 3-manifold with a 0-efficient triangulation
and Σ is a closed embedded normal surface. If Σ is 2-sided, assume there are no
almost normal surfaces disjoint from Σ which are homeomorphic to Σ. Similarly
if Σ is 1-sided, assume there are no disjoint almost normal surfaces homeomorphic
to Σ̃. Then Σ is essential.

Proof. The case when Σ is 2-sided follows immediately from Theorem 2. Suppose
next that Σ is 1-sided. Consider the boundary Σ̃ of a small regular neighbourhood
of Σ. We can apply Theorem 2 to Σ̃ and deduce it is essential. But then as is well
known this also implies that Σ is essential. �
Remark 2. Note that Corollary 2 implies Theorem 1 for the case of closed 3-
manifolds with 0-efficient triangulations. Suppose M is closed, triangulated, and
contains an embedded normal surface Σ which has a quadrilateral in every tetra-
hedron and there are no normal surfaces disjoint from Σ with Euler characteristic
greater than that of Σ. We claim that there are no almost normal surfaces disjoint
from Σ, homeomorphic to Σ or Σ̃ depending on whether we are in the 2-sided or
1-sided cases. For if there is a tubed such almost normal surface, then removing
the tube gives a normal surface with Euler characteristic greater than Σ or Σ̃ and
disjoint from Σ, contrary to the assumption. On the other hand, there cannot be an
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almost normal surface with an octagon, which is disjoint from Σ, since any octagon
in a tetrahedron Δ must intersect the quadrilaterals of Σ in Δ.

Remark 3. Theorem 2 gives a new way of testing whether or not normal surfaces
Σ are essential. So together with the result of [9], to decide if a closed irreducible
3-manifold is Haken, i.e., contains an essential surface, the finite number of vertex
solutions of the projective solution space can be checked to see whether or not any
are essential. If we consider the cell structure of a component of M∗, the result of
cutting open along Σ or Σ̃, then by studying normal (almost normal) surface theory
in this space, we can check the conditions of Theorem 2. In [6] this method is much
further developed to give an algorithm to decide if two normal surfaces represent
isotopic or nonisotopic essential surfaces.
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