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ASYMPTOTIC PROPERTIES OF BANACH SPACES

AND COARSE QUOTIENT MAPS

SHENG ZHANG

(Communicated by Thomas Schlumprecht)

Abstract. We give a quantitative result about asymptotic moduli of Banach
spaces under coarse quotient maps. More precisely, we prove that if a Banach
space Y is a coarse quotient of a subset of a Banach space X, where the coarse
quotient map is coarse Lipschitz, then the (β)-modulus of X is bounded by
the modulus of asymptotic uniform smoothness of Y up to some constants. In
particular, if the coarse quotient map is a coarse homeomorphism, then the
modulus of asymptotic uniform convexity of X is bounded by the modulus of
asymptotic uniform smoothness of Y up to some constants.

1. Introduction

The study of asymptotic geometry of Banach spaces dates back to Milman [14], in
which he introduced two asymptotic properties that are now known as asymptotic
uniform convexity and asymptotic uniform smoothness (cf. [9]). For a Banach
space X and t > 0, the modulus of asymptotic uniform smoothness of X is defined
by

ρ̄X(t) := sup
x∈SX

inf
dim(X/Y )<∞

sup
y∈SY

‖x+ ty‖ − 1,

and the modulus of asymptotic uniform convexity of X is defined by

δ̄X(t) := inf
x∈SX

sup
dim(X/Y )<∞

inf
y∈SY

‖x+ ty‖ − 1.

A Banach space X is said to be asymptotically uniformly smooth (AUS for short) if
limt→0 ρ̄X(t)/t → 0 as t → 0, and it is said to be asymptotically uniformly convex
(AUC for short) if δ̄X(t) > 0 for all 0 < t ≤ 1.

In close relation to AUC and AUS is Rolewicz’s property (β) that was originally
defined using the terminology of “drop” [16]; later Kutzarova [12] gave an equivalent
definition, according to which one can define a modulus for the property: for a
Banach space X and t ∈ (0, a], where a ∈ [1, 2] is a number that depends only on
the space X, the (β)-modulus of X is defined by

β̄X(t) = 1− sup

{
inf
n≥1

{
‖x− xn‖

2

}
: x, xn ∈ BX , sep({xn}∞n=1) ≥ t

}
.
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Here sep({xn}∞n=1) denotes the separating constant of the sequence {xn}∞n=1:

sep({xn}∞n=1) := inf
i �=j

‖xi − xj‖.

A Banach space X is said to have property (β) if β̄X(t) > 0 for all t > 0, and for
p ∈ (1,∞) we say that the (β)-modulus of X has power type p, or X has property
(βp), if there is a constant C > 0 independent of t so that β̄X(t) ≥ Ctp for all t > 0.

A reflexive Banach space that is simultaneously AUC and AUS has property (β)
[11]. Conversely, if a Banach space X has property (β), then it must be reflexive
and AUC. More precisely, it was shown in [7] that β̄X(t) ≤ δ̄X(2t) for all t ∈ (0, 1/2].
However, property (β) does not imply AUS isometrically [11], but every Banach
space that has property (β) admits an equivalent AUS norm. A complete renorming
argument of property (β) can be found in the recent paper by Dilworth, Kutzarova,
Lancien, and Randrianarivony [6].

Bates, Johnson, Lindenstrauss, Preiss, and Schechtman first studied nonlinear
quotient maps in the Banach space setting [2]. A map f : X → Y between two
metric spaces X and Y is said to be co-uniformly continuous if for every ε > 0,
there exists δ = δ(ε) > 0 such that for all x ∈ X,

f(BX(x, ε)) ⊇ BY (f(x), δ).

If δ can be chosen to be ε/C for some constant C > 0 that is independent of ε and
x, then f is said to be co-Lipschitz. A uniform (resp., Lipschitz) quotient map is
a map that is both uniform continuous and co-uniform continuous (resp., Lipschitz
and co-Lipschitz), and Y is said to be a uniform (resp., Lipschitz) quotient of X if
there exists a uniform (resp., Lipschitz) quotient map from X onto Y .

Lima and Randrianarivony [13] showed that �q is not a uniform quotient of �p
for q > p > 1. Their proof relies on a technical argument called “fork argument”.
On the other hand, Baudier and Zhang [3] gave a different proof by estimating the
�p-distortion of the countably branching trees. The two proofs are based on similar
ideas that use the quantification of property (β). The theorem below, which first
appeared in [5], is the quantitative version of the Lima–Randrianarivony result.

Theorem 1.1. Let X,Y be two Banach spaces. S is a subset of X and f : S → Y
is a uniform quotient map that is Lipschitz for large distances. Then there exists a
constant C > 0 that depends only on the map f such that for all 0 < t ≤ 1,

β̄X(Ct) ≤ 3

2
ρ̄Y (t).

The main goal of this paper is to give quantitative results of this kind in the
coarse category. It should be noted that although property (β) is preserved under
uniform quotient maps up to renorming (cf. [7] and [6]), one cannot compare β̄X

and β̄Y even if X and Y are uniformly homeomorphic. Indeed, [7] gave an example
of two uniformly homeomorphic Banach spaces, one of which has property (βp),
p ∈ (1,∞), while the other does not admit any equivalent norm with property (βp).

Throughout this article all Banach spaces are real and of infinite dimension. For
a metric space X, BX(x, r) denotes the closed ball centered at x with radius r. If
X is a Banach space, we denote by BX and SX its closed unit ball and unit sphere,
respectively.
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2. Coarse quotient maps

A map f : X → Y between two metric spaces X and Y is said to be coarsely
continuous if ωf (t) < ∞ for all t > 0, where

ωf (t) := sup{dY (f(x), f(y)) : dX(x, y) ≤ t}
is the modulus of continuity of f . If X is unbounded, one can define for every s > 0
the Lipschitz constant of f when distances are at least s:

Lips(f) := sup

{
dY (f(x), f(y))

dX(x, y)
: dX(x, y) ≥ s

}
.

Then for all t ≥ 0 and s > 0,

ωf (t) ≤ max{ωf (s),Lips(f) · t}.
Let

Lip∞(f) := inf
s>0

Lips(f) = lim
s→∞

Lips(f).

The map f is said to be coarse Lipschitz if Lip∞(f) < ∞ or, equivalently, if
Lips(f) < ∞ for some s > 0. If Lips(f) < ∞ for all s > 0, then we say that f is
Lipschitz for large distances. The map f is called a coarse Lipschitz embedding if
there exist d ≥ 0 and L,C > 0 such that for all x, y ∈ X,

dX(x, y) ≥ d =⇒ 1

C
dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y).(2.1)

The following notion of coarse quotient was introduced by Zhang [17].

Definition 2.1. Let X,Y be two metric spaces. For a constant K ≥ 0, a map
f : X → Y is said to be co-coarsely continuous with constant K if for every d > K,
there exists δ = δ(d) > 0 such that for all x ∈ X,

f(BX(x, δ))K ⊇ BY (f(x), d).

Here for a subset A of X, AK denotes the K-neighborhood of A:

AK := {x ∈ X : dX(x, a) ≤ K for some a ∈ A}.
If f is both coarsely continuous and co-coarsely continuous (with constant K),
then we say f is a coarse quotient map (with constant K). Y is said to be a coarse
quotient of X if there exists a coarse quotient map from X to Y .

Recall that a metric spaceX is said to be metrically convex if for every x0, x1 ∈ X
and 0 < λ < 1, there is a point xλ ∈ X such that

dX(x0, xλ) = λdX(x0, x1) and dX(x1, xλ) = (1− λ)dX(x0, x1).

It is well known that a coarsely continuous map defined on a metrically convex
space must be Lipschitz for large distances. Similarly, if the range space of a co-
coarsely continuous map with constant K is metrically convex, then the map is
“co-Lipschitz for large distances with constant K” in the sense of the lemma below.

Lemma 2.2. Let X,Y be two metric spaces and assume that Y is metrically convex.
If f : X → Y is a co-coarsely continuous map with constant K, then for every
d > K, there exists c = c(d,K) > 0 such that for all x ∈ X and r ≥ d,

f(BX(x, cr))K ⊇ BY (f(x), r).(2.2)
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Proof. For x ∈ X and r ≥ d, let n := 
 r
d−K �+ 1. Then for every y ∈ BY (f(x), r),

dY (y, f(x)) ≤ r < n(d − K). By the metric convexity of Y , one can find points
{ui}ni=0 in Y with u0 = f(x) and un = y such that dY (ui, ui−1) < d − K, i =
1, . . . , n. Since f is co-coarsely continuous with constant K, we have

u1 ∈ BY (f(x), d) ⊆ f(BX(x, δ))K ,

where δ = δ(d) > 0 is given by Definition 2.1, so there exists z1 ∈ BX(x, δ) so that
dY (u1, f(z1)) ≤ K. This implies, by the triangle inequality, that u2 ∈ BY (f(z1), d).
Again the co-coarse continuity of f yields another point, z2 ∈ BX(z1, δ), that satis-
fies dY (u2, f(z2)) ≤ K. Repeating the procedure n times we get points {zi}ni=0 inX,
where z0 = x, with the following properties: dX(zi, zi−1) ≤ δ and dY (ui, f(zi)) ≤
K, i = 1, . . . , n. It follows that zn ∈ BX(x, nδ), and hence y ∈ f(BX(x, nδ))K .

Note that n ≤
(

1
d−K + 1

d

)
r; thus (2.2) follows by putting c =

(
1

d−K + 1
d

)
δ. �

Remark 2.3. Lemma 2.2 improves Lemma 3.2 in [17], in which d > 2K is required.
Also, for d > K, it follows from (2.2) that the constant c = c(d,K) > 0 satisfies

f(BX(x, cr))d ⊇ BY (f(x), r)

for all x ∈ X and r > 0. It means that co-coarsely continuous maps are co-Lipschitz
with a slightly larger constant if the range space is metrically convex.

Under the assumption of Lemma 2.2, for d > K, let cd be the infimum of all
c that satisfy (2.2) for all x ∈ X and r ≥ d. Then {cd}d>K is nonincreasing and
bounded below by 0, hence converges. Denote c∞(f) := infd>K cd = limd→∞ cd.

Lemma 2.4. Let X,Y be two metric spaces and assume that Y is metrically convex
and unbounded. If f : X → Y is a coarse quotient map that is coarse Lipschitz,
then

Lip∞(f)c∞(f) ≥ 1.

Proof. Let f be a coarse quotient map with constant K. Since Y = f(X)K is
unbounded, it follows that X is also unbounded and Lips(f) > 0 for all s > 0. Now
by Lemma 2.2, for d > K, there exists c = c(d,K) > 0 such that for all x ∈ X and
r ≥ d,

BY (f(x), r) ⊆ f(BX(x, cr))K ⊆ BY (f(x), ωf (cr))
K = BY (f(x), ωf (cr) +K),

and this implies that r ≤ ωf (cr)+K. Since f is coarse Lipschitz, let s > 0 be such
that 0 < Lips(f) < ∞. Then for t ≥ s one has

r ≤ ωf (cr) +K ≤ max{ωf (t),Lipt(f) · cr}+K.

Choose large r so that Lipt(f) · cr > ωf (t). Then r ≤ Lipt(f) · cr +K, so

Lipt(f) · c ≥
r −K

r
,

and we finish the proof by letting r → ∞ and then t → ∞.
�



ASYMPTOTIC PROPERTIES AND COARSE QUOTIENT 4727

3. Quantitative results under coarse quotient maps

Before stating our main theorem, we need the following alternative definition for
the modulus of AUS. It may be well known to experts, but we still give a proof
here since we could not find one in the literature.

Proposition 3.1. Let X be a Banach space. Then for all 0 < t ≤ 1

ρ̄X(t) = sup
x∈BX

inf
dim(X/Y )<∞

sup
y∈SY

‖x+ ty‖ − 1.(3.1)

Proof. First we show that for every x, y ∈ X the function

f(λ) = max{‖λx+ y‖, ‖λx− y‖}
is nondecreasing on (0,∞). Let 0 < λ1 < λ2; we may assume that ‖λ1x + y‖ ≥
‖λ1x−y‖ and let x∗ ∈ SX∗ be such that x∗(λ1x+y) = ‖λ1x+y‖. Then x∗(x) ≥ 0,
since otherwise

‖λ1x+ y‖ ≥ ‖λ1x− y‖ ≥ (−x∗)(λ1x− y) > x∗(λ1x+ y) = ‖λ1x+ y‖.
Therefore, f(λ1) = x∗(x)λ1 + x∗(y) ≤ x∗(x)λ2 + x∗(y) ≤ ‖λ2x+ y‖ ≤ f(λ2).

Now we prove (3.1). If x = 0, then

inf
dim(X/Y )<∞

sup
y∈SY

‖x+ ty‖ = t ≤ ρ̄X(t) + 1.

For x ∈ BX\{0} one has

inf
dim(X/Y )<∞

sup
y∈SY

‖x+ty‖ = inf
dim(X/Y )<∞

sup
y∈SY

max{‖x+ ty‖, ‖x− ty‖}

≤ inf
dim(X/Y )<∞

sup
y∈SY

max

{∥∥∥∥ x

‖x‖ + ty

∥∥∥∥ ,
∥∥∥∥ x

‖x‖ − ty

∥∥∥∥
}

= inf
dim(X/Y )<∞

sup
y∈SY

∥∥∥∥ x

‖x‖ + ty

∥∥∥∥
≤ ρ̄X(t) + 1;

thus (3.1) follows. �

Theorem 3.2. Let X,Y be two Banach spaces. S is a subset of X and f : S → Y
is a coarse quotient map that is coarse Lipschitz. Then for all 0 < t ≤ 1,

β̄X

(
t

48Lip∞(f)c∞(f)

)
≤ 3

2
ρ̄Y (t).

Proof. Let K ≥ 0 be the constant associated with the coarse quotient map f . Since
f is coarse Lipschitz, it follows from Lemma 2.4 that 0 < Lip∞(f) < ∞. Choose
s > 0 such that Lips(f) < 2Lip∞(f). For 0 < t ≤ 1, one has 0 ≤ ρ̄Y (t) ≤ t ≤ 1.
Let ε > 0 be small so that

ε < min

{
1

2
,

2− ρ̄Y (t)

6Lip∞(f) + 2
, c∞(f)

}
,

and choose a large d that satisfies

d > max

{
3K

ε
,
12(2K + ωf (s))

t

}
and cd/3 < c∞(f) + ε.

Since c∞(f)− ε < cd, there exist zε ∈ S and R ≥ d such that

BY (f(zε), R) � f(BS(zε, R(c∞(f)− ε)))K ,
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so there is yε ∈ Y with 0 < ‖yε − f(zε)‖ ≤ R such that

BY (yε,K) ∩ f(BS(zε, R(c∞(f)− ε))) = ∅.(3.2)

Now cut the line segment [yε, f(zε)] into three equal pieces, namely, letm,M ∈ Y
be such that m− f(zε) = M −m = yε −M , then

m ∈ BY

(
f(zε),

R

3

)
⊆ f

(
BS

(
zε,

R

3
(c∞(f) + ε)

))K

,

so there is x ∈ S such that

‖x− zε‖ ≤ R

3
(c∞(f) + ε) and ‖m− f(x)‖ ≤ K.

By the definition of ρ̄Y (t) (Proposition 3.1), there exists a finite-codimensional
subspace Z of Y so that

sup
z∈SZ

∥∥∥∥M −m+
tR

3
z

∥∥∥∥ <
R

3
(1 + ρ̄Y (t) + ε).(3.3)

Set yn := M + tR
3 en, where {en}∞n=1 is a basic sequence in SZ with basis constant

less than 2. Then

‖yn −m‖ =

∥∥∥∥M −m+
tR

3
en

∥∥∥∥ <
R

3
(1 + ρ̄Y (t) + ε),

and by the triangle inequality,

‖yn − f(x)‖ <
R

3
(1 + ρ̄Y (t) + ε) +K <

R

3
(1 + ρ̄Y (t) + 2ε).

Thus

yn ∈ BY

(
f(x),

R(1 + ρ̄Y (t) + 2ε)

3

)

⊆ f

(
BS

(
x,

R(1 + ρ̄Y (t) + 2ε)(c∞(f) + ε)

3

))K

,

so there exists zn ∈ S such that

‖zn − x‖ ≤ R

3
(1 + ρ̄Y (t) + 2ε)(c∞(f) + ε) and ‖yn − f(zn)‖ ≤ K.

Also, the choice of m, M , and yn along with inequality (3.3) give us that

‖yε − yn‖ =

∥∥∥∥yε −M − tR

3
en

∥∥∥∥ =

∥∥∥∥M −m− tR

3
en

∥∥∥∥ <
R

3
(1 + ρ̄Y (t) + ε),

so again by the triangle inequality,

‖yε − f(zn)‖ <
R

3
(1 + ρ̄Y (t) + ε) +K <

R

3
(1 + ρ̄Y (t) + 2ε).

Hence

yε ∈ BY

(
f(zn),

R(1 + ρ̄Y (t) + 2ε)

3

)

⊆ f

(
BS

(
zn,

R(1 + ρ̄Y (t) + 2ε)(c∞(f) + ε)

3

))K

,

and this gives xn ∈ S that satisfies

‖xn − zn‖ ≤ R

3
(1 + ρ̄Y (t) + 2ε)(c∞(f) + ε) and ‖yε − f(xn)‖ ≤ K.
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On the other hand, in view of (3.2), one has ‖zε − xn‖ > R(c∞(f)− ε), so

‖zε − zn‖ ≥ ‖zε − xn‖ − ‖xn − zn‖

> R(c∞(f)− ε)− R

3
(1 + ρ̄Y (t) + 2ε)(c∞(f) + ε)

=
R

3
(c∞(f) + ε)

(
3(c∞(f)− ε)

c∞(f) + ε
− 1− ρ̄Y (t)− 2ε

)

≥ R

3
(c∞(f) + ε)

(
3

(
1− 2ε

c∞(f)

)
− 1− ρ̄Y (t)− 2ε

)

(∗)
≥ R

3
(c∞(f) + ε)(2− ρ̄Y (t)− (6Lip∞(f) + 2)ε) > 0,

where the inequality (∗) follows from Lemma 2.4 that Lip∞(f)c∞(f) ≥ 1.
Now for n, k ∈ N with n �= k,

‖yn − yk‖ =
tR

3
‖en − ek‖ >

tR

6
> ωf (s) + 2K;

also note that

‖yn − yk‖ ≤ ‖yn − f(zn)‖+ ‖f(zn)− f(zk)‖+ ‖yk − f(zk)‖
≤ 2K + ωf (‖zn − zk‖),

so ωf (‖zn − zk‖) > ωf (s), which implies ‖zn − zk‖ > s. It then follows that

tR

6
< ‖yn − yk‖ ≤ ‖yn − f(zn)‖+ ‖f(zn)− f(zk)‖+ ‖yk − f(zk)‖

≤ 2K + Lips(f)‖zn − zk‖

<
tR

12
+ 2Lip∞(f)‖zn − zk‖,

and hence ‖zn − zk‖ > tR/(24Lip∞(f)).
In summary, for n, k ∈ N with n �= k we have the following:

‖zn − zk‖ >
tR

24Lip∞(f)
, ‖zε − zn‖ >

R

3
(c∞(f) + ε)(2− ρ̄Y (t)− (6Lip∞(f) + 2)ε),

‖zε − x‖ ≤ R

3
(c∞(f) + ε), ‖zn − x‖ ≤ R

3
(c∞(f) + ε)(1 + ρ̄Y (t) + 2ε).

Denote

x̄ :=
zε − x

R
3 (c∞(f) + ε)(1 + ρ̄Y (t) + 2ε)

and x̄n :=
zn − x

R
3 (c∞(f) + ε)(1 + ρ̄Y (t) + 2ε)

.

Then x̄, x̄n ∈ BX , and for n �= k,

‖x̄n − x̄k‖ >
tR

24Lip∞(f)
· 1

R
3 (c∞(f) + ε)(1 + ρ̄Y (t) + 2ε)

≥ t

48Lip∞(f)c∞(f)
,

‖x̄− x̄n‖
2

>
1

2
· 2− ρ̄Y (t)− (6Lip∞(f) + 2)ε

1 + ρ̄Y (t) + 2ε
≥ 1− 3

2
ρ̄Y (t)− (3Lip∞(f) + 3)ε.

Therefore, by the definition of (β)-modulus we obtain

β̄X

(
t

48Lip∞(f)c∞(f)

)
≤ 3

2
ρ̄Y (t) + (3Lip∞(f) + 3)ε.

The proof is complete by letting ε → 0. �
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It is easy to compute that for 1 < p < ∞ and 0 < t ≤ 1,

δ̄�p(t) = ρ̄�p(t) = (1 + tp)
1
p − 1,

δ̄c0(t) = ρ̄c0(t) = 0,

so it follows from Theorem 4.1 in [6] that �p has property (βp), and thus we can
recover the main result of [17] as an immediate consequence of Theorem 3.2.

Corollary 3.3.

(i) �q is not a coarse quotient of �p for 1 < p < q < ∞.
(ii) c0 is not a coarse quotient of any Banach space with property (β).

4. Quantitative results under coarse homeomorphisms

This section is devoted to a special case of Theorem 3.2 when the coarse quotient
map f is a coarse homeomorphism. Recall that a coarsely continuous map f : X →
Y between two metric spaces X and Y is called a coarse homeomorphism if there
exists another coarsely continuous map g : Y → X such that

sup
x∈X

dX(g ◦ f(x), x) < ∞ and sup
y∈Y

dY (f ◦ g(y), y) < ∞.

It was proved in [17] that a coarse homeomorphism is necessarily a coarse quotient
map.

The main tool we need is approximate metric midpoint, which was first used
by Enflo (unpublished) to show that L1 is not uniformly homeomorphic to �1 (see,
e.g., [4]). Given two points x, y in a metric space X and δ ∈ (0, 1), the set of
δ-approximate metric midpoints between x and y is defined by

Mid(x, y, δ) :=

{
z ∈ X : max{dX(z, x), dX(z, y)} ≤ 1 + δ

2
dX(x, y)

}
.

The lemma below, which first appeared in [10] (see also Proposition 14.5.5 in [1]),
is sometimes known as the “stretching lemma”.

Lemma 4.1. Let f : X → Y be a coarse Lipschitz map from an unbounded metric
space X to a metric space Y . If Lip∞(f) > 0, then for any d > 0, any ε > 0, and
any 0 < δ < 1 there exist x, y ∈ X with dX(x, y) ≥ d such that

f(Mid(x, y, δ)) ⊆ Mid(f(x), f(y), (1 + ε)δ).

The next lemma, which follows immediately froms Propositions 3.4.1 and 3.4.2
in [15], relates the set of approximate metric midpoints in a Banach space with the
moduli of AUC and AUS of the space.

Lemma 4.2. Let X be a Banach space. x, y ∈ X and 0 < t ≤ 1.

(i) For every ε > 0, there exists a finite-codimensional subspace Y of X such
that

x+ y

2
+

t‖x− y‖
2

BY ⊆ Mid(x, y, ρ̄X(t) + ε).

(ii) If δ̄X(t) > 0, then for every 0 < ε < 1, there exists a compact subset K of
X such that

Mid(x, y, (1− ε)δ̄X(t)) ⊆ K +
3t‖x− y‖

2
BX .

We also need the following easy lemma.
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Lemma 4.3. Let f : X → Y be a map between Banach spaces X and Y . If there
exist r, s > 0, a point x ∈ X, an infinite-dimensional subspace Z of X, and a
compact subset K of Y such that

f(x+ rBZ) ⊆ K + sBY ,

then the compression modulus ϕf of f satisfies

ϕf (r) := inf{‖f(x)− f(y)‖ : ‖x− y‖ ≥ r} ≤ 2s.

Proof. Since Z is infinite dimensional, we may choose an r-separating sequence
{xn}∞n=1 in x + rBZ and let f(xn) = zn + yn, where zn ∈ K and yn ∈ sBY for
every n ∈ N. For ε > 0, since K is compact, by passing to a subsequence we may
assume that ‖zn − zm‖ < ε for all m,n ∈ N. Then for m �= n,

2s ≥ ‖yn − ym‖ ≥ ‖f(xn)− f(xm)‖ − ‖zn − zm‖ ≥ ϕf (r)− ε,

and we are done by letting ε → 0. �

Theorem 4.4 below is a variant of Theorem 3.5.1 in [15]. Here we present a proof
with improved constants.

Theorem 4.4. Let X and Y be two Banach spaces and let f : X → Y be a
coarse Lipschitz embedding with constants d, L, and C given by (2.1). Then for all
0 < t ≤ 1,

δ̄Y

(
t

7LC

)
≤ ρ̄X(t).

Proof. The proof is trivial if t ∈ (0, 1] satisfies δ̄Y (t/7LC) = 0, so we may assume
that δ̄Y (t/7LC) > 0. Let 0 < ε < 1/2. Note that 1/C ≤ Lip∞(f) ≤ L, then one
can apply the stretching lemma to find u, v ∈ X with ‖u− v‖ ≥ 2d/t that satisfy

f

(
Mid

(
u, v, (1− 2ε)δ̄Y

(
t

7LC

)))
⊆ Mid

(
f(u), f(v), (1− ε)δ̄Y

(
t

7LC

))
.

By Lemma 4.2(ii), there exists a compact set K ⊆ Y such that

Mid

(
f(u), f(v), (1− ε)δ̄Y

(
t

7LC

))
⊆ K +

3t

14LC
‖f(u)− f(v)‖BY

⊆ K +
3t

14C
‖u− v‖BY .

Assume that there exists τ > 0 such that

(1− 2ε)δ̄Y

(
t

7LC

)
> ρ̄X(t) + τ.

Then by Lemma 4.2(i), there exists a finite-codimensional subspace Z of X such
that

f

(
Mid

(
u, v, (1− 2ε)δ̄Y

(
t

7LC

)))
⊇ f

(
u+ v

2
+

t‖u− v‖
2

BZ

)
,

so we have

f

(
u+ v

2
+

t‖u− v‖
2

BZ

)
⊆ K +

3t

14C
‖u− v‖BY .

Now it follows from Lemma 4.3 that

t‖u− v‖
2C

≤ ϕf

(
t‖u− v‖

2

)
≤ 3t

7C
‖u− v‖,
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which is a contradiction. Therefore, we must have

(1− 2ε)δ̄Y

(
t

7LC

)
≤ ρ̄X(t).

We then finish the proof by letting ε → 0. �

Theorem 4.5. Let X,Y be two Banach spaces. S is a subset of X and f : S → Y
is a coarse homeomorphism that is coarse Lipschitz. Then for all 0 < t ≤ 1,

δ̄X

(
t

56Lip∞(f)c∞(f)

)
≤ ρ̄Y (t).

Proof. Let g : Y → S be a coarsely continuous map that satisfies

sup
x∈S

‖g ◦ f(x)− x‖ := M < ∞ and sup
y∈Y

‖f ◦ g(y)− y‖ := K < ∞.

We claim that g is a coarse Lipschitz embedding from Y into X. Indeed, it follows
from Proposition 2.5 in [17] that f is a coarse quotient map with constant K.
Choose s > 2K such that Lips(f) < 2Lip∞(f), and let d > 6K be such that
ϕg(d) > s. For y1, y2 ∈ Y with ‖y1 − y2‖ ≥ d, one has ‖g(y1)− g(y2)‖ ≥ ϕg(d) > s,
and thus

‖f ◦ g(y1)− f ◦ g(y2)‖ ≤ 2Lip∞(f)‖g(y1)− g(y2)‖.
By the triangle inequality,

‖f ◦ g(y1)− f ◦ g(y2)‖ ≥ ‖y1 − y2‖ − 2K ≥ 2

3
‖y1 − y2‖,

so we obtain
1

3Lip∞(f)
‖y1 − y2‖ ≤ ‖g(y1)− g(y2)‖.

On the other hand, we could make d even larger so that cd−K < 2c∞(f) and

d

3
· c∞(f) > ωg(K) +M.

Note that

‖y1 − y2‖+K ≥ r := ‖y1 − f ◦ g(y2)‖ ≥ ‖y1 − y2‖ −K ≥ d−K > K,

so it follows from Lemma 2.2 and the definition of cd−K that

y1 ∈ BY (f ◦ g(y2), r) ⊆ f(BS(g(y2), 2rc∞(f)))K ,

and from this we can find x ∈ S satisfying

‖x− g(y2)‖ ≤ 2rc∞(f) and ‖y1 − f(x)‖ ≤ K.

Now again by the triangle inequality,

‖g(y1)− g(y2)‖ ≤ ‖g(y1)− g ◦ f(x)‖+ ‖g ◦ f(x)− x‖+ ‖x− g(y2)‖
≤ ωg(K) +M + 2rc∞(f)

≤ c∞(f)

3
‖y1 − y2‖+ 2c∞(f)(‖y1 − y2‖+K)

≤ 8c∞(f)

3
‖y1 − y2‖.

Therefore, for sufficiently large d, one has

1

3Lip∞(f)
‖y1 − y2‖ ≤ ‖g(y1)− g(y2)‖ ≤ 8c∞(f)

3
‖y1 − y2‖
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whenever ‖y1−y2‖ ≥ d. The desired inequality then follows from Theorem 4.4. �
Remark 4.6. In connection with the modulus of asymptotic uniform convexity,
the modulus of asymptotic midpoint uniform convexity of a Banach space X was
introduced in [8] as follows:

δ̃X(t) := inf
x∈SX

sup
dim(X/Y )<∞

inf
y∈SY

max{‖x+ ty‖, ‖x− ty‖} − 1.

A Banach space X is said to be asymptotically midpoint uniformly convex (AMUC

for short) if δ̃X(t) > 0 for all 0 < t ≤ 1. It was shown in the proof of Theorem 2.1

in [8] that Lemma 4.2(ii) still holds true for δ̃X(t). Therefore, Theorems 4.4 and
4.5 can be strengthened by replacing the AUC modulus with the AMUC modulus.

Corollary 4.7.

(i) �q does not coarse Lipschitz embed into �p for 1 < p < q < ∞.
(ii) c0 does not coarse Lipschitz embed into any AMUC Banach space.
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Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces,
Proc. London Math. Soc. (3) 84 (2002), no. 3, 711–746. MR1888429

[10] Nigel J. Kalton and N. Lovasoa Randrianarivony, The coarse Lipschitz geometry of lp ⊕ lq ,
Math. Ann. 341 (2008), no. 1, 223–237. MR2377476

[11] Denka Kutzarova, An isomorphic characterization of property (β) of Rolewicz, Note Mat. 10
(1990), no. 2, 347–354. MR1204212

[12] Denka Kutzarova, k-β and k-nearly uniformly convex Banach spaces, J. Math. Anal. Appl.
162 (1991), no. 2, 322–338. MR1137623

http://www.ams.org/mathscinet-getitem?mr=3526021
http://www.ams.org/mathscinet-getitem?mr=1736929
http://www.ams.org/mathscinet-getitem?mr=3483124
http://www.ams.org/mathscinet-getitem?mr=832247
http://www.ams.org/mathscinet-getitem?mr=3209329
http://www.ams.org/mathscinet-getitem?mr=3596040
http://www.ams.org/mathscinet-getitem?mr=3461033
http://www.ams.org/mathscinet-getitem?mr=3446981
http://www.ams.org/mathscinet-getitem?mr=1888429
http://www.ams.org/mathscinet-getitem?mr=2377476
http://www.ams.org/mathscinet-getitem?mr=1204212
http://www.ams.org/mathscinet-getitem?mr=1137623


4734 SHENG ZHANG

[13] Vegard Lima and N. Lovasoa Randrianarivony, Property (β) and uniform quotient maps,
Israel J. Math. 192 (2012), no. 1, 311–323. MR3004085

[14] V. D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball (Russian),
Uspehi Mat. Nauk 26 (1971), no. 6(162), 73–149. MR0420226

[15] Nirina Lovasoa Randrianarivony, Nonlinear classification of Banach spaces, Thesis (Ph.D.)–
Texas A&M University, ProQuest LLC, Ann Arbor, MI, 2005. MR2707820

[16] S. Rolewicz, On Δ-uniform convexity and drop property, Studia Math. 87 (1987), no. 2,

181–191. MR928575
[17] Sheng Zhang, Coarse quotient mappings between metric spaces, Israel J. Math. 207 (2015),

no. 2, 961–979. MR3359724

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 611756,

People’s Republic of China

Email address: sheng@swjtu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=3004085
http://www.ams.org/mathscinet-getitem?mr=0420226
http://www.ams.org/mathscinet-getitem?mr=2707820
http://www.ams.org/mathscinet-getitem?mr=928575
http://www.ams.org/mathscinet-getitem?mr=3359724

	1. Introduction
	2. Coarse quotient maps
	3. Quantitative results under coarse quotient maps
	4. Quantitative results under coarse homeomorphisms
	Acknowledgment
	References

