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ON POLETSKY THEORY OF DISCS IN COMPACT MANIFOLDS

UROŠ KUZMAN

(Communicated by Filippo Bracci)

Abstract. We provide a direct construction of Poletsky discs via local arc
approximation and a Runge-type theorem by A. Gournay [Geom Funct. Anal.
22 (2012), pp. 311-351].

Let D = {ζ ∈ C : |ζ| < 1} denote the open unit disc. Given a smooth (almost)
complex manifold M and p ∈ M , we denote by O(D,M, p) the set of smooth maps
u : D → M that are (pseudo)holomorphic in some neighborhood of D and satisfy
u(0) = p. Given p ∈ M , ε > 0, and an open set U ⊂ M , we call an element of
u ∈ O(D,M, p) a Poletsky disc (associated to p, ε, and U) if most of its boundary
lies in U ; that is, there exists an exceptional set E ⊂ [0, 2π) of Lebesgue measure
|E| < ε and such that u(eit) ∈ U for t /∈ E. Such discs were used by E. Poletsky
[11] in order to characterize the polynomial hull for compact sets in Cn. Similarly,
they can describe the projective hull of a compact set in complex projective spaces
[2, 8].

All of the above-mentioned characterizations are based on the following explicit
formula for the largest plurisubharmonic minorant of a given upper-semicontinuous
function f on M :

f̂(p) = inf

{∫ 2π

0

f ◦ u(eit) dt
2π

: u ∈ O(D,M, p)

}
.(1)

The formula was proved to be valid on any complex manifold by J. P. Rosay (see [7]
for related results), who also observed that if M admits no nonconstant bounded
plurisubharmonic function, there exists a Poletsky disc for any p ∈ M , ε > 0,
and open set U ⊂ M [12, Corollary 0.2]. Indeed, in this case the minorant of the

negative indicator function f = −χU equals f̂ ≡ −1; hence the existence of the
desired discs follows directly from the definition of the infimum in (1).

In this paper we present a new, direct proof of this corollary valid for a certain
class of manifolds admitting a Runge-type approximation provided by A. Gournay
[5]. In particular, we give a partial answer to Rosay’s question raised in [12, Sec-
tion 5]: given a compact complex manifold, can a Poletsky disc be provided without
using (1)? Moreover, our theorem includes some examples of almost complex man-
ifolds.
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Theorem 1. Let M be a smooth, connected compact manifold equipped with a
regular almost complex structure and admitting a doubly tangent property. Given a
point p ∈ M , a positive constant ε > 0, and any open set U ⊂ M , there exist a disc
u ∈ O(D,M, p) and a set E ⊂ [0, 2π) such that |E| < ε and u(eit) ∈ U for t /∈ E.

The assumptions in the above theorem are rather technical and should be read as
“such that Gournay’s approximation result applies” (we further discuss them in §2).
However, they are fulfilled for a wide class of compact complex manifolds including
complex projective spaces and Grassmannians. Moreover, as mentioned, they are
valid for some manifolds equipped with a nonintegrable almost complex structure
J (e.g., CPn with J tamed by the standard symplectic form) [5, p. 313]. Note that
for the above the Poletsky-Rosay formula (1) is proved only in a low-dimensional
case [6]. Hence for dimR M ≥ 6 and a nonintegrable J , the theorem is new.

Finally, let us remark that in §1 we present another original statement that will
be needed in the proof of the main theorem: based on [1] we provide a Mergelyan-
type result for maps defined on smooth arcs (Theorem 5).

1. The local arc approximation

Let M be a smooth real manifold of even dimension. A (1, 1)-tensor field
J : TM → TM satisfying J2 = −Id is called an almost complex structure. A
differentiable map u : (M ′, J ′) −→ (M,J) between two almost complex manifolds
is (J ′, J)-holomorphic if for every p ∈ M ′ we have

J (u (p)) ◦ dpu = dpu ◦ J ′ (p) .(2)

We deal with two simple cases, J-holomorphic discs u : D → M and J-holomorphic
spheres u : CP 1 → M .

We denote by Jst the standard integrable structure on Cn for any n ∈ N. In local
coordinates z ∈ R

2n an almost complex structure J is represented by an R-linear
operator satisfying J(z)2 = −I; hence (2) equals

uy = J(u)ux.(3)

Further, if J + Jst is invertible along u, we have

F(u) = uζ̄ +A(u)uζ = 0,(4)

where ζ = x + iy and A(z)(v) = (Jst + J(z))−1(J(z)− Jst)(v̄) is a complex linear
endomorphism for every z ∈ Cn. We call A the complex matrix of J and denote by
J the set of all smooth structures on R2n satisfying the condition det(J +Jst) �= 0.

In [1] the approximation theory was developed for the operator F defined as in
(4) and evaluated in functions admitting a Sobolev weak derivative. In particular,
given ϕ ∈ W 1,p(D), p > 2, a bounded right inverse Qϕ was constructed for the
derivative dϕF and the following version of the Implicit Function Theorem was
applied.

Theorem 2 (Implicit Function Theorem). Let X and Y be two Banach spaces and
consider a map F : U ⊂ X → Y of class C1 defined on an open set U ⊂ X. Let
x0 ∈ U . Assume that the differential dx0

F admits a bounded right inverse, denoted
by Qx0

. Fix c0 > 0 such that ‖Q‖ ≤ c0 and η > 0 such that if ‖x− x0‖ < η, then
x ∈ U and

‖dxF − dx0
F‖ ≤ 1

2c0
.
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Then if ‖F(x0)‖ <
η

4c0
, there exists x ∈ U such that F(x) = 0 and

‖x− x0‖ ≤ 2c0 ‖F(x0)‖ .

In this paper we use the same approach to develop a similar statement for the
operator F : C1,α(D) → C0,α(D). That is, we prove an analogue of [1, Theorem 5]
valid for Hölder spaces (we omit the existence part for Qϕ since the proof is the
same as in [1, Theorem 2] and [15]). Note that these additional regularity condi-
tions are needed since in the present paper we apply the statement to shrinking
neighborhoods of an arc in order to obtain a C0-approximation. Since the diam-
eter of such sets admits no lower bound, the W 1,p-result along with the Sobolev
embedding theorem does not suffice.

Theorem 3. Let 0 < α < 1. Let J ∈ J and let A be its complex matrix. We
define F : C1,α(D) → C0,α(D) to be the operator given by

F(u) = uζ̄ +A(u)uζ .

For every c0 > 0, there exists δ > 0 such that for any ϕ ∈ C1,α(D) satisfying

‖ϕ‖C1,α(D) ≤ c0, ‖Qϕ‖ ≤ c0, ‖F(ϕ)‖C0,α(D) < δ,

there exists a J-holomorphic disc u ∈ C1,α(D) such that

‖u− ϕ‖C1,α(D) ≤ 2c0 ‖F(ϕ)‖C0,α(D) .

Proof. The key step is to prove that the derivative of F is locally Lipschitz under
present assumptions. That is, there exists c > 0 such that

‖dϕ̃F − dϕF‖ ≤ c‖ϕ̃− ϕ‖C1,α(D)

for any ϕ̃ ∈ C1,α(D) in a C1,α-neighborhood of ϕ, say ‖ϕ̃− ϕ‖C1,α(D) < 1. If such a

statement is valid, then we can simply set

η = min

{
1,

1

2cc0

}
and δ =

η

4c0

and apply Theorem 2 to X = C1,α(D), Y = C0,α(D), and x0 = ϕ.
Let h ∈ C1,α(D) and let ‖ϕ‖C1,α(D) < c0. We need to prove that

(5) ‖dϕ̃F(h)− dϕF(h)‖C0,α(D) ≤ c‖ϕ̃− ϕ‖C1,α(D)‖h‖C1,α(D).

Note that
dϕF(h) = hζ̄ +A(ϕ)hζ + dϕA(h) ϕζ ,

where dϕA(h) =

n∑
j=1

∂A

∂zj
(ϕ)hj +

∂A

∂z̄j
(ϕ)h̄j . We write

dϕ̃F(h)− dϕF(h) = I + II + III,

where ⎧⎨
⎩

I = (A(ϕ̃)−A(ϕ))hζ ,
II = (dϕ̃A− dϕA)(h)ϕ̃ζ,
III = dϕA(h)

(
ϕ̃ζ − ϕζ

)
.

Let us estimate each of the three parts.
Since D is convex and bounded, the following embeddings are compact:

C1,α(D) ⊂ C1(D) ⊂ C0,α(D).
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Therefore, we can bound the C0,α-norm of the entries in A(ϕ̃)−A(ϕ) by their C1-
norm. This implies the existence of a constant c1 > 0 depending on ‖ϕ̃‖C1(D) < 1+c0
such that

‖I‖C0,α(D) ≤ c1‖ϕ̃− ϕ‖C1,α(D)‖h‖C1,α(D).

By a similar argument for ∂A
∂zj

(ϕ̃)− ∂A
∂zj

(ϕ) and ∂A
∂z̄j

(ϕ̃)− ∂A
∂z̄j

(ϕ) we get

‖II‖C0,α(D) ≤ c0c2‖ϕ̃− ϕ‖C1,α(D)‖h‖C1,α(D).

Finally, we have

‖III‖C0,α(D) ≤ c3‖ϕ̃− ϕ‖C1,α(D)‖h‖C1,α(D),

where c3 > 0 depends on the C0,α-norm evaluated on the coefficients of ∂A
∂zj

(ϕ) and
∂A
∂z̄j

(ϕ). The latter may be bounded by a constant times c0. �

As stated above, we will apply this approximation result to a shrinking family of
sets in D. Let {Ωm}m∈N

be such a family. Throughout the rest of this section we

use the following convention: given ϕ ∈ C1,α(D), we denote by ϕm its restriction to
the set Ωm and by Fm the corresponding operator defined as in (4) but mapping
from C1,α(Ωm) to C0,α(Ωm).

Proposition 4. Let {Ωm}m∈N
be a shrinking family of sets in D and let ϕ ∈ C1,α(D)

be a map satisfying the limit condition

lim
m→∞

‖Fm(ϕm)‖C0,α(Ωm) = 0.

Then for every m ∈ N large enough, there exists a J-holomorphic map um : Ωm →
R2n such that

lim
m→∞

‖um − ϕm‖C1,α(Ωm) = 0.

Proof. We need to verify that the constants c0 > 0 and δ > 0 in Theorem 2 can
be chosen independently of the sets Ωm. For this, we need two bounded linear
extension operators Ek : Cj,α(D) → Cj,α(Ωm), j = 0, 1 (see, e.g., [14, Theorem 4,
p. 177]). The remarkable fact is that their norms can be bounded by a constant
Kj ≥ 1 that is independent of the sets Ωm.

For points in Ωm and h ∈ C1,α(D) we have dϕm
Fm(hm) = dϕF(h). Hence we

can construct a bounded right inverse Qm of dϕm
Fm by using the right inverse

Qϕ of dϕF . Indeed, given gm ∈ C0,α(Ωm), we take its extension g = E0(gm) and
proclaim hm = Qϕm

gm to be the restriction of h = Qϕg to Ωm. If ‖Qϕ‖ < c0 and
‖ϕ‖C0,α(D) < c0, the following estimate is valid:

‖Qϕm
gm‖C0,α(Ωm) ≤ ‖Qϕg‖C0,α(D) ≤ c0K0 · ‖gm‖C0,α(Ωm) .

Moreover, ‖ϕm‖C1,α(Ωm) < c0 ≤ c0K0.

Further, given m ∈ N, let ϕm, ϕ̃m ∈ C1,α(Ωm) be such that

‖ϕ̃m − ϕm‖C1,α(Ωm) <
1

K1
.

For ϕ = E1(ϕm) and ϕ̃ = E1(ϕ̃m) we have ‖ϕ̃− ϕ‖C1,α(D) < 1. Hence as in (5) we

can conclude that

‖dϕ̃m
Fm(h)− dϕm

Fm(h)‖C0,α(Ωm) ≤ cK2
1‖ϕ̃m − ϕm‖C1,α(Ωm)‖h‖C1,α(Ωm).
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We now get the desired result from Theorem 2 by setting

η = min

{
1

K1
,

1

2cc0K0K2
1

}
and δ =

η

4c0K0
. �

We now prove a local approximation statement that will be used in the proof of
the main theorem. We mimic the proof of [3, Lemma 3.5].

Theorem 5. Let J ∈ J . Given ε > 0, a smoothly embedded arc Γ ⊂ C, and a
C2-map ϕ : Γ → R2n, there exists a neighborhood U of Γ and a J-holomorphic map
u : U → R2n such that ‖u− ϕ‖C1,α(Γ) < ε.

Proof. Without loss of generality we can assume that Γ ⊂ D ∩ R. By (3) the J-
holomorphicity condition equals uy = J(u)ux. Hence we may extend ϕ to a function
that is quadratic in y and whose ∂̄J -derivative vanishes up to the first order along
Γ. In particular, for

Ωm =

{
z ∈ C : dist(z,Γ) <

1

m

}

there exist m0 > 0 and Cα > 0 such that Ωm ⊂ D and∥∥∥(ϕm)ζ̄ + A(ϕm)(ϕm)ζ

∥∥∥
C0,α(Ωm)

<
Cα

m

for every m ≥ m0. The rest follows from Proposition 4 above. �

2. The Runge-type approximation

As mentioned in the introduction, our result is an application of the following
Runge-type theorem provided by A. Gournay [5].

Theorem 6. Let M be a smooth compact manifold equipped with a regular almost
complex structure and admitting a doubly tangent property. Suppose we are given
ε > 0, a compact Riemann surface Σ, an open set U ⊂ Σ, a J-holomorphic map
ϕ : U → M , and a compact set K ⊂ U . Then, provided that there is a C0-extension
of ϕ to Σ, there exists a J-holomorphic map u : Σ → M such that ‖u− ϕ‖C0(K) < ε.

We include below a brief discussion on the proof in order to explain why the state-
ment can be applied in the present case.

Provided that there are no topological obstructions, we can define a new map
extending the initial data ϕ|K to Σ in a C∞-fashion. Let us denote it by ϕ again.
Of course such a map need not be holomorphic on Σ \K, and we can express this
locally. Fix ζ0 ∈ Σ \ K and the following two charts: a chart ψ on Ω0 ⊂ Σ with
ψ(ζ0) = 0 and a chart φ on M taking q = ϕ(ζ0) ∈ M to 0 ∈ R

2n and satisfying
φ∗(J)(0) = Jst. There exist a, b ∈ R2n such that

ψ ◦ ϕ ◦ φ−1(z) = az + bz̄ +O(|z|2),
where b �= 0 is equivalent to ∂̄Jϕ �= 0.

The first of the two key assumptions in the method of A. Gournay is that the
manifold enjoys the doubly tangent property. That is, for almost every q ∈ M and
almost every pair a, b ∈ R2n, there exists a J-holomorphic sphere Hr

a,b : CP
1 → M

whose local (Laurent) expansion equals

ψ ◦Hr
a,b ◦ φ−1(z) = az + br2/z +O(r1+ε).
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Here, ε > 0 and r > 0 are such that for r
(1+rε) < |z| < r(1+rε) we have ψ−1(z) ∈ Ω0.

Hence, using an appropriate cut-off function, the map ϕ may be replaced by Hr
a,b

in the vicinity of ζ0. Moreover, since Hr
a,b is holomorphic and almost agrees with ϕ

on |z| = r, such a surgery diminishes the “size” of the ∂̄J -derivative. Gournay calls
such a procedure grafting, and he repeats it finitely many times until reaching the
desired bounds (see [5, §3.1]).

Once an approximate solution is constructed (we denote it by ϕ : Σ → M again),
the ∂̄J -equation can be solved similarly as in §1. Let us briefly explain this. The
nonlinear ∂̄J -operator, now defined globally, may be linearized at a compact curve
u so that the corresponding Fredholm operator Du maps from C∞(Σ, ϕ∗TM) to
C∞(Σ,Λ0,1ϕ∗TM) (see [9, (3.1.4.)]). The notion of regularity refers to its surjec-
tivity. In particular, for us the structure J is regular when Du is onto for every
J-holomorphic sphere. The idea is to find a bounded right inverse for Dϕ. That
is, given η ∈ C∞(Σ,Λ0,1ϕ∗TM), we seek a solution ξ ∈ C∞(Σ, ϕ∗TM) of Dϕξ = η
with bounds.

In [5] the above is obtained in two steps. First, it is shown in [5, §3.2] that
it suffices to solve local equations Dϕj

ξj = ηj , where {(ϕj , ξj , ηj)}j≥0 stands for

slightly perturbed data (ϕ, ξ, η) restricted either to the original surface Σ0 = Σ
or to one of the finitely many grafts Σj = CP 1, j > 0. Second, it is proved in
[5, §3.3] that though the local equations for j > 0 interact with the one for j = 0,
the iteration starting at ξ0 = 0 is indeed contractible. Here the regularity of the
structure is crucial since it ensures that the local equation is always solvable along
the grafts. In contrast, the inversion of the linear equation for j = 0 is very subtle
[5, §3.3].

Finally, it is worth mentioning that the norms in question are not the ones as-
sociated with Sobolev or Hölder spaces. The reason lies in the fact that each graft
increases the Lp-norm of dϕ by a quantity that is a priori significant. Further-
more, the number of surgeries is not bounded in general. Hence the local Lipschitz
constant grows with ∂ϕ when Dϕ is treated as a map from W 1,p(Σ,Λ0,1ϕ∗TM)
to Lp(Σ, ϕ∗TM), p > 2. This makes it impossible to use the Implicit Function
Theorem. Hence a certain sup-norm introduced by C. Taubes [16] is used (see also
[4, §4]).

We now state the corollary that will be used in the proof of Theorem 1.

Corollary 7. Let (M,J) be as in Theorem 6. Let K ⊂ ∂D be a compact set and
let the map ϕ be continuous near D and J-holomorphic near K ∪{0}. Given ε > 0,
there exists u ∈ O(D,M, ϕ(0)) such that ‖u− ϕ‖C0(K) < ε.

Proof. First note that the map ϕ can be continuously extended to Σ = CP 1.
Hence the Runge-type theorem guarantees the existence of a J-holomorphic map
approximating ϕ on K ∪ {0}. It remains to explain why the above proof can be
adopted slightly in order to obtain u(0) = ϕ(0).

The simplest way to do this is by adding an “unnecessary graft” at the center.
That is, we start by replacing the map ϕ with an appropriate graft Hr

a,b near

0 ∈ D. Since ∂̄Jϕ(0) = 0, we have b = 0 and ϕ(0) = Hr
a,b(0) here. We index this

graft with j = 1 and then proceed with the usual grafting procedure for j > 1.
Moreover, we add a pointwise restriction ξ(0) = 0 each time when solving the
local linear equation Dϕ1

ξ1 = η1. Since J is regular, this does not object to the
surjectivity of Dϕ1

. Indeed, check [9, §3.4]. Hence all the key estimates remain
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fulfilled. In particular, [5, Corollary 2.5.5.] can be used in the iterative scheme
from [5, §3.3]. �

3. Proof of Theorem 1

The direct construction of a Poletsky disc follows from Theorem 5 and Corollary
7. Indeed, as in [13], we prove the following stronger statement.

Theorem 8. Let (M,J) be as in Theorem 1 and equipped with some Riemannian
metric. Given a point p ∈ M , a positive constant ε > 0, and a C2-map λ : ∂D → M ,
there exist a disc u ∈ O(D,M, p) and a set E ⊂ [0, 2π) such that |E| < ε and
dist(u(eit), λ(eit)) < ε for t ∈ [0, 2π) \ E.

Proof. As pointed out above, the direct method consists of two steps. We first
make a piecewise holomorphic approximation of λ. Then we use the Runge-type
theorem to extend this map to the whole disc. The second step can be understood
as adding finitely many poles (grafts).

Fix eit ∈ ∂D. Let φt : Vt → B be a local chart mapping a neighborhood of
λ(eit) into a neighborhood of the origin in R2n and satisfying φ∗

t (J) ∈ J . We
define Γ′

t ⊂ ∂D to be the largest connected subarc including eit and satisfying
λ(Γ′

t) ⊂ λ(∂D) ∩ Vt. By compactness, there are points t1, . . . , tk ∈ [0, 2π) such

that the the union
⋃k

j=1 Γ
′
tj covers the whole ∂D. Moreover, we can choose smaller

pairwise disjoint subarcs Γtj � Γ′
tj satisfying

|∂D \
k⋃

j=1

Γtj | < ε.

By Theorem 5 there exist J-holomorphic maps uj : Uj → Vzj that are defined on

pairwise disjoint neighborhoods and C1,α-close to φj ◦ λ on Γtj . Moreover, by the
classical Nijenhuis-Woolf theorem [10] there exists a small J-holomorphic disc u0

centered at p. Since M is connected, we can join these pieces into a continuous
map ϕ defined on a neighborhood of D and satisfying ϕ(0) = u0(0) = p. The rest

follows from Corollary 7 applied to the compact set K =
⋃k

j=1 Γtj . �
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