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L∞-REGULARITY FOR A WIDE CLASS OF PARABOLIC

SYSTEMS WITH GENERAL GROWTH

TERESA ISERNIA

(Communicated by Joachim Krieger)

Abstract. We prove the local boundedness of weak solutions for the following
non-linear second order parabolic systems:

ut − div

(
ϕ′(|Du|)
|Du|

Du

)
= 0 in ΩT := Ω× (−T, 0),

where Ω ⊂ R
n is a bounded domain and ϕ is a given N-function. The proof

of this result is based on a Moser-type iteration argument.

1. Introduction

The aim of this work is the study of the local regularity of ϕ-caloric functions.
For ϕ-caloric functions we mean local weak solutions u : ΩT → R

N of the following
parabolic system:

(1.1) ut − div

(
ϕ′(|Du|)
|Du| Du

)
= 0 in ΩT := Ω× (−T, 0),

where Ω is a bounded domain in R
n, n ≥ 2, N > 1, T > 0, and ϕ : [0,∞) →

[0,∞) is a given N -function that satisfies the natural condition ϕ(s) ∼ s ϕ′(s)
uniformly in s ≥ 0 (see Section 2). In the model case ϕ(s) = sp and p > 1, (1.1)
gives the evolutionary p-Laplacian. Therefore, the system (1.1) can be seen as a
generalization of the p-Laplacian parabolic system.

In the last fifty years the study of the regularity of weak solutions for vectorial
problems has received great attention from many mathematicians. This is due to
the fact that, in contrast with the scalar case, we cannot expect that a weak solution
to a non-linear system is a classical solution; see for instance [8, 13].

In what follows, we recall some well-known regularity results related to the in-
vestigation of elliptic systems. In the fundamental paper [21], Uhlenbeck proved
the everywhere C1,α-regularity for local minimizers of a p-growth functional with
p ≥ 2. Later on, a large number of generalizations were made. The case 1 < p < 2
was studied in [1], where also the dependence of the functional from x and u was
investigated. Lipschitz regularity for systems or functionals with general growth
conditions have been considered by many authors. The papers [15,16] of Marcellini
have been the starting point; in these papers the author established the Lipschitz
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continuity of weak solutions in the case of p−q- growth. In [17], the local Lipschitz
continuity of minimizers of the integral functional

(1.2) F(u) =

∫
Ω

f(Du) dx

has been proved assuming that the integrand function f(Du) is of the form g(|Du|),
where g : [0,+∞) → R is a convex function such that g′(s)

s is increasing in (0,+∞).
In [7] the authors dealt with functionals of the type (1.2) with f(Du) = g(x, |Du|)
and g(x, ·) an N -function: considering the problem in the Orlicz-Musielak spaces,
under the main assumption of the uniform Δ2-condition on g, the authors proved
the local boundedness of weak solutions. Marcellini & Papi [18] obtained the Lip-
schitz regularity for minimizers of functionals of the type (1.2) with growth condi-
tions general enough to embrace linear and exponential ones. In [12] the authors
established the C1,α-regularity for local minimizers of (1.2) in the case f(ξ) = ϕ(ξ),
where ϕ is a given N -function that satisfies the Δ2-condition together with its
conjugate, giving a unified approach to superquadratic and subquadratic p-growth,
besides considering more general functions than powers. Subsequently in [4] the
authors proved the local boundedness of the gradient of local minimizers under
weaker assumptions on ϕ.

Regarding the evolutionary framework, many authors are interested in the Hölder
regularity of weak solutions for parabolic systems with p-growth. In [9,10] has been
established the Hölder continuity of the gradient of solutions to parabolic systems
in the case p > 2n

n+2 , while Wiegner [22] obtained, independently, the same result

for p ≥ 2. Choe [6] proved that if u ∈ Lq
loc with q > N(2−p)

p , then it is possible to

establish the Hölder continuity of the spatial gradient of solutions for all p ∈ (1,∞).
Compared to the elliptic case, there are only a few regularity results for par-

abolic problems with non-standard growth. For instance, You [23] extended the
fundamental results of DiBenedetto & Friedman in the case of systems with a vec-
tor field of Uhlenbeck-type satisfying suitable Orlicz-type growth conditions. More
precisely, the author derived L∞-regularity for solutions of the following non-linear
parabolic system:

(1.3) ut − div(g(|Du|)Du) = 0 in ΩT

assuming that for every ξ > 0, g(ξ) satisfies

c1ξ
p−2 ≤ g(ξ) ≤ c2(ξ

p−2 − ξq−2),

where c1 and c2 are fixed constants and p, q are related by 1 < p ≤ q < p+ 1 < ∞.
Lieberman [14] established the Hölder continuity for the gradient of solutions to
(1.3) assuming that g is a C1(0,∞) and positive function satisfying, for all s ≥ 0,

δ − 1 ≤ sg′(s)

g(s)
≤ g0 − 1,

with δ ∈ (0, 1], g0 ≥ 1. Recently, in [5] the authors obtained the spatial second order
Caccioppoli estimate for a local weak solution to (1.1) in both the cases of symmetric
gradient and full gradient. Subsequently, by using the De Giorgi iteration technique,
Diening et al. [11] proved the boundedness of the spatial gradient of solutions to
(1.1) assuming that ϕ satisfies the Δ2-condition together with its conjugate.
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Motivated by the above papers, in this work we aim to show the local bounded-
ness of weak solutions to (1.1). First, we recall the notion of weak solution employed
in this paper.

Definition 1.1. A function u ∈ C(−T, 0;L2(Ω)) ∩ Lϕ(−T, 0;W 1,ϕ(Ω,RN )) is a
weak solution for (1.1) if∫

ΩT

uφt −
〈ϕ′(|Du|)

|Du| Du,Dφ
〉
dz = 0

is satisfied for all testing functions φ ∈ C∞
c (ΩT ,R

N ).

Remark 1.1. In the parabolic setting, a standard difficulty in using test function
arguments involving the solution is that we start with solutions having only weak
regularity properties with respect to the time variable t (i.e., they are not assumed
to be weakly differentiable). In the following, we shall argue on a formal level, that
is, arguing as the solutions are differentiable with respect to time. The argument
can be made rigorous in a standard way via Steklov averages as, for instance, in
[5, 11].

According to the above definition, our main result can be stated as follows:

Theorem 1.1. Let ϕ be an N-function satisfying the Δ2-condition. Let u be a
weak solution to (1.1). Then u ∈ L∞

loc(ΩT ,R
N ). Moreover, for every QR0

� ΩT

the following a priori estimate holds with the constant c depending on n and on the
characteristic of ϕ:

sup
QR0

2

(z0)

ϕ(|u|) ≤ c

(∫
QR0

(z0)

ϕγ0+1(|u|) dz
) 1

γ0

+ c.

The proof of Theorem 1.1 is obtained by using a Moser-type iteration argument
[19] conveniently adapted for parabolic systems with general growth conditions. We
would like to point out that the local regularity of solutions of (1.1) represents a
fundamental step to deduce the Hölder regularity of ϕ-caloric functions when we
assume that ϕ is Δ2 with its conjugate. Indeed, once we know that u is bounded,
one can use the difference quotient method, and arguing as in Theorem 3.1 in [23],
we can deduce that Du ∈ L2(ΩT ). At this point, a recent result obtained by
Diening et al. in [11], guarantees the Lipschitz regularity for the spatial gradient of
weak solutions to (1.1). Thus, by combining this with the Hölder regularity result
due to Lieberman [14] for the gradient of weak solutions of parabolic systems, we
can infer that u ∈ C1,α. To our knowledge, the result presented here is new in
literature.

Before we conclude this Introduction, we emphasize that the existence of a weak
solution to (1.1) is guaranteed by the recent results established by Bögelein at
al. [2, 3] in which the authors obtained, via a variational approach, some relevant
existence results for parabolic systems under very general growth conditions.

1.1. Outline of the paper. In Section 2, we collect some preliminary notions
about the N -functions and in Section 3 we give the proof of the main result.
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2. Assumptions and definitions

Let Ω ⊂ R
n be a bounded domain; in the following ΩT will denote the parabolic

cylinder Ω × (−T, 0), where T > 0. If z ∈ ΩT , we denote z = (x, t) with x ∈ Ω
and t ∈ (−T, 0). In what follows c will be a general positive constant, possibly
varying from line to line; we will emphasize dependencies on parameters by using
parenthesis.

The writing Du(x, t) ≡ Dxu(x, t) denotes the differentiation with respect to the
spatial variable x while ut stands for the differentiation with respect to the time.

With x0 ∈ R
n, we set

Br(x0) ≡ B(x0, r) := {x ∈ R
n : |x− x0| < r}

the open ball of Rn with radius r > 0 and center x0. When dealing with para-
bolic regularity, the geometry of cylinders plays an important role. We shall use a
parabolic cylinder with vertex (x0, t0) and width r > 0 given by

Qr(x0, t0) := B(x0, r)× (t0 − r2, t0).

Given a cylinder Q = B×(s, t), its parabolic boundary is

∂PQ := (B×{s}) ∪ (∂B×[s, t]).

The integral average of a function u on U ⊂ R
n+1 measurable subset with positive

measure is given by

(u)U = −
∫
U
u(x)dz :=

1

|U|

∫
U
u(x)dz,

where |U| is the (n+1)-Lebesgue measure of U . The parabolic metric is defined as
usual by

distP(z, z0) :=
√
|x− x0|2 + |t− t0|

whenever z = (x, t), z0 = (x0, t0) ∈ R
n+1.

2.1. N-functions. The following definitions and results are standard in the context
of N -functions (see [20]).

We shall say that two real functions ϕ1 and ϕ2 are equivalent and write ϕ1 ∼ ϕ2

if there exist positive constants c1, c2 such that c1ϕ1(s) ≤ ϕ2(s) ≤ c2ϕ1(s) if s ≥ 0.

Definition 2.1. A real function ϕ : [0,∞) → [0,∞) is said to be an N -function if
ϕ(0) = 0 and there exists a right continuous non-decreasing derivative ϕ′ satisfying
ϕ′(0) = 0, ϕ′(s) > 0 for s > 0 and lim

s→∞
ϕ′(s) = ∞. In particular, ϕ is convex.

The assumption widely used in order to study regularity for systems with Orlicz
growth is the following:

Definition 2.2. We say that ϕ satisfies the Δ2-condition (we shall write ϕ ∈ Δ2)
if there exists a constant c > 0 such that

ϕ(2s) ≤ c ϕ(s) for all s ≥ 0.

We denote the smallest possible constant by Δ2(ϕ).

Since ϕ(s) ≤ ϕ(2s) the Δ2-condition implies ϕ(2s) ∼ ϕ(s). Moreover, if ϕ is
a function satisfying the Δ2-condition, then ϕ(s) ∼ ϕ(as) uniformly in s ≥ 0 for
any fixed a > 1. Let us also note that if ϕ satisfies the Δ2-condition, then any
N -function which is equivalent to ϕ satisfies this condition, too.

From now on, we assume that ϕ is an N -function satisfying the Δ2-condition.
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Since ϕ′(·) is non-decreasing, for all s1, s2 > 0 we have

(2.1) ϕ′(s1)s2 ≤ ϕ′(s1)s1 + ϕ′(s2)s2.

Moreover, by the Δ2-condition it follows that there exists m > 1 such that

ϕ′(s)s ≤ mϕ(s) for every s > 0,(2.2)

ϕ(λs) ≤ λm ϕ(s) for every s > 0 and λ > 1.(2.3)

Let us observe that by the convexity of ϕ and by the Δ2-condition it follow that

(2.4) ϕ(s) ∼ s ϕ′(s)

uniformly in s ≥ 0.
Finally, we say that a measurable function u : Ω ⊂ R

n → R belongs to the
Orlicz-Lebesgue space Lϕ(Ω) if it satisfies∫

Ω

ϕ(|u|) dx < ∞.

The space Lϕ(Ω) is a Banach space if endowed with the Luxembourg norm

‖u‖Lϕ(Ω) := inf

{
λ > 0 :

∫
Ω

ϕ

(
|u|
λ

)
dx ≤ 1

}
.

If u and Du belong to Lϕ(Ω), we say that u ∈ W 1,ϕ(Ω). We denote by W 1,ϕ
0 (Ω)

the closure of C∞
c (Ω) functions with respect to the norm

‖u‖W 1,ϕ(Ω) := ‖u‖Lϕ(Ω) + ‖Du‖Lϕ(Ω).

3. L∞
-estimate for u

This section is devoted to the proof of the main theorem. The following lemma
is a key ingredient in the proof of the L∞-estimate for the system (1.1).

Let us define, for γ ≥ 0, the following auxiliary function:

(3.1) ψγ(ξ) =

∫ ξ

0

τ T γ
k (ϕ(τ )) dτ.

Then ψγ satisfies the following:

Lemma 3.1. Let ϕ be an N-function such that ϕ ∈ Δ2 and let γ ≥ 0. Then there
exists a positive constant C, depending only on the characteristic of ϕ, such that

ψγ(ξ) ∼ Cξ2T γ
k (ϕ(ξ)).

Proof. Let ϕ(τ ) ∈ [0, k]; then T γ
k (ϕ(τ )) = ϕγ(τ ) for any γ ≥ 0. Therefore, inte-

grating by parts and by using the fact that ϕ(s) ∼ s ϕ′(s) we can see that

∫ ξ

0

τ ϕγ(τ ) dτ =

[
τ2

2
ϕγ(τ )

]ξ
0

− γ

2

∫ ξ

0

τ2 ϕγ−1(τ )ϕ′(τ ) dτ

≤ ξ2

2
ϕγ(ξ)− γ

2
c1

∫ ξ

0

τ ϕγ(τ )dτ

from which ∫ ξ

0

τ ϕγ(τ ) dτ ≤ 1

2 + γc1
ξ2 ϕγ(ξ) =

1

2 + γc1
ξ2 T γ

k (ϕ(ξ)).(3.2)
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Analogously, by applying (2.4) we have

∫ ξ

0

τ ϕγ(τ ) dτ =

[
τ2

2
ϕγ(τ )

]ξ
0

− γ

2

∫ ξ

0

τ2 ϕγ−1(τ )ϕ′(τ ) dτ

≥ ξ2

2
ϕγ(ξ)− γ

2
c2

∫ ξ

0

τ ϕγ(τ )dτ

and we deduce

∫ ξ

0

τ ϕγ(τ ) dτ ≥ 1

2 + γc2
ξ2 ϕγ(ξ) =

1

2 + γc2
ξ2 T γ

k (ϕ(ξ)).(3.3)

Putting together (3.2) and (3.3) we have the assertion.
Now, let ϕ(τ ) > k. Then T γ

k (ϕ(τ )) = kγ , and we can infer

ψγ(ξ) = kγ
∫ ξ

0

τ dτ = Cξ2 kγ ,

from which follows the thesis. �

Now we are in the position to give the proof of the main result.

Proof of Theorem 1.1. Let 0 < ρ < R and z0 = (x0, t0). Let χ ∈ C1
c (BR(x0)) be a

cut-off function in space such that

(3.4)

⎧⎨
⎩

0 ≤ χ(x) ≤ 1,
χ(x) = 1, in Bρ(x0),
|Dχ| ≤ c

R−ρ ,

and let ηε ∈ C1(R) be a cut-off function in time such that, with ε > 0 being
arbitrary

(3.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηε = 1 on (t0 − ρ2, τ ),
ηε = 0 on (−T, t0 −R2) ∪ (τ + ε, 0),
0 ≤ ηε(t) ≤ 1 on R,
(ηε)t = − 1

ε on (τ, τ + ε),
|(ηε)t| ≤ C

R−ρ on (t0 −R2, t0 − ρ2),

where τ ∈ (t0 − ρ2, t0) such that τ + ε < t0. We take as a test function in (1.1)

g(x, t) = uT γ
k (ϕ(|u|)) η2ε(t)χp0(x),

with p0 > 1. We note that the following computations are formal concerning the
use of the time derivative ut. However, they can be made rigorous by the use of a
mollification procedure as, for instance, by Steklov averages with respect to time
(see [5, 11] for more details).
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Thus we have

0 =

∫
QR(z0)

−
{
[T γ

k (ϕ(|u|))]t|u|2η2ε χp0

+T γ
k (ϕ(|u|))uut η

2
ε χ

p0 + T γ
k (ϕ(|u|))|u|2(η2ε)t χp0

}
dz

+

∫
QR(z0)

ϕ′(|Du|)
|Du| T γ

k (ϕ(|u|))η2ε χp0〈Du,Du〉 dz

+

∫
QR(z0)

ϕ′(|Du|)
|Du| η2ε χ

p0〈Du, uD[T γ
k (ϕ(|u|))]〉 dz

+ p0

∫
QR(z0)

ϕ′(|Du|)
|Du| T γ

k (ϕ(|u|))η2ε χp0−1〈uDu,Dχ〉 dz

= I + II + III + IV.

(3.6)

Let us consider I. Integrating by parts we obtain

∫
QR(z0)

−[T γ
k (ϕ(|u|))]t|u|2η2ε χp0 dz

=

∫
QR(z0)

[T γ
k (ϕ(|u|))2uut η

2
ε χ

p0 + T γ
k (ϕ(|u|))|u|2(η2ε)t χp0 ] dz

so, taking into account the definition of ηε, I becomes

I =

∫
QR(z0)

T γ
k (ϕ(|u|))uut η

2
ε χ

p0 dz

=

∫
QR(z0)

∂

∂t
(ψγ(|u|) η2ε χp0) dz −

∫
QR(z0)

ψγ(|u|)(η2ε)t χp0 dz

= −
∫
BR(x0)

∫ t0−ρ2

t0−R2

ψγ(|u|)(η2ε)t χp0 dz −
∫
BR(x0)

∫ τ+ε

τ

ψγ(|u|)(η2ε)t χp0 dz

= −
∫
BR(x0)

∫ t0−ρ2

t0−R2

ψγ(|u|)2ηε(ηε)t χp0 dz +

∫
BR(x0)

−
∫ τ+ε

τ

ψγ(|u|)2ηε χp0 dz,

where ψγ is defined in (3.1).

We can see that II can be rewritten as

II =

∫
QR(z0)

ϕ′(|Du|)|Du|T γ
k (ϕ(|u|))η2ε χp0 dz

and III ≥ 0. Regarding IV we can infer

|IV | ≤ p0

∫
QR(z0)

T γ
k (ϕ(|u|))η2εχp0−1 ϕ′(|Du|)|u||Dχ| dz.
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Putting together the estimates for I, II, III, and IV , (3.6) becomes

∫
BR(x0)

−
∫ τ+ε

τ

ψγ(|u|)2ηε χp0 dz +

∫
QR(z0)

ϕ′(|Du|)|Du|T γ
k (ϕ(|u|))η2ε χp0 dz

≤ c

R− ρ

∫
BR(x0)

∫ t0−ρ2

t0−R2

ψγ(|u|)ηε χp0 dz

+ p0

∫
QR(z0)

T γ
k (ϕ(|u|))|u|η2εχp0−1 ϕ′(|Du|)|Dχ| dz.

(3.7)

Let us observe that by (2.1), (2.2), and (2.3) we deduce that

ϕ′(|Du|)p0|Dχ|
χ

|u| ≤ 1

4
ϕ′(|Du|)|Du|+ 1

4
ϕ′

(
4p0|Dχ|

χ
|u|

)
4p0|Dχ|

χ
|u|

≤ 1

4
ϕ′(|Du|)|Du|+ 1

4
p0 ϕ

(
4p0|Dχ|

χ
|u|

)

≤ 1

4
ϕ′(|Du|)|Du|+ 4p0−1pp0+1

0 |Dχ|p0

χp0
ϕ(|u|)

≤ 1

4
ϕ′(|Du|)|Du|+ 4p0−1pp0+1

0

χp0 |R− ρ|p0
ϕ(|u|)

from which

p0

∫
QR(z0)

ϕ′(|u|) |Dχ|
χ

|u|η2ε χp0 T γ
k (ϕ(|u|)) dz

≤ 1

4

∫
QR(z0)

ϕ′(|Du|)|Du|T γ
k (ϕ(|u|))η2εχp0 dz

+
4p0−1pp0+1

0

|R− ρ|p0

∫
QR(z0)

ϕ(|u|)T γ
k (ϕ(|u|))η2ε dz.

Thanks to (2.1) and (2.4) we can see

ϕ′(|Du|)|Du| ≥ ϕ′(|u|)|Du| − ϕ′(|u|)|u| ≥ ϕ′(|u|)|Du| − c ϕ(|u|),

thus (3.7) can be written as

∫
BR(x0)

−
∫ τ+ε

τ

ψγ(|u|)2ηε χp0 dz +

∫
QR(z0)

ϕ′(|u|)|Du|T γ
k (ϕ(|u|)) η2ε χp0 dz

≤ c

R− ρ

∫
BR(x0)

∫ t0−ρ2

t0−R2

ψγ(|u|)ηε χp0 dz

+
c

|R− ρ|p0

∫
QR(z0)

ϕ(|u|)T γ
k (ϕ(|u|))η2ε χp0 dz.
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By passing to the limit as ε → 0 we have

sup
τ∈(t0−R2,t0)

∫
BR(x0)

ψγ(|u|)η χp0 dx+

∫
QR(z0)

ϕ′(|u|)|Du|T γ
k (ϕ(|u|))η2 χp0+1 dz

≤ c

R− ρ

∫
QR(z0)

ψγ(|u|)η χp0 dz

+
c

|R − ρ|p0

∫
QR(z0)

ϕ(|u|)T γ
k (ϕ(|u|)) η χp0 dz.

(3.8)

Let us define the function

G(x, t) := ϕ(|u|)T γ
k (ϕ(|u|)) η2(t)χp0+1(x).

We can see that

|DG(x, t)| ≤ (γ + 1)ϕ′(|u|)|Du|T γ
k (ϕ(|u|))η2(t)χp0+1(x)

+
p0 + 1

|R− ρ| ϕ(|u|)T
γ
k (ϕ(|u|)) η2(t)χp0(x),

from which integrating over QR(z0), and taking into account (3.8), we have

∫
QR(z0)

|DG(x, t)| dz

≤ (γ + 1)

∫
QR(z0)

ϕ′(|u|)|Du|T γ
k (ϕ(|u|)) η2χp0+1 dz

+
p0 + 1

|R− ρ|

∫
QR(z0)

ϕ(|u|)T γ
k (ϕ(|u|)) η2χp0 dz

≤ c(γ + 1)

R − ρ

∫
QR(z0)

ψγ(|u|)ηχp0 dz +
c̄(γ + 1)

|R − ρ|p0

∫
QR(z0)

ϕ(|u|)T γ
k (ϕ(|u|)) η2χp0 dz.

(3.9)

By Lemma 3.1 we get

∫
Bρ(x0)

T γ
k (ϕ(|u|)) η χp0 dx

=

∫
Bρ(x0)∩{|u|≤1}

T γ
k (ϕ(|u|)) η χp0 dx+

∫
Bρ(x0)∩{|u|≥1}

T γ
k (ϕ(|u|)) η χp0 dx

≤ C| Bρ(x0)|+
∫
Bρ(x0)

|u|2T γ
k (ϕ(|u|)) η χp0 dx

≤ C| Bρ(x0)|+
∫
Bρ(x0)

ψγ(|u|) η χp0 dx.
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By using Hölder and Sobolev inequalities we can infer

∫
Qρ(z0)

ϕ(|u|)T γ+ γ
n

k (ϕ(|u|)) dz

≤
∫ t0

t0−ρ2

(∫
Bρ(x0)

T γ
k (ϕ(|u|)) η χp0 dx

) 1
n

×
(∫

Bρ(x0)

[ϕ(|u|)T γ
k (ϕ(|u|)) η2χp0+1]

n
n−1 dx

)n−1
n

≤
(

sup
t0−ρ2<t<t0

∫
Bρ(x0)

ψγ(|u|)ηχp0 dx+ C| Bρ(x0)|
) 1

n ∫
QR(z0)

|DG| dz

≤
[
1 +

(
c(γ + 1)

R − ρ

∫
QR(z0)

ψγ(|u|)ηχp0 dz

+
c̄(γ + 1)

|R− ρ|p0

∫
QR(z0)

ϕ(|u|)T γ
k (ϕ(|u|)) η2χp0 dz

)1+ 1
n

⎤
⎦ ,

(3.10)

where we use Lemma 3.1, (3.8), and (3.9).
To estimate the first term in the right-hand side, we use Lemma 3.1 and we get

∫
QR(z0)

ψγ(|u|)ηχp0 dz

≤ C

∫
QR(z0)

T γ
k (ϕ(|u|))|u|2ηχp0 dz

= C

∫
QR(z0)∩{|u|≤λ1}

T γ
k (ϕ(|u|))|u|2ηχp0 dz

+ C

∫
QR(z0)∩{|u|≥λ1}

T γ
k (ϕ(|u|))|u|2ηχp0 dz

≤ C| QR(z0)|+ C

∫
QR(z0)∩{|u|≥λ1}

ϕ2(|u|)T γ
k (ϕ(|u|)) dz,(3.11)

where λ1 is such that if |u| ≥ λ1, then ϕ(|u|) ≥ |u|.
Putting together (3.10) and (3.11), and recalling the properties of η and χ, we

have

∫
Qρ(z0)

ϕ(|u|)T γ+ γ
n

k (ϕ(|u|)) dz

≤ C

⎡
⎣1 +

(
c(γ + 1)

R− ρ
| QR(z0)|+

c̄(γ + 1)

|R− ρ|p0

∫
QR(z0)

ϕ(|u|)T γ
k (ϕ(|u|)) dz

)1+ 1
n

⎤
⎦ ,
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and taking the limit as k → ∞ we obtain

∫
Qρ(z0)

ϕ1+γ+ γ
n (|u|) dz

≤ C

⎡
⎣1 +

(
c(γ + 1)

R − ρ
| QR(z0)|+

c̄(γ + 1)

|R− ρ|p0

∫
QR(z0)

ϕ1+γ(|u|) dz
)1+ 1

n

⎤
⎦ .

(3.12)

Let σ := 1 + 1
n . For some γ0 > 0, we set

γi+1 = γiσ.

In particular,

γi+1 = γ0σ
i+1

and limi→+∞ γi = +∞. Define Ri :=
R0

2 (1 + 1
2i ), and take ρ = Ri+1 and R = Ri

in (3.12). We also define Φi =
∫
QRi

(z0)
ϕ1+γi(|u|) dz and βi = γi+1. Thus we have

Φi+1 ≤ 1 + Ci+1βσ
i + Ci+1βσ

i Φ
σ
i .

Iterating we get

Φi+1 ≤ 1 + C
∑i

k=0(i−k+1)σk
i∏

k=0

βσk+1

i−k 2
∑i

k=0(σ
k−1) Φσi+1

0

+

i∑
j=1

C
∑j

k=0(i−k+1)σk
j∏

k=0

βσk+1

i−k 2
∑j

k=0(σ
k−1).

Now, taking into account that βi−k ≤ (γ0 + 1)σi−k+1, we have

log

(
i∏

k=0

βσk+1

i−k

)
=

i∑
k=0

log(βσk+1

i−k ) =
i∑

k=0

σk+1 log(βi−k)

≤
i∑

k=0

σk+1 log((γ0 + 1)σi−k+1)

= log(γ0 + 1)

i∑
k=0

σk+1 + log(σ)

i∑
k=0

σk+1(i− k + 1) ≤ cσi+1

from which
i∏

k=0

βσk+1

i−k ≤ ecσ
i+1

.

So we get

Φi+1 ≤ C +Kσi+1

Φσi+1

0 +Kσi+1

(i+ 1).

Now,

Φ
1

γi+1

i+1 ≤ C +K
σi+1

γi+1 Φ
σi+1

γi+1

0 +K
σi+1

γi+1 (i+ 1)
1

γi+1 .
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Recalling the definition of γi+1, we have that γi+1 → ∞, σi+1

γi+1
→ 1

γ0
and

(i+ 1)
1

γi+1 → 1 as i → ∞. Therefore, we can infer that

sup
QR0

2

(z0)

ϕ(|u|) ≤ c

(∫
QR0

(z0)

ϕγ0+1(|u|) dz
) 1

γ0

+ c

which ends the proof of theorem. �
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