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GRADIENT ESTIMATES FOR A NONLINEAR ELLIPTIC

EQUATION ON COMPLETE RIEMANNIAN MANIFOLDS

BINGQING MA, GUANGYUE HUANG, AND YONG LUO

(Communicated by Guofang Wei)

Abstract. In this short paper, we consider gradient estimates for positive
solutions to the following nonlinear elliptic equation on a complete Riemannian
manifold:

Δu+ cuα = 0,

where c, α are two real constants and c �= 0.

1. Introduction

It is well known that for complete noncompact Riemannian manifolds with non-
negative Ricci curvature, Yau [11] has proved that any positive or bounded solution
to the equation

(1.1) Δu = 0

must be constant. In [1], Brighton studied f -harmonic functions on a mooth metric
measure space. That is, he considered positive solutions to the equation

(1.2) Δfu = 0

and obtained some similar results to Yau’s under the Bakry–Émery Ricci curvature
condition.

It is easy to see that equation (1.1) can be seen as a special case of

(1.3) Δu+ cuα = 0

with c, α being two real constants. In particular, if c = 0 in (1.3), then the equation
(1.3) becomes (1.1). If c < 0 and α < 0, equation (1.3) on a bounded smooth domain
in R

n is known as the thin film equation, which describes a steady state of the thin
film (see [3]). For c a function, equation (1.3) is studied by Gidas and Spruck in
[2] with 1 ≤ α ≤ n+2

n−2 when n > 2 and later it is studied by Li in [7] to achieve
gradient estimates and Liouville type results with 1 < α < n

n−2 when n > 3. In

particular, Li achieved a gradient estimate for positive solutions of (1.3) when c is
a positive constant and 1 < α < n

n−2 .
Therefore, it is natural to try to achieve gradient estimates for positive solutions

to the nonlinear elliptic equation (1.3) with other c �= 0 and α. In this direction
Yang in [10] proved the following result.
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Theorem 1.1 (Yang). Let M be a complete noncompact Riemannian manifold of
dimension n without boundary. Let Bp(2R) be a geodesic ball of radius 2R around
p ∈ M . We denote −K(2R) with K(2R) ≥ 0 such that Ricij(Bp(2R)) ≥ −Kgij.
Suppose that u(x) is a positive smooth solution to equation (1.3) with α < 0. Then
we have

(i) If c > 0, then u(x) satisfies the estimate

|∇u|2
u2

+ cuα−1 ≤ C(n, α)
(
K +

1

R2
(1 +

√
KR coth(

√
KR))

)
on Bp(R) and C(n, α) is a positive constant which depends on n, α.

(ii) If c < 0, then u(x) satisfies the estimate

|∇u|2
u2

+ cuα−1 ≤ C(n, α)
(
|c|( inf

Bp(2R)
u)α−1 +K +

1

R2
(1 +

√
KR coth(

√
KR))

)
on Bp(R) and C(n, α) is a positive constant which depends on n, α.

After studying Yang’s argument carefully, we find in the case of c > 0 that
the gradient estimate in (i) actually holds whenever α ≤ 1, that is, we have the
following.

Theorem 1.2. Let M be a complete noncompact Riemannian manifold of dimen-
sion n without boundary. Let Bp(2R) be a geodesic ball of radius 2R around p ∈ M .
We denote −K(2R) with K(2R) ≥ 0 such that Ricij(Bp(2R)) ≥ −Kgij. Suppose
that u(x) is a positive smooth solution to equation (1.3) with α ≤ 1 and c > 0.
Then we have

|∇u|2
u2

+ cuα−1 ≤ C(n, α)
(
K +

1

R2
(1 +

√
KR coth(

√
KR))

)
on Bp(R) and C(n, α) is a positive constant which depends on n, α.

The proof of the above theorem is the same as Yang’s proof of Theorem 1.1, and
we will only give a sketch of it in the appendix. As a corollary of the above theorem
we have the following Liouville-type result.

Corollary 1.3. Let M be a complete noncompact Riemannian manifold of dimen-
sion n without boundary. Suppose that the Ricci curvature of M is nonnegative.
Then there does not exist a positive solution to equation (1.3) with α ≤ 1 and c > 0.

Suppose that u(x) is a positive solution to equation (1.3). Following Brighton’s
argument in [1] by choosing a test function uε(ε �= 0), we can also get the following
gradient estimate to u(x).

Theorem 1.4. Let (M, g) be an n-dimensional complete Riemannian manifold with
Rij(Bp(2R)) ≥ −Kgij, where K ≥ 0 is a constant. If u is a positive solution to
(1.3) on Bp(2R) with c and α satisfying one of the following two cases:

(1) c < 0 and α > 0,

(2) c > 0 and n+2
2(n−1) < α < 2n2+9n+6

2n(n+2) with n ≥ 3,

then we have for any x ∈ Bp(R)

(1.4) |∇u(x)| ≤C(n, α)M

√
K +

1

R2

(
1 +

√
KR coth(

√
KR)

)
,

where M = supx∈Bp(2R) u(x) and the positive constant C(n, α) depends only on
n, α.
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Remark 1.1. In case (2), compared with Li’s gradient estimate in [7] our right range
for α is bigger than n

n−2 when n ≥ 13.

Letting R → ∞ in (1.4), we obtain the following gradient estimates on complete
noncompact Riemannian manifolds.

Corollary 1.5. Let (Mn, g) be an n-dimensional complete noncompact Riemann-
ian manifold with Rij ≥ −Kgij, where K ≥ 0 is a constant. Suppose that u is a
positive solution to (1.3) such that c, α satisfy one of the two cases given in Theorem
1.4. Then we have

(1.5) |∇u| ≤C(n, α)M
√
K,

where M = supx∈M u(x).

Remark 1.2. Recently, using the ideas of Brighton in [1], some Liouville type results
have been achieved to positive solutions of the nonlinear elliptic equation

Δu+ au log u = 0

in [4] (for more developments, see [6,8]), and for porous medium and fast diffusion
equations in [5].

2. Proof of Theorem 1.4

Let h = uε, where ε �= 0 is a constant to be determined. Then we have

(2.1)

Δh =ε(ε− 1)uε−2|∇u|2 + εuε−1Δu

=ε(ε− 1)uε−2|∇u|2 − cεuα+ε−1

=
ε− 1

ε

|∇h|2
h

− cεh
α+ε−1

ε ,

where in the second equality of (2.1), we used (1.3). Hence, we have

(2.2)

∇h∇Δh =∇h∇
( ε− 1

ε

|∇h|2
h

− cεh
α+ε−1

ε

)
=
ε− 1

ε
∇h∇|∇h|2

h
− c(α+ ε− 1)h

α+ε−1
ε

|∇h|2
h

=
ε− 1

εh
∇h∇(|∇h|2)− ε− 1

ε

|∇h|4
h2

− c(α+ ε− 1)h
α+ε−1

ε
|∇h|2
h

.

Applying (2.1) and (2.2) into the well-known Bochner formula for h, we have

(2.3)

1

2
Δ|∇h|2 =|∇2h|2 +∇h∇Δh+Ric(∇h,∇h)

≥ 1

n
(Δh)2 +∇h∇Δh−K|∇h|2

=
1

n

(ε− 1

ε

|∇h|2
h

− cεh
α+ε−1

ε

)2

+
ε− 1

ε

∇h

h
∇(|∇h|2)

− ε− 1

ε

|∇h|4
h2

− c(α+ ε− 1)h
α+ε−1

ε
|∇h|2
h

−K|∇h|2

=
( (ε− 1)2

nε2
− ε− 1

ε

) |∇h|4
h2

− c

[
n+ 2

n
(ε− 1) + α

]
h

α+ε−1
ε

|∇h|2
h

+
c2ε2

n
h

2(α+ε−1)
ε +

ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2.
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By analyzing (2.3) we have the following lemmas.

Lemma 2.1. Let u be a positive solution to (1.3) and let Rij ≥ −Kgij for some
nonnegative constant K. Denote h = uε with ε �= 0. If c < 0 and α > 0, then there
exists ε ∈ (0, 1) such that

(2.4)

1

2
Δ|∇h|2 ≥

( (ε− 1)2

nε2
− ε− 1

ε

) |∇h|4
h2

+
ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2.

Proof. In (2.3), if c < 0 and α > 0, we can choose ε ∈ (0, 1) close enough to 1 such
that

−c

[
n+ 2

n
(ε− 1) + α

]
≥ 0,

and then (2.4) follows directly. �

Lemma 2.2. Let u be a positive solution to (1.3) and let Rij ≥ −Kgij for some
nonnegative constant K. Denote h = uε with ε �= 0. If c > 0 and for a fixed α,
there exist two positive constants ε, δ such that

(2.5) c

[
n+ 2

n
(ε− 1) + α

]
> 0

and

(2.6)
c2ε2

n
− c

δ

(n+ 2

n
(ε− 1) + α

)
> 0.

Then we have

(2.7)

1

2
Δ|∇h|2 ≥

[ (ε− 1)2

nε2
− ε− 1

ε
− δc

(n+ 2

n
(ε− 1) + α

)] |∇h|4
h2

+
ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2.

Proof. For a fixed point p, if there exists a positive constant δ such that h
α+ε−1

ε ≤
δ |∇h|2

h , according to (2.5), then (2.3) becomes

(2.8)

1

2
Δ|∇h|2 ≥

[ (ε− 1)2

nε2
− ε− 1

ε
− δc

(n+ 2

n
(ε− 1) + α

)] |∇h|4
h2

+
c2ε2

n
h

2(α+ε−1)
ε +

ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2

≥
[ (ε− 1)2

nε2
− ε− 1

ε
− δc

(n+ 2

n
(ε− 1) + α

)] |∇h|4
h2

+
ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2.
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On the contrary, at the point p, if h
α+ε−1

ε ≥ δ |∇h|2
h , then (2.3) becomes

(2.9)
1

2
Δ|∇h|2 ≥

( (ε− 1)2

nε2
− ε− 1

ε

) |∇h|4
h2

+
[c2ε2

n
− c

δ

(n+ 2

n
(ε− 1) + α

)]
h

2(α+ε−1)
ε

+
ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2

≥
{( (ε− 1)2

nε2
− ε− 1

ε

)
+ δ2

[c2ε2
n

− c

δ

(n+ 2

n
(ε− 1) + α

)]} |∇h|4
h2

+
ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2

≥
[ (ε− 1)2

nε2
− ε− 1

ε
− δc

(n+ 2

n
(ε− 1) + α

)] |∇h|4
h2

+
ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2

as long as

(2.10)
c2ε2

n
− c

δ

(n+ 2

n
(ε− 1) + α

)
> 0.

In both cases, (2.7) always holds. We complete the proof of Lemma 2.2. �

In order to obtain the upper bound of |∇h| by using the maximum principle, it

is sufficient to choose the coefficients of |∇h|4
h2 in (2.4) and (2.7) such that they are

positive. In case of Lemma 2.2, we need to choose appropriate ε, δ such that

(2.11)
(ε− 1)2

nε2
− ε− 1

ε
− δc

(n+ 2

n
(ε− 1) + α

)
> 0.

Under the assumption of (2.5), the inequality (2.6) becomes

(2.12) δ >
nc

c2ε2

(n+ 2

n
(ε− 1) + α

)
and (2.11) becomes

(2.13) δ <
(ε−1)2

nε2 − ε−1
ε

c
(

n+2
n (ε− 1) + α

) .
In order to ensure we can choose a positive δ, from (2.12) and (2.13), we need to
choose an ε satisfying

(2.14)
nc

c2ε2

(n+ 2

n
(ε− 1) + α

)
<

(ε−1)2

nε2 − ε−1
ε

c
(

n+2
n (ε− 1) + α

) .
In particular, (2.14) can be written as

(2.15)
n2

(n+ 2

n
(ε− 1) + α

)2

<nε2
( (ε− 1)2

nε2
− ε− 1

ε

)
=(ε− 1)2 − nε(ε− 1),

which is equivalent to

(2.16)
[n2 + 5n+ 3]ε2 + [2(α− 1)(n2 + 2n)− (5n+ 6)]ε

+ (α− 1)2n2 − 4(α− 1)n+ 3 < 0.
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By a direct calculation, under the condition

(2.17)
−(n− 4)−

√
n2 + 5n+ 3

2(n− 1)
< α− 1 <

−(n− 4) +
√
n2 + 5n+ 3

2(n− 1)
,

we have
(2.18)

[2(α− 1)(n2 + 2n)− (5n+ 6)]2 − 4[n2 + 5n+ 3][(α− 1)2n2 − 4(α− 1)n+ 3]

=4(α− 1)2[(n2 + 2n)2 − n2(n2 + 5n+ 3)] + 4(α− 1)[4n(n2 + 5n+ 3)

− (n2 + 2n)(5n+ 6)] + (5n+ 6)2 − 12(n2 + 5n+ 3)

=4(α− 1)2[−n3 + n2] + 4(α− 1)[−n3 + 4n2] + 13n2

=n2
{
− 4(n− 1)(α− 1)2 − 4(n− 4)(α− 1) + 13

}
>0,

which shows that the quadratic inequality (2.16) with respect to ε has two real
roots.

Now we are ready to prove the following proposition.

Proposition 2.3. Let u be a positive solution to (1.3) and let Rij ≥ −Kgij for
some nonnegative constant K. If we choose c and α satisfying one of the following
two cases:

(1) c < 0 and α > 0,

(2) c > 0 and n+2
2(n−1) < α < 2n2+9n+6

2n(n+2) with n ≥ 3,

then we have

(2.19)
1

2
Δ|∇h|2 ≥C1(n, α)

|∇h|4
h2

− C2(n, α)
∇h

h
∇(|∇h|2)−K|∇h|2,

where C1(n, α) and C2(n, α) are positive constants.

Proof. We prove this proposition case by case.
(i) The case of c < 0 and α > 0. In the proof of Lemma 2.1 we see that by

choosing an ε = ε(n, α) ∈ (0, 1) such that n+2
n (ε− 1) + α ≥ 0, we get

(2.20)

1

2
Δ|∇h|2 ≥

( (ε− 1)2

nε2
− ε− 1

ε

) |∇h|4
h2

+
ε− 1

ε

∇h

h
∇(|∇h|2)−K|∇h|2.

Then we see that C1(n, α) =
(ε−1)2

nε2 − ε−1
ε > 0 and C2(n, α) =

1−ε
ε > 0.

(ii) The case of c > 0 and n+2
2(n−1) < α < 2n2+9n+6

2n(n+2) when n ≥ 3. In this case,

(2.5) is equivalent to

(2.21) ε > 1− nα

n+ 2
.

We can check

(2.22)
5n+ 6

2(n2 + 2n)
<

−(n− 4) +
√
n2 + 5n+ 3

2(n− 1)
.

Hence, when n ≥ 3, for any α satisfies

(2.23) − n− 4

2(n− 1)
< α− 1 <

5n+ 6

2(n2 + 2n)
,
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which is equivalent to

(2.24)
n+ 2

2(n− 1)
< α <

2n2 + 9n+ 6

2n(n+ 2)
,

then (2.21) is satisfied by choosing

(2.25) ε := ε̃ =
(5n+ 6)− 2(α− 1)(n2 + 2n)

2(n2 + 5n+ 3)
,

and it is easy to check that ε ∈ (0, 1).
In particular, we let

(2.26) δ = δ̃ :=
1

2

[
nc

c2ε̃2

(n+ 2

n
(ε̃− 1) + α

)
+

(ε̃−1)2

nε̃2 − ε̃−1
ε̃

c
(

n+2
n (ε̃− 1) + α

)].
Then (2.10) and (2.11) are satisfied and (2.7) becomes

(2.27)
1

2
Δ|∇h|2 ≥C̃1(n, α)

|∇h|4
h2

− C̃2(n, α)
∇h

h
∇(|∇h|2)−K|∇h|2,

where positive constants C̃1(n, α) and C̃2(n, α) are given by

C̃1(n, α) =
1

2

[( (ε̃− 1)2

nε̃2
− ε̃− 1

ε̃

)
− n

ε̃2

(n+ 2

n
(ε̃− 1) + α

)2]
,

C̃2(n, α) =
4(α− 1)n(n+ 2) + n(2n+ 5)

(5n+ 6)− 4(α− 1)n(n+ 2)
,

respectively.
We conclude the proof of Proposition 2.3. �

Now we are in a position to prove our Theorem 1.4. Denote by Bp(R) the
geodesic ball centered at p with radius R. Let φ be a cut-off function (see [9])
satisfying supp(φ) ⊂ Bp(2R), φ|Bp(R) = 1, and

(2.28)
|∇φ|2
φ

≤ C

R2
,

(2.29) −Δφ ≤ C

R2

(
1 +

√
KR coth(

√
KR)

)
,

where C is a constant depending only on n. We define G = φ|∇h|2 and will
apply the maximum principle to G on Bp(2R). Moreover, we assume G attains its
maximum at the point x0 ∈ Bp(2R) and assume G(x0) > 0 (otherwise the proof is
trivial). Then at the point x0, it holds that

ΔG ≤ 0, ∇(|∇h|2) = −|∇h|2
φ

∇φ
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and

(2.30)

0 ≥ΔG

=φΔ(|∇h|2) + |∇h|2Δφ+ 2∇φ∇|∇h|2

=φΔ(|∇h|2) + Δφ

φ
G− 2

|∇φ|2
φ2

G

≥2φ
[
C1(n, α)

|∇h|4
h2

− C2(n, α)
∇h

h
∇(|∇h|2)−K|∇h|2

]
+

Δφ

φ
G− 2

|∇φ|2
φ2

G

=2C1(n, α)
G2

φh2
+ 2C2(n, α)

G

φ
∇φ

∇h

h
− 2KG+

Δφ

φ
G− 2

|∇φ|2
φ2

G,

where, in the second inequality, the estimate (2.27) is used. Multiplying both sides

of (2.30) by φ
G yields

(2.31) 2C1(n, α)
G

h2
≤ −2C2(n, α)∇φ

∇h

h
+ 2φK −Δφ+ 2

|∇φ|2
φ

.

Inserting the Cauchy inequality

−2C2(n, α)∇φ
∇h

h
≤2C2(n, α)|∇φ| |∇h|

h

≤C2
2 (n, α)

C1(n, α)

|∇φ|2
φ

+ C1(n, α)
G

h2

into (2.31) yields

(2.32) C1(n, α)
G

h2
≤ 2φK −Δφ+

(
2 +

C2
2 (n, α)

C1(n, α)

) |∇φ|2
φ

.

Hence, for x ∈ Bp(R), we have

(2.33)

C1(n, α)G(x) ≤C1(n, α)G(x0)

≤h2(x0)

[
2K +

C(n, α)

R2

(
1 +

√
KR coth(

√
KR)

)]
.

It shows that

(2.34) |∇u|2(x) ≤C(n, α)M2

[
K +

1

R2

(
1 +

√
KR coth(

√
KR)

)]
and, hence,

(2.35) |∇u(x)| ≤C(n, α)M

√
K +

1

R2

(
1 +

√
KR coth(

√
KR)

)
.

We complete the proof of Theorem 1.4.

3. Appendix

Here we give a sketch of the proof of Theorem 1.2. The interested readers can
consult Yang’s paper [10] for details. Assume that u(x) is a positive solution to
(1.3) with c > 0 and α ≤ 1. Let f = log u. Then we have

Δf = −|∇f |2 − cuα−1.(3.1)
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Let F = |∇f |2 + cuα−1. Then we have Δf = −F , and by the well-known Weitzen-
bock–Bochner formula we have

Δ|∇f |2 = 2∇f∇Δf + 2|∇2f |2 + 2Ric(∇f,∇f),

where ∇2f is the Hessian of f . Since c > 0 and α ≤ 1, we obtain by the above two
inequalities

ΔF =Δ|∇f |2 + cΔuα−1

=− 2∇f∇F + 2|∇2f |2 + 2Ric(∇f,∇f)

+ c(1− α)uα−1F + c(1− α)2uα−1|∇f |2

≥− 2∇f∇F +
2

n
F 2 − 2KF

on Bp(2R), where we used the fact that |∇2f |2 ≥ 1
n (Δf)2. Then following Yang’s

proof line by line we finish the proof of Theorem 1.2.
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