ON THREE-DIMENSIONAL TYPE I $\kappa\mbox{-}{\rm SOLUTIONS}$ TO THE RICCI FLOW

YONGJIA ZHANG

(Communicated by Guofang Wei)

ABSTRACT. κ -solutions are very important to the study of Ricci flow since they serve as the finite-time singularity models. With the help of his profound understanding of κ -solutions, Perelman [11] made the major breakthrough in Hamilton's program. However, three-dimensional κ -solutions are not yet classified until this day. We prove a classification result assuming a Type I curvature bound.

In this short note, we prove that the only simply connected noncompact threedimensional Type I κ -solution to the Ricci flow is the shrinking cylinder. This work can be regarded as a generalization of Cao, Chow, and Zhang [2], and a complement of Ding [3] and Ni [10]. Up to this point, three-dimensional κ -solutions of Type I are completely classified, and it remains interesting to work further towards Perelman's assertion, that the only remaining possibility of a three-dimensional noncompact κ -solution is the Bryant soliton; see [11]. Brendle [1] is working to that end. The classification of a three-dimensional κ -solution is of importance to the study of four-dimensional Ricci flows because of a possible dimension-reduction procedure.

We remind the reader of the following definition.

Definition 1. An ancient solution to the Ricci flow $(M, g(t))_{t \in (-\infty, 0]}$ is called a κ -solution if it is κ -noncollapsed on all scales and has bounded curvature on every time slice. A κ -solution is called Type I if its Riemann curvature tensor satisfies

(1)
$$|Rm|(g(t)) \le \frac{C}{|t|}$$

for all $t \in (-\infty, 0)$, where C is a constant that does not depend on t.

It is well known that every three-dimensional κ -solution has uniformly bounded and nonnegative sectional curvature.

Our main theorem is the following.

Theorem 2. The only three-dimensional simply connected noncompact Type I κ -solution is the shrinking cylinder.

It is worth mentioning that Ni [10] has proved that a closed Type I κ -solution with positive curvature operator of every dimension is a shrinking sphere or one of its quotients. On the other hand, Theorem 2.4 in Ding [3] implies that the only simply connected noncompact κ -solution that forms a *forward* singularity of Type I is the shrinking cylinder, Cao, Chow, and Zhang [2] gave an alternative proof with

Received by the editors October 19, 2017, and, in revised form, February 13, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C44.

an additional assumption of backward Type I. Furthermore, the author would like to draw the reader's attention to Hallgren [4], who also classified a three-dimensional Type I κ -solution to the Ricci flow independently, through a more direct approach.

We recall the notion of an ε -neck.

Definition 3. A space-time point (x_0, t_0) in a Ricci flow (M, g(t)) is called the center of an ε -neck, where $\varepsilon > 0$, if the Ricci flow g(t) on the space-time neighbour-hood $B_{g(t_0)}(x_0, \varepsilon^{-1}R(x_0, t_0)^{-\frac{1}{2}}) \times [t_0 - R(x_0, t_0)^{-1}, t_0]$ is, after parabolic rescaling by the factor $R(x_0, t_0)$, ε -close in the $C^{\lfloor \frac{1}{\varepsilon} \rfloor}$ -topology to the corresponding part of a standard shrinking cylinder, or in other words, if there exist diffeomorphisms $\phi_t : \mathbb{S}^2 \times (-\varepsilon^{-1}, \varepsilon^{-1}) \to B_{g(t_0)}(x_0, \varepsilon^{-1}R(x_0, t_0)^{-\frac{1}{2}})$, such that

$$\phi_t^{-1}(x_0) \in \mathbb{S}^2 \times \{0\},$$

$$\left| R(x_0, t_0) \phi_t^* g(t_0 + tR(x_0, t_0)^{-1}) - g_{cyl}(t) \right|_{C^{\lfloor \frac{1}{\varepsilon} \rfloor}(\mathbb{S}^2 \times (-\varepsilon^{-1}, \varepsilon^{-1}))} < \varepsilon$$

for any $t \in [-1,0]$. Here the notation $B_{g(t_0)}(x_0,r)$ stands for the geodesic ball centered at x_0 , with radius r, and with respect to the metric $g(t_0)$, and $g_{cyl}(t)$ represents the standard shrinking metric on $\mathbb{S}^2 \times \mathbb{R}$ with $R(g_{cyl}(0)) \equiv 1$.

We remark here that in the above definition, after parabolic scaling, the spacetime neighbourhood $B_{g(t_0)}(x_0, \varepsilon^{-1}R(x_0, t_0)^{-\frac{1}{2}}) \times [t_0 - R(x_0, t_0)^{-1}, t_0]$ has time expansion 1, and the scalar curvature at (x_0, t_0) is normalized to be 1. This definition is called the strong ε -neck by Perelman [11], whereas we keep consistency with the definition in Kleiner and Lott [7] and call it an ε -neck.

The following neck stability theorem by Kleiner and Lott is of fundamental importance to our proof. Please refer to Theorem 6.1 in [7].

Theorem 4. For any $\kappa > 0$, there exists a constant $\delta = \delta(\kappa) > 0$, such that for all $\delta_0, \delta_1 \leq \delta$, there is a $T = T(\delta_0, \delta_1, \kappa) \in (-\infty, 0)$, with the following property. Let $(M^3, g(t))_{t \in (-\infty, 0]}$ be a noncompact three-dimensional κ -solution to the Ricci flow that is not the \mathbb{Z}_2 -quotient of the shrinking cylinder. Let $(x_0, 0) \in M \times \{0\}$ be such that $R(x_0, 0) = 1$. If $(x_0, 0)$ is the center of a δ_0 -neck, then for all $t \leq T$, (x_0, t) is the center of a δ_1 -neck.

For the remaining of this paper, we fixed a small positive constant

$$\varepsilon < \min\left\{\frac{1}{100}, \delta(\kappa), \varepsilon_0(\kappa)\right\},\$$

where $\delta(\kappa)$ is defined in Theorem 4, and ε_0 is the constant given in Corollary 48.1 of Kleiner and Lott [6]. With such ε we are guaranteed that the ε -canonical neighbourhood property holds for all κ -solutions of dimension three. We will use this ε as the small positive constant in the definition of the ε -neck.

The following lemma is inspired by Ding [3] and Ni [10].

Lemma 5. Let $(M^3, g(t))_{t \in (-\infty, 0]}$ be a three-dimensional noncompact Type I κ solution with strictly positive sectional curvature on every time slice. Let p_0 be an arbitrary fixed point on M. Then for every instance $t \in (-\infty, 0]$, there exists a point $p(t) \in M$ such that (p(t), t) is **not** the center of an ε -neck. Moreover, $dist_{q(0)}(p_0, p(t)) \to \infty$ as $t \to -\infty$.

Proof. First of all, such p(t) must exist for every $t \in (-\infty, 0]$. We know from the Gromoll-Meyer theorem that M is diffeomorphic to \mathbb{R}^3 . By Corollary 48.1 in

Kleiner and Lott [7], such an ancient solution must fall into category B, on which there is always a cap (the so-called M_{ε}). In particular, since M is diffeomorphic to \mathbb{R}^3 , the cap is topologically a disk instead of $\mathbb{R}P^3 \setminus B^3$.

Assume by contradiction that there exists $\{t_i\}_{i=1}^{\infty} \subset (-\infty, 0)$, such that $t_i \searrow -\infty$ but $dist_{g(0)}(p_0, p(t_i)) \leq C_1$, where C_1 is a constant. We prove the following claim.

Claim. There exists a constant $C_2 < \infty$, such that

(2)
$$dist_{g(t_i)}(p_0, p(t_i)) \le C_2 \sqrt{|t_i|} + C_1$$

for every i.

Proof of the Claim. We recall Perelman's distance distortion estimate [11]. Suppose on a t_0 -slice of a Ricci flow, around two points x_0, x_1 that are not too close to each other, the Ricci curvature tensor is bounded from above, that is, if for some r > 0, $dist_{g(t_0)}(x_0, x_1) \ge 2r$ and $Ric \le (n-1)K$ on $B_{g(t_0)}(x_0, r) \cup B_{g(t_0)}(x_1, r)$, then we have

(3)
$$\frac{d}{dt}dist_{g(t)}(x_0, x_1) \ge -2(n-1)\left(\frac{2}{3}Kr + r^{-1}\right)$$

at time $t = t_0$. Applying the curvature bound (1) and $r = |t|^{\frac{1}{2}}$ to (3), we have

(4)
$$\frac{d}{dt}dist_{g(t)}(p_0, p(\tau_i)) \ge -4 (C+1) |t|^{-\frac{1}{2}}$$

for every *i*, whenever $dist_{g(t)}(p_0, p(t_i)) > 2|t|^{\frac{1}{2}}$. Integrating (4) from 0 to $t_i \in (-\infty, 0)$ completes the proof of the claim.

Now we recall Perelman's reduced distance function $l_{(p_0,0)}(p,t)$ centered at $(p_0,0)$ and evaluated at (p, t); see [11]. By the estimate of Naber (see Proposition 2.2 in [9]), we have that $l_{(p_0,0)}(p(t_i),t_i) < C_3$, where $C_3 < \infty$ is a constant. From Perelman [11] it follows that there exists a subsequence of $\{(M, |t_i|^{-1}g(|t_i|t),$ $(p(t_i), -1))_{t \in [-2, -1]} \underset{i=1}{\overset{\infty}{\underset{i=1}{\sum}}}$ that converges in the pointed smooth Cheeger-Gromov sense to the canonical form of a nonflat shrinking gradient Ricci soliton; see Morgan and Tian [8] and Naber [9] for details. Notice that the time interval of these scaled flows are taken as $\left[-1, -\frac{1}{2}\right]$ in Perelman's argument, whereas we take the interval to be [-2, -1], so as to keep consistency with the definition of the ε -neck. This is sup $l_{(p_0,0)}(p(t_i),t)$ is bounded uniformly. One may easily verify valid because $t \in [2t_i, t_i]$ this bound by using Perelman's differential inequalities for the reduced distance. The only nonflat three-dimensional shrinking gradient Ricci solitons are the shrinking sphere, the shrinking cylinder, and their quotients; see Perelman [12]. The limit shrinking gradient Ricci soliton cannot be flat, since otherwise Perelman's reduced volume is equal to 1 for all time and the Ricci flow is flat; see [13]. The shrinking

cylinder is the only one that can arise as the limit of a sequence of Ricci flows that are diffeomorphic to \mathbb{R}^3 . However, this yields a contradiction, as we have assumed that $(p(t_i), t_i)$ is not the center of an ε -neck.

We are now ready to present the proof of our main theorem.

Proof of Theorem 2. If g(t) has zero sectional curvature somewhere in space-time, by Hamilton's strong maximum principle [5], g(t) also has zero sectional curvature everywhere in space at more ancient times, and hence splits locally. Since we assume M to be simply connected, it must be the shrinking cylinder. Therefore, henceforth, we assume that g(t) has strictly positive curvature on every time slice.

We fixed an arbitrary time sequence $\{t_i\}_{i=1}^{\infty} \subset (-\infty, 0)$ such that $t_i \searrow -\infty$. For every *i*, let $p_i \in M$ be such that (p_i, t_i) is **not** the center of an ε -neck. By Lemma 5, we have that $dist_{g(0)}(p_i, p_0) \to \infty$. Since by Perelman [11] every three-dimensional noncompact κ -solution splits as a shrinking cylinder at spacial infinity, we can extract from $\{(M, R(p_i, 0)g(tR(p_i, 0)^{-1}), (p_i, 0))_{t \in (-\infty, 0]}\}_{i=1}^{\infty}$ a (not relabelled) subsequence that converges in the smooth Cheeger-Gromov sense to the shrinking round cylinder. For the sake of simplicity we denote $g_i(t) := R(p_i, 0)g(tR(p_i, 0)^{-1})$. It follows that for ever *i* large, $(p_i, 0)$ is the center of an ε -neck. The following claim is an easy consequence of Theorem 4.

Claim.

(5)
$$\bar{t}_i := t_i R(p_i, 0) \ge T,$$

for all large *i* where $T := T(\varepsilon, \varepsilon, \kappa) \in (-\infty, 0)$ as defined in Theorem 4.

Proof of the Claim. Suppose the claim is not true and, by passing to a subsequence, we can assume $\bar{t}_i = t_i R(p_i, 0) < T$ for all i. We consider the scaled Ricci flows $g_i(t)$, and apply Theorem 4 to elements in $\{(M, g_i(t), (p_i, 0))_{t \in (-\infty, 0]}\}_{i=1}^{\infty}$. First of all we have that $R_i(p_i, 0) = 1$ because of the scaling factors that we chose. Moreover, as $\{(M, g_i(t), (p_i, 0))_{t \in (-\infty, 0]}\}_{i=1}^{\infty}$ converges to the shrinking cylinder, we have that $(p_i, 0)$ is the center of an ε -neck when i is large. It follows that (p_i, \bar{t}_i) is the center of an ε -neck when i is large. However, $g_i(\bar{t}_i) = R(p_i, 0)g(\bar{t}_iR(p_i, 0)^{-1}) = R(p_i, 0)g(t_i)$. By our assumption, on the original Ricci flow g(t) the space-time point (p_i, t_i) is not the center of an ε -neck; this is a contradiction. Notice here that the ε -necklike property is scaling invariant.

We continue the proof of the theorem. In the following argument we consider the scaled Ricci flows $g_i(t)$ and notice that by our assumption for every *i* the space-time point (p_i, \overline{t}_i) is not the center of an ε -neck, where \overline{t}_i is defined as (5). Since the limit of the sequence $\{(M, g_i(t), (p_i, 0))_{t \in (-\infty, 0]}\}_{i=0}^{\infty}$ is exactly a shrinking round cylinder, we have that for every large $A \in [4|T|, \infty)$, $(B_{g_i(0)}(p_i, A), g_i(t))_{\tau \in [T-A, 0]}$ is as close as we like to the correspondent piece of the shrinking cylinder when *i* is large enough. In particular, (p_i, \overline{t}_i) is the center of an ε -neck since $\overline{t}_i \in [T, 0]$ according to the claim; this is a contradiction. Here we have again taken into account the scaling invariance of the ε -necklike property.

References

- Simon Brendle, Rotational symmetry of self-similar solutions to the Ricci flow, Invent. Math. 194 (2013), no. 3, 731–764. MR3127066
- [2] Xiaodong Cao, Bennett Chow, and Yongjia Zhang Three-dimensional noncompact κ -solutions that are Type i forward and backward, arXiv preprint arXiv:1606.02698, 2016.
- [3] Yu Ding, A remark on degenerate singularities in three dimensional Ricci flow, Pacific J. Math. 240 (2009), no. 2, 289–308. MR2485466
- [4] Max Hallgren, The nonexistence of noncompact type-i ancient 3-d κ-solutions of Ricci flow with positive curvature, arXiv preprint arXiv:1801.08643, 2018.
- [5] Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153–179. MR862046
- [6] Bruce Kleiner and John Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008), no. 5, 2587–2855. MR2460872
- [7] Bruce Kleiner and John Lott, Singular Ricci flows I, arXiv preprint arXiv:1408.2271, 2014.

- [8] John Morgan and Gang Tian. Ricci flow and the Poincaré conjecture, volume 3. American Mathematical Society, 2007.
- [9] Aaron Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010), 125–153. MR2673425
- [10] Lei Ni, Closed type I ancient solutions to Ricci flow, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 147–150. MR2648942
- [11] Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159, 2002.
- [12] Grisha Perelman, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109, 2003.
- [13] Takumi Yokota, Perelman's reduced volume and a gap theorem for the Ricci flow, Comm. Anal. Geom. 17 (2009), no. 2, 227–263. MR2520908

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CALIFORNIA 92093 *Email address:* yoz020@ucsd.edu