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(Communicated by Thomas Schlumprecht)

Abstract. For p ≥ 1, n ∈ N, and an origin-symmetric convex body K in R
n,

let

dovr(K,Ln
p ) = inf

{( |D|
|K|

)1/n
: K ⊆ D, D ∈ Ln

p

}

be the outer volume ratio distance from K to the class Ln
p of the unit balls of

n-dimensional subspaces of Lp. We prove that there exists an absolute constant
c > 0 such that

c
√
n√

p log logn
≤ sup

K
dovr(K,Ln

p ) ≤
√
n.

This result follows from a new slicing inequality for arbitrary measures, in the
spirit of the slicing problem of Bourgain. Namely, there exists an absolute
constant C > 0 so that for any p ≥ 1, any n ∈ N, any compact set K ⊆ R

n of
positive volume, and any Borel measurable function f ≥ 0 on K,∫

K
f(x) dx ≤ C

√
p dovr(K,Ln

p ) |K|1/n sup
H

∫
K∩H

f(x) dx,

where the supremum is taken over all affine hyperplanes H in R
n. Combining

the above display with a recent counterexample for the slicing problem with
arbitrary measures from the work of the second and third authors [J. Funct.
Anal. 274 (2018), pp. 2089–2112], we get the lower estimate from the first
display.

In turn, the second inequality follows from an estimate for the p-th absolute
moments of the function f

min
ξ∈Sn−1

∫
K

|(x, ξ)|pf(x) dx ≤ (Cp)p/2 dpovr(K,Ln
p ) |K|p/n

∫
K

f(x) dx.

Finally, we prove a result of the Busemann-Petty type for these moments.

1. Introduction

Suppose that K ⊆ R
n (n ≥ 1) is a centrally-symmetric convex set of volume one

(i.e., K = −K). Given an even continuous probability density f : K → [0,∞), and
p ≥ 1, can we find a direction ξ such that the p-th absolute moment

(1.1) MK,f,p(ξ) =

∫
K

|(x, ξ)|p f(x) dx
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is smaller than a constant which does not depend on K and f? More precisely and
in a more relaxed form, let γ(p, n) be the smallest number γ > 0 satisfying

(1.2) min
ξ∈Sn−1

MK,f,p(ξ) ≤ γp |K|p/n
∫
K

f(x) dx

for all centrally-symmetric convex bodies K ⊆ R
n and all even continuous func-

tions f ≥ 0 on K. Here and below, we denote by Sn−1 = {ξ ∈ R
n : |ξ| = 1} the

Euclidean unit sphere centered at the origin, and |K| stands for volume of appro-
priate dimension. (Note that the continuity property of f in the definition (1.1) is
irrelevant and may easily be replaced by measurability.) As we will see, there is a
two-sided bound on γ(p, n).

Theorem 1.1. With some positive absolute constants c and C, for any p ≥ 1,

c
√
n√

log log n
≤ γ(p, n) ≤ C

√
pn.

To describe the way the upper bound is obtained, denote by Ln
p the class of the

unit balls of n-dimensional subspaces of Lp. Equivalently (see [11, p. 117]), Ln
p is

the class of all centrally-symmetric convex bodies D in R
n such that there exists a

finite Borel measure νD on Sn−1 satisfying

(1.3) ‖x‖pD =

∫
Sn−1

|(x, θ)|p dνD(θ) ∀x ∈ R
n.

Here ‖x‖D = inf{a ≥ 0 : x ∈ aD} is the norm generated by D. Note that
Ln
1 = Π∗

n is the class of polar projection bodies which, in particular, contains the
cross-polytopes; see [11, Ch. 8] for details.

For a (bounded) set K in R
n, define the quantity

V (K,Ln
p ) = inf

{
|D|1/n : K ⊆ D, D ∈ Ln

p

}
.

If K is measurable and has positive volume, we have the relation

V (K,Ln
p ) = dovr(K,Ln

p ) |K|1/n,

with

(1.4) dovr(K,Ln
p ) = inf

{( |D|
|K|

)1/n

: K ⊆ D, D ∈ Ln
p

}
.

For convex K, the latter may be interpreted as the outer volume ratio distance from
K to the class of unit balls of n-dimensional subspaces of Lp. The next body-wise
estimates refine the upper bound in Theorem 1.1 in terms of the dovr-distance.

Theorem 1.2. Given a probability measure μ on R
n with a compact support K,

for every p ≥ 1,

min
ξ∈Sn−1

(∫
|(x, ξ)|p dμ(x)

)1/p

≤ C
√
p V (K,Ln

p ),

where C is an absolute constant. In particular, if f is a non-negative continuous
function on a compact set K ⊆ R

n of positive volume, then

min
ξ∈Sn−1

MK,f,p(ξ) ≤ (Cp)p/2 dpovr(K,Ln
p ) |K|p/n

∫
K

f(x) dx.
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In the class of centrally-symmetric convex bodies K in R
n, there is a dimen-

sional bound dovr(K,Ln
p ) ≤ √

n, which follows from John’s theorem and the fact
that ellipsoids belong to Ln

p for all p ≥ 1 (see [6] and [11, Lemma 3.12]). Hence,
the second upper bound of Theorem 1.2 is more accurate in comparison with the
universal bound of Theorem 1.1.

Moreover, for several classes of centrally-symmetric convex bodies, it is known
that the distance dovr(K,Ln

p ) is bounded by absolute constants. These classes
include duals of bodies with bounded volume ratio (see [14]) and the unit balls of
normed spaces that embed in Lq, 1 ≤ q < ∞ (see [15, 18]). In the case p = 1,
they also include all unconditional convex bodies [14]. The proofs in these papers
estimate the distance from the class of intersection bodies, but the actual bodies
used there (the Euclidean ball for p > 1 and the cross-polytope for p = 1) also
belong to the classes Ln

p , so the same arguments work for Ln
p .

In order to prove the lower estimate of Theorem 1.1, we first establish the con-
nection between question (1.1) and the slicing problem for arbitrary measures. The
slicing problem of Bourgain [2, 3] asks whether supn Ln < ∞, where Ln is the
minimal positive number L such that, for any centrally-symmetric convex body
K ⊆ R

n,

|K| ≤ L max
ξ∈Sn−1

|K ∩ ξ⊥| |K|1/n.

Here, ξ⊥ is the hyperplane in R
n passing through the origin and perpendicular

to the vector ξ. Bourgain’s slicing problem is still unsolved. The best-to-date
estimate Ln ≤ Cn1/4 was established by the second-named author [8], removing a
logarithmic term from an earlier estimate by Bourgain [4].

The slicing problem for arbitrary measures was introduced in [12] and considered
in [5, 9, 13–15]. In analogy with the original problem, for a centrally-symmetric
convex body K ⊆ R

n, let Sn,K be the smallest positive number S satisfying

(1.5)

∫
K

f(x) dx ≤ S max
ξ∈Sn−1

∫
K∩ξ⊥

f(x) dx |K| 1
n

for all even continuous functions f ≥ 0 in R
n (where dx on the right-hand side

refers to the Lebesgue measure on the corresponding affine subspace of Rn). It was
proved in [13] that

Sn = sup
K⊆Rn

Sn,K ≤ 2
√
n.

However, for many classes of bodies, including intersection bodies [12] and uncondi-
tional convex bodies [14], the quantity Sn,K turns out to be bounded by an absolute
constant. In particular, if K is the unit ball of an n-dimensional subspace of Lp,
p > 2, then Sn,K ≤ C

√
p with some absolute constant C; see [15]. These results

are implied by the following estimate proved in [14]:

Theorem 1.3 ([14]). For any centrally-symmetric star body K ⊆ R
n and any even

continuous non-negative function f on K,∫
K

f(x) dx ≤ 2 dovr(K, In) max
ξ∈Sn−1

∫
K∩ξ⊥

f(x) dx |K|1/n,

where dovr(K, In) is the outer volume ratio distance from K to the class In of
intersection bodies in R

n.



4882 SERGEY BOBKOV, BO’AZ KLARTAG, AND ALEXANDER KOLDOBSKY

The class of intersection bodies In was introduced by Lutwak [17]; it can be
defined as the closure in the radial metric of radial sums of ellipsoids centered at
the origin in R

n.
The slicing problem for arbitrary measures can be modified to include non-central

sections. For a centrally-symmetric convex body K ⊆ R
n, let Tn,K be the smallest

positive number T satisfying

(1.6)

∫
K

f(x) dx ≤ T sup
H

∫
K∩H

f(x) dx |K| 1
n ,

where the supremum is taken over all affine hyperplanes H in R
n. Let

Tn = sup
K⊆Rn

Tn,K .

We have Tn ≤ Sn ≤ 2
√
n. On the other hand, it was shown in [9] that in general

the constants Tn and Sn are of the order
√
n, up to a doubly-logarithmic term.

Theorem 1.4 ([9]). For any n ≥ 3, there exists a centrally-symmetric convex body
M ⊆ R

n and an even, continuous probability density f : M → [0,∞) such that, for
any affine hyperplane H ⊆ R

n,

(1.7)

∫
M∩H

f(x) dx ≤ C

√
log log n√

n
|M |−1/n.

This implies

Tn ≥ c
√
n√

log log n
.

Here C and c are universal constants.

The connection between (1.2) and the slicing inequality for arbitrary measures
(1.6) is as follows.

Lemma 1.5. Given a Borel measurable function f ≥ 0 on R
n, for any ξ ∈ Sn−1

and p > 0,

2p (p+ 1)

(
sup
s∈R

∫
(x,ξ)=s

f(x) dx

)p ∫
|(x, ξ)|p f(x) dx ≥

(∫
f(x) dx

)p+1

.

If f is defined on a set K in R
n, we then have

2p (p+ 1)

(
sup
s∈R

∫
K∩{(x,ξ)=s}

f(x) dx

)p

MK,f,p(ξ) ≥
(∫

K

f(x) dx

)p+1

.

The lower bound in Theorem 1.1 thus follows, by combining the above inequality
with (1.2) and Theorem 1.4.

Corollary 1.6. With some positive absolute constants c and C, for every p ≥ 1,

c
√
n√

log log n
≤ Tn ≤ Cγ(p, n).

Lemma 1.5, in conjunction with Theorem 1.2, leads to a new slicing inequality.
In the case of volume, where f ≡ 1, this inequality was established earlier by Ball
[1] for p = 1 and by Milman [18] for arbitrary p.
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Theorem 1.7. Let f ≥ 0 be a Borel measurable function on a compact set K ⊆ R
n

of positive volume. Then, for any p > 2,∫
K

f(x) dx ≤ C
√
p dovr(K,Ln

p ) |K|1/n sup
H

∫
K∩H

f(x) dx,

where the supremum is taken over all affine hyperplanes H in R
n, and C is an

absolute constant.

Theorem 1.7 also holds for 1 ≤ p ≤ 2, but in this case it is weaker than Theorem
1.3, because the unit ball of every finite dimensional subspace of Lp, 0 < p ≤ 2, is
an intersection body; see [10]. However, for p > 2 the unit balls of subspaces of Lp

are not necessarily intersection bodies. For example, the unit balls of �np are not
intersection bodies if p > 2, n ≥ 5; see [11, Th. 4.13]. So the result of Theorem 1.7
is new for p > 2, and generalizes the estimate from [15] in the case where K itself
belongs to the class Ln

p .
Theorem 1.7 gives another reason to estimate the outer volume ratio distance

dovr(K,Ln
p ) from an arbitrary symmetric convex body to the class of unit balls of

subspaces of Lp. As mentioned before,

dovr(K,Ln
p ) ≤

√
n,

uniformly over all centrally-symmetric convex bodies K in R
n. Surprisingly, the

corresponding lower estimates seem to be missing in the literature. Combining
Theorems 1.7 and 1.4, we get a lower estimate which shows that

√
n is optimal up

to a doubly-logarithmic term with respect to the dimension n and a term depending
on the power p only.

Corollary 1.8. There exists a centrally-symmetric convex body M ⊆ R
n such that

dovr(M,Ln
p ) ≥ c

√
n√

p log log n

for every p ≥ 1, where c > 0 is a universal constant.

We end the Introduction with a comparison result for the quantities MK,f,p(ξ).
For p ≥ 1, introduce the Banach-Mazur distance

dBM (M,Ln
p ) = inf

{
a ≥ 1 : ∃D ∈ Ln

p such that D ⊂ M ⊂ aD
}

from a star body M in R
n to the class Ln

p . Recall that L
n
p is invariant with respect

to linear transformations. By John’s theorem, if M is origin-symmetric and convex,
then dBM (M,Ln

p ) ≤
√
n. We prove the following:

Theorem 1.9. Let K and M be origin-symmetric star bodies in R
n, and let f ≥ 0

be an even continuous function on R
n. Given p ≥ 1, suppose that for every ξ ∈ Sn−1

(1.8)

∫
K

|(x, ξ)|p f(x) dx ≤
∫
M

|(x, ξ)|p f(x) dx.

Then ∫
K

f(x) dx ≤ dpBM (M,Ln
p )

∫
M

f(x) dx.

This result is in the spirit of the Busemann-Petty problem for arbitrary measures;
see [16, 19]. For example, it was proved in [16] that, with the same notation, if∫

K∩ξ⊥
f(x) dx ≤

∫
M∩ξ⊥

f(x) dx ∀ξ ∈ Sn−1,
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then ∫
K

f(x) dx ≤ dBM (K, In)
∫
M

f(x) dx.

We refer the reader to [11, Ch. 5] for more about the Busemann-Petty problem.
Throughout this paper, a convex body K in R

n is a compact, convex set with
a non-empty interior. The standard scalar product between x, y ∈ R

n is denoted
by (x, y) and the Euclidean norm of x ∈ R

n by |x|. We write log for the natural
logarithm.

2. Proofs

In this section we prove Theorem 1.2, Lemma 1.5, and Theorem 1.9. The other
results of this paper will follow as explained in the Introduction.

Given a compact set K ⊆ R
n and x ∈ R

n, put

‖x‖K = min{a ≥ 0 : x ∈ aK},
if x ∈ aK for some a ≥ 0, and ‖x‖K = ∞ in the other case. For star bodies, it
represents the usual Minkowski functional associated with K.

Proof of Theorem 1.2. Let D ⊆ R
n be the unit ball of an n-dimensional subspace

of Lp, so that the relation (1.3) holds for some measure νD on the unit sphere Sn−1.
Then, integrating the inequality

min
θ∈Sn−1

∫
K

|(x, θ)|p dμ(x) ≤
∫
K

|(x, ξ)|p dμ(x) (ξ ∈ Sn−1)

over the variable ξ with respect to νD, we get the relation

νD(Sn−1) min
θ∈Sn−1

∫
K

|(x, θ)|p dμ(x) ≤
∫
K

‖x‖pD dμ(x).

In the case K ⊆ D, we have ‖x‖D ≤ ‖x‖K ≤ 1 on K, so that the last integral does
not exceed μ(K) = 1, and thus

(2.1) νD(Sn−1) min
θ∈Sn−1

∫
K

|(x, θ)|p dμ(x) ≤ 1.

In order to estimate the left-hand side of (2.1) from below, we represent the value
νD(Sn−1) as the integral

∫
Sn−1 |x|p dνD(x) and apply the well-known formula

|x|p =
Γ( p+n

2 )

2π
n−1
2 Γ( p+1

2 )

∫
Sn−1

|(x, θ)|p dθ, x ∈ R
n

(see for example [11, Lemma 3.12]). Using (1.3), this yields the representation

νD(Sn−1) =
Γ( p+n

2 )

2π
n−1
2 Γ( p+1

2 )

∫
Sn−1

∫
Sn−1

|(x, θ)|p dθ dνD(x)

=
Γ( p+n

2 )

2π
n−1
2 Γ( p+1

2 )

∫
Sn−1

‖θ‖pD dθ.

The last integral may be related to the volume of D, by using the polar formula
for the volume of D,

n |D| =
∫
Sn−1

‖θ‖−n
D dθ = sn−1

∫
Sn−1

‖θ‖−n
D dσn−1(θ),
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where σn−1 denotes the normalized Lebesgue measure on Sn−1 and sn−1 = 2π
n
2

Γ(n
2 )

is its (n− 1)-dimensional volume. Namely, by Jensen’s inequality, we have∫
‖θ‖−n

D dσn−1(θ) ≥
(∫

‖θ‖pD dσn−1(θ)

)−n
p

,

or equivalently, ∫
‖θ‖pD dθ ≥ s

p+n
n

n−1 (n |D|)−
p
n .

Thus,

νD(Sn−1) ≥
Γ( p+n

2 ) s
p+n
n

n−1

2π
n−1
2 Γ( p+1

2 )n
p
n |D| pn

=
√
π

Γ( p+n
2 )

Γ( p+1
2 ) Γ(n2 )

( sn−1

n |D|
) p

n ≥ cp

Γ( p+1
2 ) |D| pn

,

where c > 0 is an absolute constant. Here we used the well-known asymptotic

relation
√
n s

1
n
n−1 → c0 as n → ∞, for some absolute c0 > 0, as well as the estimate

Γ( p+n
2 )/Γ(n2 ) ≥ (cn)p/2.
Applying this lower estimate on the left-hand side of (2.1), we get

min
θ∈Sn−1

∫
K

|(x, θ)|p dμ(x) ≤ Cp Γ
(p+ 1

2

)
|D|

p
n .

It remains to take the minimum over all admissible D and note that Γ
(
p+1
2

)1/p ≤
c
√
p for p ≥ 1. �

To prove Lemma 1.5, we need the following simple assertion.

Lemma 2.1. Given a measurable function g : R → [0, 1], the function

q �→
(
q + 1

2

∫ ∞

−∞
|t|q g(t) dt

) 1
q+1

is non-decreasing on (−1,∞).

Proof. The standard argument is similar to the one used in the proof of Lemma 2.4
in [7]. Given −1 < q < p, let A > 0 be defined by∫ ∞

−∞
|t|q g(t) dt =

∫ A

−A

|t|q dt = 2

q + 1
Aq+1.

Using

|t|p ≤ Ap−q |t|q (|t| ≤ A) and |t|p ≥ Ap−q |t|q (|t| ≥ A),

together with the assumption 0 ≤ g ≤ 1, we then have∫
|t|≤A

(1− g(t)) |t|p dt−
∫
|t|>A

g(t) |t|p dt

≤ Ap−q
( ∫

|t|≤A
(1− g(t)) |t|q dt−

∫
|t|>A

g(t) |t|q dt
)

= 0.

Hence ∫ ∞

−∞
g(t) |t|p dt ≥

∫ A

−A

|t|p dt =
2

p+ 1
Ap+1,
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that is, (
p+ 1

2

∫ ∞

−∞
g(t) |t|p dt

) 1
p+1

≥ A =

(
q + 1

2

∫ ∞

−∞
g(t) |t|q dt

) 1
q+1

.

�

Proof of Lemma 1.5. One may assume that f is integrable. For t ∈ R, introduce
the hyperplanes Ht = {(x, ξ) = t}. Since f is Borel measurable on R

n, the function

g(t) =

∫
Ht

f(x) dx

sups
∫
Hs

f(x) dx

is Borel measurable on the line and satisfies ‖g‖∞ = 1. By Fubini’s theorem,∫ ∞

−∞
|t|p g(t) dt =

∫
|(x, ξ)|p f(x) dx

sups
∫
Hs

f(x) dx
,

∫ ∞

−∞
g(t) dt =

∫
f(x) dx

sups
∫
Hs

f(x) dx
.

Applying Lemma 2.1 to the function g with q = 0 and p, we get

1

2

∫ ∞

−∞
g(t) dt ≤

(
p+ 1

2

∫ ∞

−∞
|t|p g(t) dt

) 1
p+1

,

which in our case becomes(∫
f(x) dx

)p+1

≤ (p+ 1)
(
2 sup

s

∫
Hs

f(x) dx
)p

∫
|(x, ξ)|p f(x) dx.

�

Proof of Theorem 1.9. Let D ∈ Ln
p be such that the distance dBM (M,Ln

p ) is almost
realized, i.e., for small δ > 0, suppose that D ⊆ M ⊆ (1 + δ) dBM (M,Ln

p )D.

Integrating both sides of (1.8) over ξ ∈ Sn−1 with respect to the measure νD
from (1.3), we get ∫

K

‖x‖pD f(x) dx ≤
∫
M

‖x‖pD f(x) dx.

Equivalently, using the integrals in spherical coordinates, we have

0 ≤
∫
Sn−1

‖θ‖pD
(∫ ‖θ‖−1

M

‖θ‖−1
K

rn+p−1f(rθ) dr

)
dθ =

∫
Sn−1

‖θ‖pD
‖θ‖pM

I(θ) dθ,

where

I(θ) = ‖θ‖pM
∫ ‖θ‖−1

M

‖θ‖−1
K

rn+p−1f(rθ) dr.

For θ ∈ Sn−1 such that ‖θ‖K ≥ ‖θ‖M , the latter quantity is non-negative, and one
may proceed by writing

I(θ) =

∫ ‖θ‖−1
M

‖θ‖−1
K

(
‖θ‖pM − r−p

)
rn+p−1f(rθ) dr +

∫ ‖θ‖−1
M

‖θ‖−1
K

rn−1f(rθ) dr

≤
∫ ‖θ‖−1

M

‖θ‖−1
K

rn−1f(rθ) dr.
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But, in the case ‖θ‖K ≤ ‖θ‖M , we have

−I(θ) = ‖θ‖pM
∫ ‖θ‖−1

K

‖θ‖−1
M

rp rn−1f(rθ) dr ≥
∫ ‖θ‖−1

K

‖θ‖−1
M

rn−1f(rθ) dr,

which is the same upper bound on I(θ) as before. Thus,

0 ≤
∫
Sn−1

‖θ‖pD
‖θ‖pM

(∫ ‖θ‖−1
M

‖θ‖−1
K

rn−1f(rθ) dr

)
dθ,

that is,
∫
Sn−1

‖θ‖pD
‖θ‖pM

(∫ ‖θ‖−1
K

0

rn−1f(rθ) dr

)
dθ ≤

∫
Sn−1

‖θ‖pD
‖θ‖pM

(∫ ‖θ‖−1
M

0

rn−1f(rθ) dr

)
dθ.

Now, by the choice of D,

‖θ‖M ≤ ‖θ‖D ≤ (1 + δ) dBM (M,Ln
p )‖θ‖M

for every θ ∈ Sn−1. Hence
∫
K

f(x) dx =

∫
Sn−1

(∫ ‖θ‖−1
K

0

rn−1f(rθ) dr

)
dθ

≤
∫
Sn−1

‖θ‖pD
‖θ‖pM

(∫ ‖θ‖−1
K

0

rn−1f(rθ) dr

)
dθ

≤
∫
Sn−1

‖θ‖pD
‖θ‖pM

(∫ ‖θ‖−1
M

0

rn−1f(rθ) dr

)
dθ

≤ (1 + δ) dpBM (M,Ln
p )

∫
Sn−1

(∫ ‖θ‖−1
M

0

rn−1f(rθ) dr

)
dθ

= (1 + δ) dpBM (M,Ln
p )

∫
M

f(x) dx.

Sending δ to zero, we get the result. �
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