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MASSERA’S THEOREM IN QUANTUM CALCULUS
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(Communicated by Mourad E. H. Ismail)

Abstract. In this paper, we present versions of Massera’s theorem for linear
and nonlinear q-difference equations and present some examples to illustrate
our results.

1. Introduction

Quantum calculus plays an important role in applications, since it is a powerful
tool to better describe several physical phenomena such as cosmic strings and black
holes, conformal quantum mechanics, nuclear and high energy physics, fractional
quantum Hall effect, and high-Tc superconductors. Thermostatics of q-bosons and
q-fermions can well be described by using basic numbers and employing the q-
calculus based on the Jackson derivative. See, for instance, [12–15, 20] and the
references therein.

Also, it is a known fact that many physical phenomena have periodic properties,
and the better understanding of these properties allows several improvements in the
investigation of these phenomena. Therefore, motivated by this, recently Bohner
and Chieochan in [2] introduced in the literature the concept of periodicity in
quantum calculus, and several results were proved using this concept (see [1–4,6–8]).

On the other hand, the classical Massera theorem for q-difference equations was
not presented in the literature until now. This theorem is very important and states
that under certain conditions, the existence of a bounded solution of a periodic
equation is necessary and sufficient to ensure the existence of a periodic solution
of this equation. Versions of this theorem for several types of equations such as
functional differential equations, dynamic equations on time scales, and ordinary
differential equations were presented by several authors. See [9–11, 16–19, 21] and
the references therein.

In this paper, we study a version of Massera’s theorem for a linear q-difference
equation of the form

(1.1) xΔ(t) = a(t)x(t) +
b(t)

t

using the Brouwer fixed point theorem. Also, we prove that if b(t) �= 0 for some
t ∈ qN0 and the functions a, b : qN0 → R are ω-periodic with a ∈ R, then the
equation

(1.2) xΔ(t) = a(t)x(t) + b(t)

Received by the editors October 24, 2017, and, in revised form, February 4, 2018.
2010 Mathematics Subject Classification. Primary 39A20, 34N05, 34C25, 39A23.
Key words and phrases. Quantum calculus, periodic function, multiplicative difference equa-

tion, Massera theorem, Jackson derivative, linear and nonlinear equations.

c©2018 American Mathematical Society

4755

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/14116


4756 MARTIN BOHNER AND JAQUELINE G. MESQUITA

has no ω-periodic solutions. Moreover, we present a version of Massera’s theorem
for nonlinear q-difference equations of the form

(1.3) xΔ(t) = f(t, tx(t)),

and we provide some examples to illustrate our main results.

2. Quantum calculus

In this section, our goal is to present some basic concepts concerning the theory
of quantum calculus. All definitions and results of this section can be found in
[2, 5–8, 13]. Throughout the paper, we let q > 1.

We start by presenting the quantum derivative of a function f : qN0 → R.

Definition 2.1 (See [13]). The expression

fΔ(t) =
f(σ(t))− f(t)

(q − 1)t
, σ(t) = qt, t ∈ qN0 = {qn : n ∈ N0}

is called the q-derivative (or Jackson derivative) of the function f : qN0 → R.

Remark 2.2. Note that

lim
q→1

fΔ(t) =
df(t)

dt

if f : R → R is differentiable.

In what follows, we present some important properties of the quantum derivative.

Theorem 2.3. If α, β ∈ R and f, g : qN0 → R are q-differentiable, then

(αf + βg)Δ(t) = αfΔ(t) + βgΔ(t),

(fg)Δ(t) = f(qt)gΔ(t) + g(t)fΔ(t) = f(t)gΔ(t) + g(qt)fΔ(t),

and (
f

g

)Δ

(t) =
fΔ(t)g(t)− f(t)gΔ(t)

g(t)g(qt)

for all t ∈ qN0 .

Let us denote for simplicity the quantum intervals by [a, b]qN0 , [a, b)qN0 , and

(a, b]qN0 to represent [a, b] ∩ qN0 , [a, b) ∩ qN0 , and (a, b] ∩ qN0 , respectively.
The concept of the definite integral of a function is defined as follows.

Definition 2.4. Let f : qN0 → R, and let a, b ∈ qN0 be such that a < b. The
definite integral of the function f is given by∫ b

a

f(t)Δt = (q − 1)
∑

t∈[a,b)∩qN0

tf(t).

Remark 2.5. As an immediate consequence of Definition 2.4, we have that if m,n ∈
N0 with m < n and f : qN0 → R, then∫ qn

qm
f(t)Δt = (q − 1)

n−1∑
k=m

qkf(qk).
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Definition 2.6. We say that a function p : qN0 → R is regressive provided that

1 + (q − 1)tp(t) �= 0 for all t ∈ qN0

holds. The set of all regressive functions will be denoted by R.

Definition 2.7. If p ∈ R, then the exponential function is defined by

ep(t, s) =

logq t−1∏
k=logq s

(
1 + (q − 1)qkp(qk)

)
for t, s ∈ qN0 with t > s.

If t = s, then we define ep(t, s) = 1, and if t < s, then we define ep(t, s) =
1

ep(s,t)
.

Theorem 2.8 (Semigroup property [5, Theorem 2.36(v)]). If p ∈ R and t, s, r ∈
qN0 , then

(2.1) ep(t, s)ep(s, r) = ep(t, r).

Theorem 2.9 (Variation of constants [5, Theorem 2.77]). Let p ∈ R, f : qN0 → R,
t0 ∈ qN0 , and y0 ∈ R. The unique solution of the initial value problem

yΔ(t) = p(t)y + f(t), y(t0) = y0

is given by

y(t) = ep(t, t0)y0 +

∫ t

t0

ep(t, σ(s))f(s)Δs.

In the sequel, we give the definition of an ω-periodic function on qN0 .

Definition 2.10 (See [2, Definition 3.1]). Let ω ∈ N. A function f : qN0 → R is
called ω-periodic if

qωf(qωt) = f(t) for all t ∈ qN0 .

3. Massera’s theorem for linear q-difference equations

In this section, our goal is to prove Massera’s theorem for linear q-difference
equations of form (1.1), where a, b : qN0 → R are ω-periodic functions. We first
present some auxiliaries results.

Lemma 3.1 (See [8, Lemma 2.15]). If f : qN0 → R is regressive and ω-periodic,
then

(3.1) ef (q
ωt, qωs) = ef (t, s) for all t, s ∈ qN0

and

(3.2) ef (q
ωt, t) = ef (q

ωs, s) for all t, s ∈ qN0 .

Lemma 3.2 (Chain rule). If x : qN0 → R and f : qN0 → R is defined by

f(t) = x(qωt),

then

fΔ(t) = qωxΔ(qωt).
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Proof. Notice that

fΔ(t) =
f(qt)− f(t)

(q − 1)t

=
x(qωqt)− x(qωt)

(q − 1)t

= qω
x(qqωt)− x(qωt)

(q − 1)qωt

= qωxΔ(qωt),

obtaining the desired result. �

Theorem 3.3. If a, b : qN0 → R are ω-periodic with a ∈ R and b(t) �= 0 for some
t ∈ qN0 , then (1.2) has no ω-periodic solution.

Proof. Assume x is a solution of (1.2) and define f(t) = qωx(qωt)−x(t) for t ∈ qN0 .
Then, by Lemma 3.2, we get

fΔ(t) = q2ωxΔ(qωt)− xΔ(t)

= q2ω[a(qωt)x(qωt) + b(qωt)]− [a(t)x(t) + b(t)]

= a(t)qωx(qωt) + qωb(t)− a(t)x(t)− b(t)

= a(t)f(t) + (qω − 1)b(t).

Since b(t) �= 0 for some t ∈ qN0 , f(t) = 0 for all t ∈ qN0 is not possible. Therefore,
we get the desired result. �

Theorem 3.4. If a, b : qN0 → R are ω-periodic with a ∈ R and qωx(qω) = x(1) for
some solution x of (1.1), then x is ω-periodic.

Proof. Let x be a solution of (1.1) satisfying qωx(qω) = x(1). Define f(t) =
qωx(qωt)− x(t) so that f(1) = 0 and

fΔ(t) = q2ωxΔ(qωt)− xΔ(t)

= q2ω
[
a(qωt)x(qωt) +

b(qωt)

qωt

]
−
[
a(t)x(t) +

b(t)

t

]

= a(t)f(t) +
b(t)

t
− b(t)

t
= a(t)f(t).

Hence, f(t) ≡ 0, which implies that qωx(qωt) = x(t) for every t ∈ qN0 , proving the
result. �

Lemma 3.5. If a, b : qN0 → R are ω-periodic with a ∈ R, then

qω
∫ q2ωt

qωt

ea(q
ωt, σ(s))

b(s)

s
Δs =

∫ qωt

t

ea(t, σ(s))
b(s)

s
Δs

for all t ∈ qN0 .
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Proof. Notice that

qω
∫ q2ωt

qωt

ea(q
ωt, σ(s))

b(s)

s
Δs

(t=qn)
= qω

n+2ω−1∑
k=n+ω

ea(q
n+ω, qk+1)

b(qk)

qk
(q − 1)qk

= qω
n+ω−1∑
k=n

ea(q
n+ω, qk+1+ω)

b(qk+ω)

qk+ω
(q − 1)qk+ω

(3.1)
=

n+ω−1∑
k=n

ea(q
n, qk+1)

b(qk)

qk
(q − 1)qk

=

∫ qωt

t

ea(t, σ(s))
b(s)

s
Δs,

obtaining the desired result. �

Lemma 3.6. If a, b : qN0 → R are ω-periodic with a ∈ R, then∫ t

1

ea(t, σ(s))
b(s)

s
Δs = qω

∫ qωt

qω
ea(q

ωt, σ(s))
b(s)

s
Δs.

Proof. We have∫ t

1

ea(t, σ(s))
b(s)

s
Δs

(t=qn)
=

n−1∑
k=0

ea(q
n, qk+1)

b(qk)

qk
(q − 1)qk

=

n+ω−1∑
k=ω

ea(q
n, qk+1−ω)

b(qk−ω)

qk−ω
(q − 1)qk−ω

(3.1)
=

n+ω−1∑
k=ω

ea(q
n+ω, qk+1)qω

b(qk)

qk
(q − 1)qk

= qω
∫ qωt

qω
ea(q

ωt, σ(s))
b(s)

s
Δs,

proving the result. �

Definition 3.7. A function x : qN0 → R is called q-bounded if there exists K > 0
such that

t|x(t)| ≤ K for all t ∈ qN0 .

Definition 3.8. We say that (1.1) is ω-periodic whenever a, b : qN0 → R are
ω-periodic functions with a ∈ R.

In the sequel, we present our main result of this section. It is a version of
Massera’s theorem for linear q-difference equations of the form (1.1). In its proof,
we use the following well-known fixed point result.

Theorem 3.9 (Brouwer’s fixed point theorem). For any continuous function f
mapping a compact convex set into itself, there exists an x0 in that set satisfying
f(x0) = x0.
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Theorem 3.10. The ω-periodic linear q-difference equation (1.1) has an ω-periodic
solution if and only if it has a q-bounded solution.

Proof. First, let us assume (1.1) has an ω-periodic solution x. Define

K := max
0≤k≤ω−1

qk|x(qk)|.

Let t ∈ qN0 . Then there exist n, k ∈ N0 with 0 ≤ k ≤ ω − 1 such that t = qnω+k.
Thus

t|x(t)| = qk|qnωx(qnωqk)| = qk|x(qk)| ≤ K.

Hence, x is q-bounded.
Now, assume (1.1) has a q-bounded solution x̃. Then there exists K > 0 such

that t|x̃(t)| ≤ K for all t ∈ qN0 . Define

Ω :=
{
x0 ∈ R : |x0| ≤ K, t|x(t, x0)| ≤ K for all t ∈ qN0

}
,

where x(·, x0) is the unique solution of (1.1) with x(1) = x0 (see Theorem 2.9), i.e.,

x(t, x0) = ea(t, 1)x0 +

∫ t

1

ea(t, σ(s))
b(s)

s
Δs.

Since x̃(1) ∈ Ω, we have Ω �= ∅. Since Ω ⊂ R is closed and bounded, it is compact.
Now, we will show that Ω is convex. Let x1, x2 ∈ Ω and 0 ≤ α ≤ 1. Then

|αx1 + (1− α)x2| ≤ α|x1|+ (1− α)|x2| ≤ αK + (1− α)K = K

and

t|x(t, αx1 + (1− α)x2)| = t

∣∣∣∣ea(t, 1)(αx1 + (1− α)x2) +

∫ t

1

ea(t, σ(s))
b(s)

s
Δs

∣∣∣∣
≤ t

∣∣∣∣∣α
[
ea(t, 1)x1 +

∫ t

1

ea(t, σ(s))
b(s)

s
Δs

]

+(1− α)

[
ea(t, 1)x2 +

∫ t

1

ea(t, σ(s))
b(s)

s
Δs

] ∣∣∣∣∣
= t|αx(t, x1) + (1− α)x(t, x2)|
≤ αt|x(t, x1)|+ (1− α)t|x(t, x2)|
≤ αK + (1− α)K = K

for all t ∈ qN0 . So αx1 + (1 − α)x2 ∈ Ω, and hence Ω is convex. Now define
P : Ω → R by

P (x0) := qωx(qω, x0) = qωea(q
ω, 1)x0 + qω

∫ qω

1

ea(q
ω, σ(s))

b(s)

s
Δs.

Since P is linear, it is continuous. Let x0 ∈ Ω. Since t|x(t, x0)| ≤ K for all t ∈ qN0 ,
we have

|P (x0)| = qω|x(qω, x0)| ≤ K.
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Moreover, using Lemma 3.6, we get

x(t, P (x0)) = ea(t, 1)P (x0) +

∫ t

1

ea(t, σ(s))
b(s)

s
Δs

= ea(t, 1)

{
qωea(q

ω, 1)x0 + qω
∫ qω

1

ea(q
ω, σ(s))

b(s)

s
Δs

}

+

∫ t

1

ea(t, σ(s))
b(s)

s
Δs

(3.1)

(3.2)
= qωea(t, 1)ea(q

ωt, t)x0 + qωea(q
ωt, qω)

∫ qω

1

ea(q
ω, σ(s))

b(s)

s
Δs

+qω
∫ qωt

qω
ea(q

ωt, σ(s))
b(s)

s
Δs

(2.1)
= qω

{
ea(q

ωt, 1)x0 +

∫ qωt

1

ea(q
ωt, σ(s))

b(s)

s
Δs

}

= qωx(qωt, x0),

and thus
t|x(t, P (x0))| = qωt|x(qωt, x0)| ≤ K

for all t ∈ qN0 . Hence P (x0) ∈ Ω. Thus P : Ω → Ω. By Theorem 3.9, P has a fixed
point in Ω, i.e., there exists x̃0 ∈ Ω with

x(1, x̃0) = x̃0 = P (x̃0) = qωx(qω, x̃0).

By Theorem 3.4, x̃ = x(·, x̃0) is an ω-periodic solution of (1.1). �
Remark 3.11. The periodic solution x̃ in the last line of the proof of Theorem 3.10
is unique provided

(3.3) qωea(q
ω, 1) �= 1,

and it is then given by

(3.4) x̃(t) = λ

∫ qωt

t

ea(t, σ(s))
b(s)

s
Δs,

where

λ =
qωea(q

ω, 1)

1− qωea(qω, 1)
.

Proof. Since x̃ is a solution of (1.1), Theorem 2.9 implies

x̃(t) = ea(t, 1)x̃(1) +

∫ t

1

ea(t, σ(s))
b(s)

s
Δs.

Since x̃ is ω-periodic, we have

x̃(t) = qωx̃(qωt) = qωea(q
ωt, t)x̃(t) + qω

∫ qωt

t

ea(q
ωt, σ(s))

b(s)

s
Δs,

and thus (by (2.1) and (3.2))

(1− qωea(q
ω, 1))x̃(t) = qωea(q

ω, 1)

∫ qωt

t

ea(t, σ(s))
b(s)

s
Δs,

from which the result follows due to (3.3). �
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Remark 3.12. Lemma 3.5 shows directly that x̃ given by (3.4) is ω-periodic.

Example 3.13. Consider the linear q-difference equation

(3.5) xΔ(t) =
x(t)

t
+

1

t2
.

Here, a(t) = b(t) = 1
t are 1-periodic. By Theorem 3.4, the solution x of (3.5)

satisfying

(3.6) qx(q) = x(1)

is 1-periodic. Since x(q) = qx(1) + q − 1, (3.6) happens if and only if

(3.7) q2x(1) + q(q − 1) = x(1), i.e., x(1) = − q

1 + q
.

Thus, the solution x of (3.5) satisfying the initial condition (3.7) is 1-periodic. By
Theorem 3.10, (3.5) also has a q-bounded solution. In fact, it is easy to see that

x̃(t) = − q

1 + q

1

t

is a q-bounded (with K = q/(1 + q)) and 1-periodic solution of (3.5).

4. Massera’s theorem for nonlinear q-difference equations

In this section, our goal is to prove a version of Massera’s theorem for nonlinear
q-difference equations. Throughout, we assume that initial value problems for (1.3)
are uniquely solvable. We consider (1.3) subject to the hypotheses:

(H1) f : qN0 × R → R is continuous with respect to the second variable.
(H2) For each fixed x ∈ R, F defined by F (t) = tf(t, x) is ω-periodic, that is,

q2ωf(tqω, x) = f(t, x) for all t ∈ qN0 and x ∈ R.

Let us start by proving some auxiliary results.

Lemma 4.1. Assume (H2). Then the following assertions hold:

(i) If x is a solution of (1.3), then so is y defined by y(t) = qωx(qωt).
(ii) Equation (1.3) has an ω-periodic solution if and only if there exist a solution

x of (1.3) and t0 ∈ qN0 with

qωx(qωt0) = x(t0).

Proof. Let us start by proving (i). Let x be a solution of (1.3) and define y(t) :=
qωx(qωt). Then

yΔ(t) = q2ωxΔ(qωt)

= q2ωf(tqω, tqωx(qωt))

= f(t, ty(t)),

proving our result.
Now, let us prove (ii). Suppose (1.3) has an ω-periodic solution x. Then, clearly

for any t0 ∈ qN0 , we get qωx(qωt0) = x(t0). On the other hand, assume that x is
a solution of (1.3) satisfying qωx(qωt0) = x(t0) for some t0 ∈ qN0 . Then, by (i),
y(t) = qωx(qωt) is also a solution of (1.3) which satisfies y(t0) = x(t0). Therefore,
by the uniqueness of solutions, it follows that y(t) = x(t) for every t ∈ qN0 , so x is
ω-periodic. �
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In the proof of our main result below, we also use the hypothesis

(H3) For all t ∈ qN0 ,

x < y always implies x+ (q − 1)tf(t, tx) < y + (q − 1)tf(t, ty).

Lemma 4.2. Assume (H3). Then

x(1) < y(1) implies x(t) < y(t) for all t ∈ qN0 .

Proof. By induction, x(1) < y(1) is given. Now suppose that x(t) < y(t) holds.
Then

x(qt) = x(t) + (q − 1)txΔ(t)

= x(t) + (q − 1)tf(t, tx(t))

< y(t) + (q − 1)tf(t, ty(t))

= y(t) + (q − 1)tyΔ(t) = y(qt),

obtaining the desired result. �

Theorem 4.3. Assume (H1)–(H3). If (1.3) has a q-bounded solution, then it has
an ω-periodic solution.

Proof. Let x be a q-bounded solution of (1.3). Hence there exists K > 0 with
t|x(t)| ≤ K for all t ∈ qN0 . Define the sequence of functions {xn} by xn(t) =
qωnx(tqωn) on qN0 for n ∈ N0. Since xn+1(t) = qωxn(q

ωt) for all n ∈ N0, Lemma
4.1(i) shows that each xn, n ∈ N, is a solution of (1.3). Moreover, since t|xn(t)| =
qωnt|x(qωnt)| ≤ K, each xn is q-bounded.

First, assume x(1) = x1(1). Then x(1) = qωx(qω), and by Lemma 4.1(ii), x is
ω-periodic. Next, assume x(1) < x1(1). Then by Lemma 4.2, x(t) < x1(t) for all
t ∈ qN0 . Hence

x(qωnt) < x1(q
nωt) for all t ∈ qN0

so that

(4.1) xn(t) = qnωx(qnωt) < qnωx1(q
nωt) = q(n+1)ωx(q(n+1)ωt) = xn+1(t)

for all t ∈ qN0 . Thus, for each t ∈ qN0 , {xn(t)}∞n=1 is increasing and bounded, and
so we have

lim
n→∞

xn(t) = x̃(t) pointwise for t ∈ qN0 ,

where x̃ is some function defined on qN0 . We have

x̃Δ(t) =
x̃(qt)− x̃(t)

(q − 1)t
= lim

n→∞

xn(qt)− xn(t)

(q − 1)t
= lim

n→∞
xΔ
n (t)

= lim
n→∞

f(t, txn(t)) = f(t, tx̃(t))

for each t ∈ qN0 , as f is continuous in the second variable. So x̃ : qN0 → R solves
(1.3). Moreover,

qωx̃(qωt) = lim
n→∞

qωxn(q
ωt) = lim

n→∞
xn+1(t) = x̃(t)

for each t ∈ qN0 , so x̃ is ω-periodic. Finally, the last case, x(1) > x1(1), leads to an
ω-periodic solution in the same way. �

Remark 4.4. If we replace the condition (H3) by

(H4) f(t, x) > 0 for all t ∈ qN0 and x ∈ R,
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then it is not difficult to prove that the sequence {xn} obtained in the same way
as in the proof of Theorem 4.3 is increasing and therefore satisfies the inequality
(4.1). The rest of the proof follows in the same way as the proof of Theorem 4.3.

Example 4.5. If a, b : qN0 → R are ω-periodic with a ∈ R and f(t, x) = a(t)
t x+ b(t)

t ,
then (1.3) is the same as (1.1). Moreover, since

q2ωf(tqω, x) = q2ω
a(tqω)

tqω
x+ q2ω

b(qωt)

qωt

=
qωa(qωt)

t
+

qωb(qωt)

t

=
a(t)

t
x+

b(t)

t
= f(t, x),

f is seen to satisfy (H2).

Example 4.6. Let q = 2. Consider the nonlinear q-difference equation

(4.2) xΔ(t) =
x(t)(1− tx(t))

t(1 + tx(t))
.

Then (4.2) is of the form (1.3) with

f(t, x) =
x(1− x)

t2(1 + x)
.

Since

4f(2t, x) = 4
x(1− x)

(2t)2(1 + x)
= f(t, x),

f satisfies (H2) with ω = 1. By Lemma 4.1(ii), (4.2) has a 1-periodic solution if a
solution x satisfies

(4.3) 2x(2) = x(1).

Since x(2) = x(1) + x(1)(1−x(1))
1+x(1) , (4.3) happens if and only if (without loss of gen-

erality, assume x(1) �= 0)

(4.4) 2 + 2
1− x(1)

1 + x(1)
= 1, i.e., x(1) = 3.

It is clear that (4.2) has a unique solution satisfying the initial condition (4.4).
Thus, by Lemma 4.1(ii), (4.2) has a 1-periodic solution. By Theorem 4.3, (4.2) also
has a q-bounded solution. In fact, one can see that

x̃(t) =
3

t

is a q-bounded (with K = 3) and 1-periodic solution of (4.2). Note that

x̃Δ(t) = − 3

2t2

and
x̃(t)(1− tx̃(t))

t(1 + tx̃(t))
=

3
t

(
1− t 3t

)
t
(
1 + t 3t

) = − 6

4t2
= − 3

2t2
.
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