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A NOTE ON THE BIJECTIVITY OF THE ANTIPODE

OF A HOPF ALGEBRA AND ITS APPLICATIONS

JIAFENG LÜ, SEI-QWON OH, XINGTING WANG, AND XIAOLAN YU

(Communicated by Kailash C. Misra)

Abstract. Certain sufficient homological and ring-theoretical conditions are
given for a Hopf algebra to have a bijective antipode with applications to

noetherian Hopf algebras regarding their homological behaviors.

Introduction

A classical result due to Larson and Sweedler [10] states that any finite-
dimensional Hopf algebra has a bijective antipode. In general, the antipode of
an infinite-dimensional Hopf algebra does not need to be bijective. For instance,
Takeuchi [18] constructed the free Hopf algebra generated by a coalgebra whose
antipode is injective but not surjective. On the other hand, Schauenburg [16] gave
examples of Hopf algebras whose antipode is surjective but not injective.

In recent developments, the study of infinite-dimensional Hopf algebras seems to
be of growing importance, which reveals that some well-known results about finite-
dimensional Hopf algebras surprisingly have incarnations in the realm of noetherian
Hopf algebras (see, e.g., survey papers [3,6]). Among this progress, it is worthy to
point out that the bijectivity of the antipode frequently plays an essential role in
establishing these properties (see, e.g., [2, 8,14,21]). Therefore, one is prompted to
ask for criterions concerning the bijectivity of the antipode of a Hopf algebra.

In [17], Skryabin gave two sufficient conditions for the bijectivity, which are
purely ring-theoretic. As a corollary, he proved that the antipode of any noetherian
Hopf algebra is always injective, and it is surjective if a certain quotient ring exists
[17, Corollary 1]. Moreover, he proposed the following.

Conjecture 0.1 (Skryabin). Every noetherian Hopf algebra has a bijective an-
tipode.
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Recently, Meur showed that, by imposing a purely homological restriction, any
twisted Calabi–Yau Hopf algebra has a bijective antipode [12, Proposition 1]. The
next result proved in the present paper uses both homological and ring-theoretic
restrictions on a Hopf algebra.

Theorem 0.2. Let H be a Hopf algebra such that the left or right trivial module εk

or kε has a resolution by finitely generated projective modules. Suppose H satisfies
one of the following conditions :

(i) dimExtiH(εk, H) = 1 for some integer i ≥ 0;

(ii) dimExtjHop(kε, H) = 1 for some integer j ≥ 0.

Then H has an injective antipode. Moreover, if both (i) and (ii) hold for H with
i = j and if H additionally has one of following properties:

(iii) every right invertible element is regular;
(iv) every left invertible element is regular;

then H has a bijective antipode.

Recall that an element of a ring is called regular if it is neither a left nor a right
zero divisor. The class of Hopf algebras satisfying the above assumptions is large.
For instance, the homological restrictions (i) and (ii) are weaker versions of the AS-
Gorenstein condition (see, e.g., Definition 1.3), and the ring-theoretic restrictions
(iii) and (iv) are held by any Hopf algebra that is weakly finite, which includes all
noetherian Hopf algebras and Hopf domains. We are able therefore to obtain the
following.

Corollary 0.3. Any noetherian AS-Gorenstein Hopf algebra has a bijective an-
tipode.

By a celebrated result of Wu and Zhang [22], any noetherian affine PI Hopf
algebra is AS-Gorenstein, which yields another proof of the following.

Corollary 0.4 ([17, Corollary 2]). Any noetherian affine PI Hopf algebra has a
bijective antipode.

Now it becomes clear that an affirmative answer to the following question [3,
Question E] regarding the homological behaviors of noetherian Hopf algebras will
help to answer Conjecture 0.1.

Question 0.5 (Brown). Is every noetherian Hopf algebra AS-Gorenstein?

The proof of our main theorem is based on analyzing the bimodule structures
arising from the Hochschild cohomology of H with coefficients in a certain bimodule
over H (see Theorem 2.5). With the help of Corollary 0.3, we apply the same idea
to noetherian Hopf algebras. We are able to extend Radford’s S4 formula to any
noetherian AS-Gorenstein Hopf algebra (see Theorem 3.1) and establish equivalent
conditions regarding the homological behaviors of noetherian Hopf algebras (see
Theorems 3.3 and 3.4).

1. Preliminaries

Throughout this paper, we work over a fixed field k. Unless stated otherwise all
algebras and vector spaces are over k. The unadorned tensor ⊗ means ⊗k. Given
an algebra A, we write Aop for the opposite algebra of A and Ae for the enveloping
algebra A⊗Aop. The category of left (resp., right) A-modules is denoted by Mod(A)
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(resp., Mod(Aop)). An A-bimodule M can be identified with a left Ae-module, that
is, an object M in Mod(Ae) with action

(a⊗ b) ·m = amb

for all a⊗ b ∈ Ae and m ∈ M .
Note that an A-bimodule M can also be a right Ae-module with right Ae-action

m · (a⊗ b) = bma

for all a ⊗ b ∈ Ae and m ∈ M . Conversely, if M is a right Ae-module, then M
becomes an H-bimodule with bimodule action

bma = m · (a⊗ b)

for all a, b ∈ A and m ∈ M .
For an A-bimodule M and two algebra homomorphisms μ and ν, we let μMν

denote the twisted A-bimodule such that μMν ∼= M as vector spaces, and the
bimodule structure is given by

a ·m · b = μ(a)mν(b),

for all a, b ∈ A and m ∈ M . If one of the homomorphisms is the identity, we will
omit it.

We preserve H for a Hopf algebra, and as usual, we use the symbols Δ, ε, and
S, respectively, for its comultiplication, counit, and antipode. We use Sweedler’s
(sumless) notation for the comultiplication of H. We write εk (resp., kε) for the
left (resp., right) trivial module defined by the counit of H.

Definition 1.1. Let ξ : H → k be an algebra homomorphism. The left winding
automorphism Ξ�

ξ of H given by ξ is defined to be

Ξ�
ξ(a) = ξ(a1)a2,

for any a ∈ H. Similarly, the right winding automorphism of H given by ξ is defined
to be

Ξr
ξ(a) = a1ξ(a2),

for any a ∈ H.

We recall some well-known properties of winding automorphisms.

Lemma 1.2 (cf. [2, Lemma 2.5]).

(i) (Ξ�
ξ)

−1 = Ξ�
ξS.

(ii) ξS2 = ξ, so Ξ�
ξ = Ξ�

ξS2 .

(iii) Ξ�
ξS

2 = S2Ξ�
ξ.

(iv) The above are true for right winding automorphisms.
(v) Left and right winding automorphisms always commute with each other.

Definition 1.3 (cf. [2, definition 1.2]). Let H be a noetherian Hopf algebra.

(i) We say H has finite injective dimension if the injective dimensions ofHH
and HH are both finite. In this case these integers are equal by [24], and
we write d for the common value. We say H is regular if it has finite global
dimension. Right global dimension always equals left global dimension for
Hopf algebras [21, Proposition 2.1.4]; and, when finite, the global dimension
equals the injective dimension.
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(ii) The Hopf algebra H is said to be Artin–Schelter Gorenstein, which we
usually abbreviate to AS-Gorenstein, if

(AS1) injdimHH = d < ∞,

(AS2) ExtiH(εk, H) = 0 for i �= d and dimExtdH(εk, H) = 1,
(AS3) the right H-module versions of (AS1, AS2) hold.

(iii) If, in addition, the global dimension of H is finite, then H is called Artin–
Schelter regular, which is usually shortened to AS-regular.

Suppose H is noetherian AS-Gorenstein of finite injective dimension d. Then
ExtdH(εk, H) is a one-dimensional right H-module. Any nonzero element in

ExtdH(εk, H) is called a left homological integral of H. Usually, ExtdH(εk, H) is

denoted by
∫ �

H
. Similarly, any nonzero element in ExtdHop(kε, H) is called a right ho-

mological integral, and ExtdAop(kε, A) is denoted by
∫ r

H
. Abusing language slightly,∫ �

H
(resp.,

∫ r

H
) is also called the left (resp., right) (homological) integral. Since the

right H-module structure on
∫ �

H
is given by some algebra homomorphism from H

to k, we can define left and right winding automorphisms given by
∫ �

H
. This also

applies to
∫ r

H
by using its left H-module structure. We say H is unimodular if∫ �

H
∼= kε as right H-modules. Clearly this is equivalent to the left or right winding

automorphism given by
∫ �

H
being the identity.

In [7], Ginzburg introduced Calabi–Yau algebras whose algebraic structures arise
naturally in the geometry of Calabi–Yau manifolds and mirror symmetry. Calabi–
Yau algebras are one of the examples satisfying the Van den Bergh duality, which
was introduced by Van den Bergh [20] in order to study Poincaré duality between
Hochschild homology and cohomology. We adopt all these definitions to noetherian
Hopf algebras.

Definition 1.4 (cf. [2, 7, 20]). Let H be a noetherian Hopf algebra.

(i) We say H satisfies the Van den Bergh condition if H has finite injective
dimension d and

ExtiHe(H,He) =

{
0, i �= d,

U, i = d,

where U is an invertible H-bimodule. We usually call U the Van den Bergh
dualising module for H.

(ii) We say H has the Van den Bergh duality if it satisfies the Van den Bergh
condition and H is homologically smooth, that is, H has a bounded resolu-
tion in Mod(He) by finitely generated projective modules.

(iii) We say H is twisted Calabi–Yau if H has the Van den Bergh duality with
the Van den Bergh dualising module given by Hν for some algebra auto-
morphism ν of H. Moreover, we say H is Calabi–Yau if ν can be chosen as
an inner automorphism.

2. An isomorphism lemma for Hopf bimodules

In this section, we aim at investigating the bimodule structures arising from the
Hochschild cohomology of H with coefficients in the enveloping algebra He. In
particular, we do not require H to be noetherian or have a bijective antipode.
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Note that the map

(1⊗ S)Δ : H → He, a 	→ a1 ⊗ S(a2)

is an algebra homomorphism.

Definition 2.1. We define the left adjoint functor L from the category of left He-
modules into the category of left H-modules such that, for every left He-module
M , L (M) = M as vector spaces with the left action

a ·m = (1⊗ S)Δ(a) ·m = (a1 ⊗ S(a2)) ·m
for a ∈ H and m ∈ M . Similarly, the right adjoint functor R from the category of
right He-modules into the category of right H-modules such that, for every right
He-module M , R(M) = M as vector spaces with the right action

m · a = m · (1⊗ S)Δ(a) = m · (a1 ⊗ S(a2))

for a ∈ H and m ∈ M .

Here we introduce natural module actions and elementary properties which will
be used. Since the enveloping algebra He is an algebra, He is equipped with a
natural He-bimodule structure induced by the multiplication of He. That is, the
left action is given by

(1) (a⊗ b) → (x⊗ y) = (a⊗ b)(x⊗ y) = ax⊗ yb,

called the outer action, and the right action is given by

(2) (x⊗ y) ← (a⊗ b) = (x⊗ y)(a⊗ b) = xa⊗ by,

called the inner action. As a consequence, L (He) can be viewed as an H-He-
bimodule, where the left H-action is given by applying the left adjoint functor to
the outer action

a · (x⊗ y) = ((1⊗ S)Δ(a))(x⊗ y) = a1x⊗ yS(a2)

and the inner action gives the right He-module structure. On the other hand,
R(He) is an He-H-bimodule with the right action

(x⊗ y) · a = (x⊗ y)((1⊗ S)Δ(a)) = xa1 ⊗ S(a2)y

together with the outer action for the left He-module structure.
Let M and N be two left H-modules. Then M ⊗N is a left H ⊗H-module with

a natural left H ⊗H-action

(a⊗ b) → (x⊗ y) = (a · x)⊗ (b · y).
Since there are two natural algebra homomorphisms from H into H ⊗H such that

H → H ⊗H, a 	→ a⊗ 1

and
H → H ⊗H, a 	→ 1⊗ a,

there are two left H-module actions on M ⊗N such that

a · (x⊗ y) = (a⊗ 1) → (x⊗ y) = (a · x)⊗ y (denoted by ∗M ⊗N)

and

a · (x⊗ y) = (1⊗ a) → (x⊗ y) = x⊗ (a · y) (denoted by M ⊗ ∗N).

Analogously, for any right H-modules M and N , there are two right H-module
actions M∗ ⊗N and M ⊗N∗.
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Since the comultiplication map Δ : H → H ⊗H is an algebra homomorphism,
every left (respectively, right) H ⊗ H-module becomes a left (respectively, right)
H-module with the action induced by Δ, namely

a · (x⊗ y) = Δ(a) → (x⊗ y) = (a1 · x)⊗ (a2 · y).

Let R and T be algebras. For a left R-module RN and an R-T -bimodule RMT ,
HomR(RN,R MT ) is a right T -module with the right T -action

(ft)(n) = f(n)t

for f ∈ HomR(RN,R MT ), t ∈ T, n ∈ N . For a right T -module NT and an R-T -
bimodule RMT , HomT (NT ,R MT ) is a left R-module with the left R-action

(rf)(n) = rf(n)

for f ∈ HomT (NT ,R MT ), r ∈ R, n ∈ N . We often write HomT op(NT ,R MT ) for
HomT (NT ,R MT ). For an R-T -bimodule RNT and a left R-module RM ,
HomR(RNT ,R M) is a left T -module with the left T -action

(tf)(n) = f(nt)

for f ∈ HomR(RNT ,R M), t ∈ T, n ∈ N .
The following is parallel to Lemma 2.4 in [2] and Lemma 2.1.2 in [21]. For the

sake of completeness, we include a proof here.

Lemma 2.2. Let A be an algebra. There are natural isomorphisms for all integers
i ≥ 0 as follows :

(i) Let M be an He-A-bimodule. Then ExtiHe(H,M) ∼= ExtiH(εk,L (M)) as
right A-modules.

(ii) Let M be an A-He-bimodule. Then ExtiHe(H,M) ∼= ExtiHop(kε,R(M)) as
left A-modules.

Proof. We only prove (i); the proof of (ii) is quite similar. Note that the He-A-
bimodule N is canonically a left He ⊗ Aop-module and that He ⊗ Aop is a right
He-module with the right action induced by the multiplication of He ⊗ Aop since
He is considered as a subalgebra of He⊗Aop by the inclusion map He → He⊗Aop,
x 	→ x⊗ 1. First of all, one easily sees that any injective He-A-bimodule N is still
injective when viewed as a left He-module since

HomHe(−, N) ∼= HomHe(−,HomHe⊗Aop((He ⊗Aop)He , N))

∼= HomHe⊗Aop((He ⊗Aop)He ⊗−, N)

by [15, Theorem 2.11].
Next, we view He as an He-H-bimodule, where the left He-action is given by

(1) and the right H-action is given by

(x⊗ y) · a = xa1 ⊗ S(a2)y.

We simply denote it as HeHe
H , which is free as a right module by the fundamen-

tal theorem of Hopf modules. Indeed, there is an He-H-bimodule isomorphism

HeHe
H → H∗ ⊗H defined by x⊗ y 	→ x1 ⊗ x2y with inverse given by x⊗ y 	→ x1 ⊗

S(x2)y, where the left H
e-action on H∗⊗H is given by (a⊗b) ·(x⊗y) = a1x⊗a2yb
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and the right H-action on H∗ ⊗H is given by (x⊗ y) · a = (x⊗ y)(a⊗ 1) = xa⊗ y.
Since L ∼= HomHe(HeHe

H ,−) as functors, one gets that

HomH(−,L (M)) ∼= HomH(−,HomHe(HeHe
H ,M))

∼= HomHe(HeHe
H ⊗H −,M).

As a consequence, L is exact and preserves injectivity.
Since there is an isomorphism HeHe

H → H∗ ⊗ H by the above paragraph, we
have the canonical isomorphism

HeHe
H ⊗H εk ∼= H∗ ⊗H ⊗H εk ∼= HeH.

Hence (i) holds for i = 0. It follows that (i) holds for all i ≥ 0 by taking an injective
resolution of M as He-A-bimodules. �

Lemma 2.3.

(i) Let P be a finitely generated projective left H-module. Then

HomH(P,L (He)) ∼= HomH(P,H)⊗∗H
S2

as H-bimodules, where the bimodule structure on HomH(P,H) ⊗∗H
S2

is
given by a(x⊗ y)b = xb1 ⊗ ayS2(b2).

(ii) Let Q be a finitely generated projective right H-module. Then

HomHop(Q,R(He)) ∼=S2

H∗ ⊗HomH(Q,H)

as H-bimodules, where the bimodule structure on S2

H∗ ⊗ HomH(Q,H) is
given by a(x⊗ y)b = S2(a1)xb⊗ a2y.

Proof.
(i) Note that HomH(P,L (He)) is a left He-module and thus a H-bimodule since

L (He) is a H-He-bimodule. First of all, we claim that L (He) ∼=∗H ⊗H := V as
H-He-bimodules, where the left H-action on V is defined by the left multiplication
on the first factor H of V and the right He-action is given by (x⊗ y) ← (a⊗ b) =
xa1 ⊗ byS2(a2). It can be proved via the explicit H-He-isomorphism L (He) → V
defined by x⊗ y 	→ x1 ⊗ yS2(x2) with inverse given by x⊗ y 	→ x1 ⊗ yS(x2).

Next for any left H-module M there exists a natural H-bimodule map

ΦM : HomH(M,H)⊗∗H
S2 → HomH(M,L (He)) ∼= HomH(M,V )

defined by ΦM (f ⊗ h)(m) = f(m)⊗ h. One checks that Φ commutes with a finite
direct sum, that is, Φ⊕i∈IMi

=
⊕

i∈I ΦMi
since the diagram

HomH(
⊕

i∈I Mi, H)⊗∗H
S2 Φ⊕i∈IMi ��

∼=
��

HomH(
⊕

i∈I Mi, V )

∼=
��⊕

i∈I

(
HomH(Mi, H)⊗∗H

S2
) ⊕

i∈I ΦMi �� ⊕
i∈I HomH(Mi, V )

commutes whenever I is a finite index set. Suppose P is finitely generated projec-
tive. Then there exists another left H-module Q such that P ⊕Q =

⊕
i∈I Hi over

a finite index set I, where each Hi
∼= H as left H-modules. Note that ΦH is clearly

an isomorphism. Hence ΦP ⊕ ΦQ = ΦP⊕Q =
⊕

i∈I ΦHi
is an isomorphism, which

implies that ΦP is an isomorphism.
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Finally, denote by W = H ⊗H∗ the He-H-bimodule, where the right H-action
is the right multiplication on the second factor H of W and the left He-action is
given by (a⊗ b) → (x⊗ y) = S2(a1)xb⊗ a2y. Then (ii) can be proved in the same
fashion by using the He-H-isomorphism R(He) ∼= W via x ⊗ y 	→ S2(x1)y ⊗ x2

with inverse x⊗ y 	→ y2 ⊗ S(y1)x. �

Lemma 2.4. The following are equivalent :

(i) H has a resolution in Mod(He) by finitely generated projective modules.
(ii) εk has a resolution in Mod(H) by finitely generated projective modules.
(iii) The right H-module version of (ii) holds.

Proof.
(i) ⇒ (ii), (iii) Let M be an H-bimodule, and let I = ker ε. Then it is easy to

see that kε ⊗H M ∼= M/IM . Let B• be a resolution of H in Mod(He) by finitely
generated projective modules. Then, using the above result, one can easily observe
that k ⊗H B• is a resolution of εkε ⊗H H ∼= εk in Mod(H) by finitely generated
projective modules. It is the same for (iii) when we tensor ⊗Hεkε on the right side
of B•.

(iii), (ii) ⇒ (i) In the proof of Lemma 2.2, one sees that the left adjoint functor
L : Mod(He) → Mod(H) is just a restriction functor, which certainly commutes
with direct limits. Applying [4, Corollary, p. 130], ExtiH(εk,L (−)) commutes with
direct limits for all i, since εk has a resolution in Mod(H) by finitely generated

projective modules. This implies that ExtiHe(H,−) commutes with direct limits
in Mod(He) for all i since ExtiHe(H,−) ∼= ExtiH(εk,L (−)) by Lemma 2.2. Then
one concludes again by [4, Corollary, p. 130] that H has a resolution in Mod(He)
by finitely generated projective modules. The proof for (iii)⇒ (i) is exactly the
same. �

Theorem 2.5. Assume the conditions in Lemma 2.4 hold. Then there are H-
bimodule isomorphisms

ExtiHe(H,He) ∼= ExtiH (εk, H)⊗∗H
S2 ∼= S2

H∗ ⊗ ExtiHop (kε, H)

for all i, where the bimodule structures on the second and third spaces are given by
a(x⊗ y)b = xb1 ⊗ ayS2(b2) and a(x⊗ y)b = S2(a1)xb⊗ a2y, respectively.

Proof. Since (He)op ∼= He, there is an equivalence between the category of left He-

modules and the category of right He-modules. As a consequence, ExtiHe(H,He)
can be computed by using both the outer action and the inner action of He defined
in (1) and (2), respectively.

First of all, we use the outer action (1) on He to compute the Hochschild coho-
mology ExtiHe(H,He). By Lemma 2.4, we can take P• to be a resolution of εk in
Mod(H) consisting of finitely generated projective modules. Then we have

ExtiHe(H,He) ∼= ExtiH (εk,L (He))(Lemma 2.2)

= Hi(HomH(P•,L (He)))

∼= Hi(HomH(P•, H)⊗∗H
S2

)(Lemma 2.3)

∼= Hi(HomH(P•, H))⊗∗H
S2

(Künneth formula)

= ExtiH (εk, H)⊗∗H
S2

.
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On the other hand, we can apply the inner action (2) on He to compute the

Hochschild cohomology ExtiHe(H,He). We get ExtiHe(H,He) ∼= S2

H∗ ⊗
ExtiHop(kε, H) by the same argument. This proves the result. �

Proof of Theorem 0.2. For the injectivity of S, suppose (i) holds for H; the proof
for (ii) is analogous. Note that HomH(M,H) is a right H-module for any left H-
module M . Hence we can write ExtiH(εk, H) = kξ for some ξ ∈ HomAlg(H,k). For
simplicity, we denote the left winding automorphism Ξ�

ξ by ξ as well. By Theorem
2.5, we have the isomorphisms

S2

H∗ ⊗ ExtiHop(kε, H) ∼= ExtiH(εk, H)⊗∗H
S2 ∼= kξ ⊗∗H

S2 ∼= HS2ξ(3)

as H-bimodules. Since the very left side of (3) is a free right H-module, this implies

that HS2ξ is torsion free on the right side. Thus S is injective.
Now assume that (i) and (ii) both hold for H with i = j. Then we can further

write ExtiHop(kε, H) = ηk for some η ∈ HomAlg(H,k). We still denote by η the
right winding automorphism Ξr

η. Then it is straightforward to check that (3) implies

that S
2ηH and HS2ξ are isomorphic as H-bimodules. Take Φ :S

2ηH → HS2ξ to be
such an isomorphism with inverse Φ−1. Denote by x = Φ(1) and y = Φ−1(1). One
immediately, by the definition of the inverse ΦΦ−1 = id = Φ−1Φ, verifies that the
following hold in H for any a, b ∈ H:

xS4ξη(a)S2ξ(y) = a, S2η(x)S4ξη(b)y = b.(4)

Here we use the fact that ξ, η, S2 commute with each other by Lemma 1.2. Let
a = b = 1. One gets xS2ξ(y) = S2η(x)y = 1.

Suppose (iii) holds. One sees that S2η(x)S4ξη(y) = S2η(x)y = 1 by applying
S2η to xS2ξ(y) = 1. So S2η(x)(y − S4ξη(y)) = 0, which implies that y = S4ξη(y)
since S2η(x) is right invertible, and hence it is not a right zero divisor by (iii). Note

that Φ : S
2ηH → HS2ξ is an H-bimodule map with Φ(1) = x. Then in HS2ξ one

gets

S2ξ(y)x = S2ξ(y) → Φ(1) = Φ(S2ξ(y) → 1) = Φ(S4ξη(y)) = Φ(y)

= Φ(1 ← y) = Φ(1) ← y = xS2ξ(y) = 1.

Thus x and S2ξ(y) are mutually inverse. Using this to simplify the first identity in
(4), one gets

S4ξη(a) = S2ξ(y)ax.(5)

As a consequence, S4ξη is an inner automorphism given by conjugation of the
element x. Thus S is bijective. Finally, the argument for (iv) is similar. This
proves the result. �

3. Applications to noetherian Hopf algebras

In this section, we apply our result to noetherian Hopf algebras satisfying the
AS-Gorenstein condition, which we now know have bijective antipodes by Corollary
0.3. We refine many results focusing on their homological behaviors, some of which
were originally stated with the assumption of the bijectivity of the antipode (see,
e.g., [2, 8]). The first result is known to be the generalization of the famous S4

formula [13] of Radford to the noetherian AS-Gorenstein Hopf algebra case by
Brown and Zhang. We give another proof based on Theorem 0.2.
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Theorem 3.1 ([2, Corollary 4.6]). Let H be a noetherian AS-Gorenstein Hopf
algebra. Then

S4 = γ ◦ φ ◦ ξ−1,

where ξ and φ are, respectively, the left and right winding automorphisms given by
the left integral of H, and γ is an inner automorphism.

Proof. The result can basically be derived from the proof of Theorem 0.2. First
of all, one checks that all the assumptions in Theorem 0.2 are satisfied when H
is noetherian AS-Gorenstein. Namely, noetherianness guarantees that εk admits
a resolution in Mod(H) by finitely generated projective modules. Conditions (i)
and (ii) follow from AS-Gorenstein assumption with i = j = d. Note that in a
noetherian ring, a left or right invertible element is always invertible, and hence it
is regular (cf. [5, Exercise 5ZE]). So (iii) and (iv) hold.

Now we keep the same notation as in the proof of Theorem 0.2. Denote by ξ the

left winding automorphism given by the left integral
∫ �

H
and η the right winding

automorphism given by the right integral
∫ r

H
. We write

∫ r

H
= πk for some π ∈

HomAlg(H,k). By [11, Lemma 2.1] (note that S is bijective),
∫ l

H
= S(

∫ r

H
) = kπS .

So by using Lemma 1.2, one sees that η−1 = (Ξr
π)

−1 = Ξr
πS := φ is the right

winding automorphism given by
∫ l

H
.

Finally, from (5) one gets that S4ηξ is an inner automorphism of H, which we
now denote by γ. Note that S4, η, ξ, and γ commute with each other. Hence
S4 = γ ◦ η−1 ◦ ξ = γ ◦ φ ◦ ξ−1. �
Question 3.2 (Brown-Zhang). What is the inner automorphism γ in Theorem
3.1?

The answer is known when H is finite dimensional, where γ is the conjugation

by the distinguished group-like element of H given by
∫ �

H∗ . In view of Question
0.5, we expect Theorem 3.1 should hold for any noetherian Hopf algebra.

Next, we establish several equivalent conditions regarding noetherian AS-Goren-
stein and AS-regular Hopf algebras. Recall that the noncommutative version of
the dualising complex was first introduced by Yekutieli in [23], and rigid dualising
complex was later introduced by Van den Bergh in [19] in order to ensure its
uniqueness.

Theorem 3.3. Let H be a noetherian Hopf algebra. Then the following are equiv-
alent :

(i) H is AS-Gorenstein.
(ii) H satisfies the Van den Bergh condition.
(iii) H has a rigid dualising complex R = V [s], where V is invertible and s ∈ Z.

In these cases, the rigid dualising complex is R =S2ξH[d], where ξ is the left winding
automorphism given by the left integral of H and d is the injective dimension of H.

Proof.
(ii) ⇔ (iii) follows from [19]; see also [2, Proposition 4.3].
(i) ⇒ (iii) is [2, Proposition 4.5], where the assumption of the bijectivity of the

antipode is automatically satisfied with the help of Corollary 0.3.
(ii) ⇒ (i) Suppose H satisfies the Van den Bergh condition with injective di-

mension d. In view of Theorem 2.5, one sees that ExtiH(εk, H) = 0 for i �= d and

ExtdH(εk, H) �= 0. This holds for the right side versions of the Ext-groups as well.



BIJECTIVITY OF ANTIPODE 4629

Moreover, the Van den Bergh dualising module U is isomorphic to ExtdH(εk, H)⊗∗H
as H-bimodules, where the latter one is a free left H-module with basis given in
ExtdH(εk, H). Since U is invertible, it is finitely generated projective when viewed
as a left H-module. It can be verified by considering the autoequivalence functor
U ⊗H − : Mod(H) → Mod(H) with inverse functor given by U−1 ⊗H −. Note
that a left H-module M is finitely generated if and only if HomH(M,−) commutes
with inductive direct limits, which is certainly preserved under any autoequivalence
functor. Hence U = U ⊗H H is finitely generated. As a consequence, this implies
that ExtdH(k, H) is finite dimensional. By the same reason, ExtdHop(kε, H) is finite
dimensional. Then [2, Lemma 3.2] shows that H is AS-Gorenstein.

Finally, the formula of the rigid dualising complex is given in [2, Proposition
4.5]. �

Recall in Definition 1.3(i) that a Hopf algebra is said to be regular if it has
finite right and left global dimensions, which are always the same according to
[21, Proposition 2.1.4].

Theorem 3.4. Let H be a noetherian Hopf algebra. Then the following are equiv-
alent :

(i) H is twisted Calabi–Yau.
(ii) H has the Van den Bergh duality.
(iii) H is AS-regular.
(iv) H is regular and ExtiH(εk, H) are finite dimensional for all i.

(v) H is regular and ExtiHop(kε, H) are finite dimensional for all i.

Moroever, H is Calabi–Yau if and only if H is unimodular and S2 is inner.

Proof.
(i) ⇔ (ii) follows from [12, Theorem 3.5.1].
(iii) ⇒ (iv), (v) are clear.
(i) ⇔ (iii) can be easily deduced from Theorem 3.3 ((i) ⇔ (ii)). If H is noether-

ian, then it is regular if and only if it is homologically smooth. One direction is
clear. The other direction: suppose H is regular; then εk has a bounded resolu-
tion in Mod(H) by finitely generated projective modules. This implies that H is
homologically smooth by [21, Proposition 2.1.5].

It remains to show that (iv), (v) ⇒ (iii). Here we only prove (iv) ⇒ (iii), and the
other one is similar. By [21, Proposition 2.1.4], the right and left global dimensions

of H are both equal to d. Since H is noetherian, one sees that ExtdH(εk, H) �= 0

and ExtdHop(kε, H) �= 0 [1, §1.12]. Suppose ExtiH(εk, H) �= 0 for some i < d. We
can choose j to be the smallest integer satisfying such a condition. We will use
Ischebeck’s spectral sequence [9, 1.8] such that

Ep,−q
2 := ExtpHop(Ext

q
H(εk, H), H) ⇒ TorHp−q(H, εk) =

{
k, p = q,

0, p �= q.

Applying [1, Proposition 1.3], we have

Ed,−j
2 = ExtdHop(Ext

j
H(εk, H), H) ∼= ExtdHop(kε, H)⊕ dimExtjH(εk,H) �= 0,

where we use the fact that ExtiH(εk, H) are finite dimensional for all i. The differ-
ential dr (r ≥ 2) in the spectral sequence gives

E
d−r,−j+(r−1)
r

dr �� Ed,−j
r

dr �� Ed+r,−j−(r−1)
r .
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Since d+ r > d and j − (r − 1) < j, one sees that

E
d±r,−j∓(r−1)
2 = Extd±r

Hop (Ext
j±(r−1)
H (εk, H), H) = 0

by the choice of j and the global dimension of H being d. It implies that

Ed±r,−j∓(r−1)
r = 0

for all r ≥ 2 and Ed,−j
2 = Ed,−j

3 = · · · = Ed,−j
∞ �= 0. But it contradicts the fact that

Ep,−q
∞ = 0 if p �= q. So one gets ExtiH(εk, H) = 0 for all i �= d, and similarly one can

work out ExtiHop(kε, H) = 0 for all i �= d. Finally, a dimension argument used in

[2, Lemma 3.2] yields that dimExtdH(εk, H) = dimExtdHop(kε, H) = 1. This proves
that H is AS-Gorenstein of injective dimension d and hence AS-regular.

Finally, the Calabi–Yau property is [8, Theorem 2.3]. �
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