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RESONANCES NEAR THRESHOLDS

IN SLIGHTLY TWISTED WAVEGUIDES

VINCENT BRUNEAU, PABLO MIRANDA, AND NICOLAS POPOFF

(Communicated by Michael Hitrik)

Abstract. We consider the Dirichlet Laplacian in a straight three dimen-
sional waveguide with non-rotationally invariant cross section, perturbed by a
twisting of small amplitude. It is well known that such a perturbation does not
create eigenvalues below the essential spectrum. However, around the bottom
of the spectrum, we provide a meromorphic extension of the weighted resolvent
of the perturbed operator and show the existence of exactly one pole near this

point. Moreover, we obtain the asymptotic behavior of this resonance as the
size of the twisting goes to 0. We also extend the analysis to the upper eigen-
values of the transversal problem, showing that the number of resonances is
bounded by the multiplicity of the eigenvalue and obtaining the corresponding
asymptotic behavior.

1. Introduction

Let ω be a not radially symmetric bounded domain in R2 with C2 boundary.
Set Ω := ω × R and (x1, x2, x3) =: (xt, x3). Define H0 as the Laplacian in Ω
with Dirichlet boundary conditions, and denote by −Δω the Laplacian in ω with
Dirichlet boundary conditions. Since ω is bounded, the spectrum of the operator
−Δω is a discrete sequence of values converging to infinity, denoted by {λn}∞n=1.
Then, the spectrum of H0 is given by

σ(H0) =

∞⋃
n=1

[λn,∞) = [λ1,∞)

and is purely absolutely continuous.
Geometric deformations of such a straight waveguide have been widely studied

in recent years and have numerous applications in quantum transport in nanotubes.
The spectrum of the Dirichlet Laplacian in waveguides provides information about
the quantum transport of spinless particles with hardwall boundary conditions. In
particular, the existence of eigenvalues describes the occurrence of bound states cor-
responding to trapped trajectories created by the geometric deformations. For a
review we refer to [12], where bending against twisting is discussed, and to [9] for a
general differential approach. Without being exhaustive we recall some well-known
situations: a local bending of the waveguide creates eigenvalues below the essential
spectrum, as also do a local enlarging of its width ([6, 9]). On the contrary, it has
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been proved, under general assumptions, that a twisting of the waveguide does not
change the spectrum ([8]), and in particular a twisting going to 0 at infinity will not
introduce discrete eigenvalues ([8,9]). In such a situation it is natural to introduce
the notion of resonance and to analyze the effect of the twisting on the resonances
near the real axis. There already exist studies of resonances in waveguides: reso-
nances in a thin curved waveguide ([7,13]) or more recently in a straight waveguide
with an electric potential, perturbed by a twisting ([11]). However, in both cases
the resonances appear as perturbations of embedded eigenvalues of a reference op-
erator and follow the Fermi golden rule (see [10] for references and for an overview
on such resonances). As we will see, in our case the origin of the resonances will
rather be due to the presence of thresholds appearing as branch points created by
a 1d Laplacian. Our analysis will be close to the studies of energies near 0 for the
1d Laplacian (see for instance [1, 5, 14]). A similar phenomenon of threshold reso-
nances was already studied for a magnetic Hamiltonian in [2], where the thresholds
are eigenvalues of infinite multiplicity of some transversal problem.

In this article we will consider a small twisting of the waveguide: Let ε : R → R

be a non-zero function of class C1 with exponential decay; i.e., for some α >
2(λ2 − λ1)

1/2 (this hypothesis can be relaxed; see Remark 2.1), ε satisfies

(1.1) ε(x3) = O(e−α〈x3〉), ε′(x3) = O(e−α〈x3〉),

where 〈x3〉 := (1 + x2
3)

1/2. For δ > 0, take θδ such that θ′δ(x3) = δε(x3). Then, we
define Ωδ as the waveguide obtained by twisting Ω with θδ; i.e., we define

Ωδ := {(rθδ(x3)(xt), x3), (xt, x3) ∈ Ω},

where rθ is the rotation of angle θ in R2. Set

W (δ) := −δ∂ϕε∂3 − δ∂3ε∂ϕ − δ2ε2∂2
ϕ = −2δε∂ϕ∂3 − δε′∂ϕ − δ2ε2∂2

ϕ,

with the notation ∂ϕ for x1∂2 − x2∂1. Then, it is standard (see for instance [9,
Section 2]) that the Dirichlet Laplacian in Ωδ is unitarily equivalent to the operator

H(δ) := H0 +W (δ),

defined in Ω with a Dirichlet boundary condition. Since the perturbation is a
second order differential operator, H(δ) is not a relatively compact perturbation
of H0. However the resolvent difference H(δ)−1 − H−1

0 is compact ([4, Section
4.1]), and therefore H(δ) and H0 have the same essential spectrum. Moreover, the
spectrum of H(δ) coincides with [λ1,+∞); see [8].

In this article we will show that around λ1 there exists, for δ small enough,
a meromorphic extension of the weighted resolvent of H(δ) with respect to the
variable k :=

√
z − λ1, where z is the spectral parameter (with the convention√

−1 = i). In other words, the resolvent (H(δ) − z)−1 acting on a weighted space
of functions with exponential decay along the tube, which is first defined for z in
C \ [λ1,+∞) (i.e., Imk > 0), admits a meromorphic extension in a neighborhood
of λ1 in the 2-sheeted Riemann surface of

√
z − λ1.

We will identify the resonances around λ1 with the poles of this meromorphic
extension in the parameter k. We will prove in Theorem 3.2 that in a neighborhood
independent of δ, there is exactly one pole k(δ), whose behavior as δ → 0 is explicit:

(1.2) k(δ) = −iμδ2 +O(δ3),

where μ > 0 is given by (3.3) below and, moreover, k(δ) is on the imaginary axis.
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The fact that k(δ) is on the negative imaginary axis means that in the spectral
variable the resonance is on the second sheet of the 2-sheeted Riemann surface, far
from the real axis (it is sometimes called an anti-bound state [15]). In particular
such a resonance cannot be detected using dilations (a dilation of angle larger than
π would be needed) and is different in nature from those created by perturbations
of embedded eigenvalues. Besides, a difficulty comes from the non-relative com-
pactness of the perturbation W (δ). This problem will be overcome by exploiting
the smallness of the perturbation and the locality of our problem.

Our analysis provides an analogous result for higher thresholds, namely, in Theo-
rem 4.1 of Section 4 we prove that around each λq0 there are at most m0 resonances
(for all δ small enough), where m0 is the multiplicity of λq0 as eigenvalue of −Δω.
Moreover, under an additional assumption, each one of these resonances has an
asymptotic behavior of the form (1.2), where the constant μ is an eigenvalue of
an m0 ×m0 explicit matrix (symmetric but not necessarily Hermitian). Although
Theorem 4.1 may be viewed as a generalization of Theorem 3.2, we preferred to
push forward the proof for the first threshold for the following reasons: it is easier
to follow, it contains all the main ingredients needed for the proof in the upper
thresholds, and the eigenvalues of −Δω are generically simple as we know the first
eigenvalue is.

Remark 1.1. Independently of the size of the perturbation W (δ), a more global
definition of resonances would be possible by showing that a generalized determi-
nant (as in [3] or in [16, Definition 4.3]) is well defined on C \ [0,+∞) and admits
an analytic extension. Then the resonances would be defined as the zeros of this
determinant on an infinite-sheeted Riemann surface (as in [2, Definitions 1-2]).

2. Preliminary decomposition of the free resolvent

Let us describe the singularities of the free resolvent. Setting D3 := −i∂3, we
have that

(2.1) H0 − λ1 = (−Δω − λ1)⊗ Ix3
+ Ixt

⊗D2
3.

For k ∈ C+ := {k ∈ C; Im k > 0}, define

R0(k) := (H0 − λ1 − k2)−1

and R similarly for H(δ). If for n ∈ N, πn is the orthogonal projection onto the
space ker(−Δω − λn), using (2.1) we have that

(2.2) R0(k) = (H0 − λ1 − k2)−1 =
∑
q≥1

πq ⊗ (D2
3 + (λq − λ1)− k2)−1.

The integral kernel of (D2
3 − k2)−1 is explicitly given by

(2.3)
i

2k
ei k|x3−x′

3|.

Let η be an exponential weight of the form η(x3) = e−N〈x3〉, for (λ2 − λ1)
1/2 <

N < α/2. Also, for a ∈ C and r > 0 set B(a, r) := {z ∈ C; |a − z| < r}. Then,
as in [2, Lemma 1] it can be seen that the operator-valued function k 	→ (R0(k) :
ηL2(Ω) → η−1L2(Ω)), initially defined on C+, has a meromorphic extension in
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B(0, r) for any 0 < r < (λ2 − λ1)
1/2, with a unique pole, of multiplicity one, at

k = 0. More precisely,

(2.4) ηR0(k)η =
1

k
π1 ⊗ α0 +A0(k),

where α0 is the rank one operator α0 = i
2 |η〉〈η| and k 	→ (A0(k): L

2(Ω) → L2(Ω))
is the analytic operator-valued function

(2.5) A0(k) := π1 ⊗ r1(k) +
∑
q≥2

πq ⊗ η(D2
3 + (λq − λ1)− k2)−1η,

with r1 being the operator in L2(R) with integral kernel given by

(2.6) iη(x3)
(ei k|x3−x′

3| − 1)

2k
η(x′

3).

Clearly, for 0 < r < (λ2−λ1)
1/2, the family of operators A0(k) is uniformly bounded

on B(0, r).

Remark 2.1. Note that the condition α > 2(λ2−λ1)
1
2 on the function ε enters here

in order to have analytic properties in the ball B(0, r), 0 < r < (λ2 − λ1)
1/2. This

assumption can be relaxed to α > 0, but the results would be restricted to B(0, r)
with 0 < r < α

2 .

In order to define and study the resonances, we will consider a suitable mero-
morphic extension of R(k), using the identity

(2.7) ηR(k)η = ηR0(k)η
(
Id + η−1W (δ)R0(k)η

)−1
.

Since H(δ) has no eigenvalue below λ1 (see [8]), the above relation is initially well
defined and analytic for k ∈ C+. It is necessary then to understand under which
conditions this formula can be used to define such an extension. Since we cannot
apply directly the meromorphic Fredholm theory (W (δ) is not H0-compact), we

will need to show explicitly that
(
Id + η−1W (δ)R0(k)η

)−1
is meromorphic in some

region around zero.
Let ψ1 be such that −Δωψ1 = λ1ψ1, ‖ψ1‖L2(ω) = 1 (then π1 = |ψ1〉〈ψ1|), and

define

(2.8) Φδ := − i

2
((∂ϕψ1 ⊗ η−1ε′) + δ(∂2

ϕψ1 ⊗ η−1ε2)).

Proposition 2.2. Let 0 < r < (λ2 − λ1)
1/2. There exists δ0 > 0 such that for any

0 < δ ≤ δ0 and k ∈ B(0, r) \ {0},

η−1W (δ)R0(k)η =
δ

k
K0 + δT (δ, k),

where K0 is the rank one operator

(2.9) K0 := |Φδ〉〈ψ1 ⊗ η|,

and B(0, r) � k 	→ (T (δ, k): L2(Ω) → L2(Ω)) is an analytic operator-valued func-
tion. Moreover,

(2.10) sup
0<δ≤δ0, k∈B(0,r)

||T (δ, k)|| < ∞.
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Proof. Thanks to (2.4),

(2.11) η−1W (δ)R0(k)η =
1

k
η−1W (δ)η−1(π1 ⊗ α0) + η−1W (δ)η−1A0(k).

Since the range of the operator η−1α0 = i
2 |1〉〈η is spanned by constant functions,

we have ∂3η
−1α0 = 0, and therefore

η−1W (δ)η−1(π1 ⊗ α0) =
i

2
|η−1(−δε′∂ϕ − δ2ε2∂2

ϕ)η
−1(ψ1 ⊗ η)〉〈ψ1 ⊗ η| = δK0.

We now treat the last term of (2.11): Setting δT (δ, k) = η−1W (δ)η−1A0(k) we
get

T (δ, k)

=2
(
∂ϕπ1 ⊗ η−1ε∂3η

−1r1(k) +
∑
q≥2

∂ϕπq ⊗ η−1ε∂3(D
2
3 + (λq − λ1)− k2)−1η

)

−
(
∂ϕπ1 ⊗ η−1ε′η−1r1(k) +

∑
q≥2

∂ϕπq ⊗ η−1ε′(D2
3 + (λq − λ1)− k2)−1η

)

−δ
(
∂2
ϕπ1 ⊗ η−1ε2η−1r1(k) +

∑
q≥2

∂2
ϕπq ⊗ η−1ε2(D2

3 + (λq − λ1)− k2)−1η
)
.

It is clear that the last two terms are analytic and uniformly bounded in B(0, r).
For the first one, we note that the kernel of ∂3η

−1r1(k), the kernel of r1 being

(2.6), is given by (x3, x
′
3) 	→ − 1

2η(x
′
3)sign(x3 − x′

3)e
ik|x3−x′

3|, and therefore ∂ϕπ1 ⊗
η−1ε∂3η

−1r1 admits an analytic expansion which is uniformly bounded. The same
arguments run for

∑
q≥2 ∂ϕπq ⊗ η−1ε∂3(D

2
3 + (λq − λ1)− k2)−1η.

Finally, K0 is of rank one for δ small enough, because ∂ϕψ1 = 0 (see [4, Propo-
sition 2.2]). �

3. Meromorphic extension of the resolvent

and study of the resonance

Lemma 3.1. Let D ⊂ B(0,
√
λ2 − λ1) be a compact neighborhood of zero. With the

notation of Proposition 2.2, for δ sufficiently small, let us introduce the functions
Φ̃δ = (Id + δT (δ, k))−1Φδ and

(3.1) wδ(k) = δ〈Φ̃δ|ψ1 ⊗ η〉.

Then:

(i) There exists δ0 such that for any k ∈ D, δ ∈ (0, δ0),

(3.2) wδ(k) = iμδ2 +O(δ3) + δ2kgδ(k),

where

(3.3) μ := 1
2

∑
q≥2

(λq − λ1)‖πq∂ϕψ1‖2〈ε|(D2
3 + λq − λ1)

−1ε〉

is a positive constant, and gδ is an analytic function in D satisfying

sup
δ∈(0,δ0)

sup
k∈D

|gδ(k)| < +∞.

(ii) When β ∈ R ∩ −iD, there holds wδ(iβ) ∈ iR.
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Proof. We use the Taylor expansion and Proposition 2.2 to see that

(3.4) (Id + δT (δ, k))−1 = Id− δT (δ, 0) + δkGδ(k) +O(δ2),

where Gδ(k) is a holomorphic operator-valued function that is uniformly bounded
for k ∈ D and δ small.

By definition of Φδ, we have

〈Φδ|ψ1 ⊗ η〉
= − i

2

(
〈∂ϕψ1|ψ1〉L2(ω) 〈η−1ε′|η〉L2(R) + δ〈∂2

ϕψ1|ψ1〉L2(ω) 〈η−1ε2|η〉L2(R)

)
.

The first term is zero because ε tends to zero at infinity. Using integration by parts,
since ψ1 satisfies a Dirichlet boundary condition, we deduce that

〈Φδ|ψ1 ⊗ η〉 = δ
i

2
‖∂ϕψ1‖2‖ε‖2.

Noticing that ‖Φδ‖ = O(1), from (3.4) we get

(3.5) wδ(k) = δ2
i

2
‖∂ϕψ1‖2‖ε‖2 − δ2〈T (δ, 0)Φδ|ψ1 ⊗ η〉+ δ2kgδ(k) +O(δ3),

where gδ(k) is holomorphic and uniformly bounded for k ∈ D and δ small.
We now compute 〈T (δ, 0)Φδ|ψ1⊗η〉. Recall that T (δ, k) = δ−1η−1W (δ)η−1A0(k).

Next, note that since 〈∂ϕψ1|ψ1〉 = 0,

π1∂ϕψ1 = 0,

and therefore, using the definition of Φδ in (2.8), we get

(π1 ⊗ r1(0))Φδ = −δ
i

2
π1∂

2
ϕψ1 ⊗ r1(0)η

−1ε2,

which in turn implies that

〈(δ−1η−1W (δ)η−1)(π1 ⊗ r1(0))Φδ|ψ1 ⊗ η〉 = O(δ).

In consequence, having in mind (2.8) again, we deduce that

(3.6) 〈T (δ, 0)Φδ, ψ1 ⊗ η〉+O(δ)

=〈η−1
(
−2ε∂ϕ∂3 − ε′∂ϕ − δε2∂2

ϕ

)
η−1

(∑
q≥2

πq ⊗ η(D2
3 + (λq − λ1))

−1η
)
Φδ|ψ1 ⊗ η〉

=
i

2
〈η−1

(
2ε∂ϕ∂3 + ε′∂ϕ

)(∑
q≥2

πq ⊗ (D2
3 + (λq − λ1))

−1
)
∂ϕψ1 ⊗ ε′|ψ1 ⊗ η〉.

We compute the last expression using integration by parts, both in the ϕ and
the x3 variables:

(3.7)

〈η−1 (2ε∂ϕ∂3 + ε′∂ϕ)

⎛
⎝∑

q≥2

πq ⊗ (D2
3 + (λq − λ1))

−1

⎞
⎠ ∂ϕψ1 ⊗ ε′|ψ1 ⊗ η〉

=
∑
q≥2

〈∂ϕψ1|πq∂ϕψ1〉 × 〈ε′|(D2
3 + λq − λ1)

−1ε′〉.

Now, we notice that

〈ε′|(D2
3 + λq − λ1)

−1ε′〉 = 〈ε|(D2
3 + λq − λ1)

−1D2
3ε〉

= ‖ε‖2 − (λq − λ1)〈ε|(D2
3 + λq − λ1)

−1ε〉.
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In addition, since π1∂ϕψ1 = 0 and
∑

q≥1 πq = Id, we have that

(3.8)
∑
q≥2

〈∂ϕψ1|πq∂ϕψ1〉 = ‖∂ϕψ1‖2.

Then, from (3.6) and (3.7) we get
(3.9)

〈T (δ, 0)Φδ, ψ1 ⊗ η〉

= i
2‖ε‖

2‖∂ϕψ1‖2 − i
2

∑
q≥2

(λq − λ1)〈∂ϕψ1|πq∂ϕψ1〉〈ε|(D2
3 + λq − λ1)

−1ε〉+O(δ).

Putting together (3.5) and (3.9), we deduce (3.2). Moreover, μ is clearly non-
negative, and since ∂ϕψ1 = 0 (see [4, Proposition 2.2]), from (3.8) there exists
q ≥ 2 such that 〈∂ϕψ1|πq∂ϕψ1〉 > 0. Since (D2

3 + λq − λ1)
−1 is a positive operator,

we get μ > 0.
Let us prove (ii). Let β ∈ R such that iβ ∈ D, i.e., β ∈ −iD. Then A0(iβ)

has a real integral kernel; see (2.5). Therefore if u ∈ L2(Ω) is real valued, so

is (Id + δT (δ, iβ))−1u. In consequence, since Φδ has values in iR, so is Φ̃δ =
(Id + δT (δ, iβ))−1Φδ, and we deduce that wδ(iβ) has values in iR as well. �
Theorem 3.2. Let ε : R → R be a non-zero C1-function satisfying (1.1) and let
D ⊂ B(0,

√
λ2 − λ1) be a compact neighborhood of zero. Then, for δ sufficiently

small, k 	→ R(k) = (H − λ1 − k2)−1, initially defined in C
+, admits a meromor-

phic operator-valued extension on D whose operator-values act from ηL2(Ω) into
η−1L2(Ω). This function has exactly one pole k(δ) in D, called a resonance of H,
and it is of multiplicity one. Moreover, we have the asymptotic expansion

k(δ) = −iμδ2 +O(δ3),

with μ given by (3.3) and Re(k(δ)) = 0.

Proof. Consider the identity (2.7), and note that from Proposition 2.2 for k ∈
D \ {0} and δ sufficiently small we can write

(3.10)
(
Id + η−1W (δ)R0(k)η

)
=

(
Id + δT (δ, k)

)(
Id +

δ

k
(Id + δT (δ, k))−1K0

)
.

For k ∈ D \ {0} let us set

K :=
δ

k
(Id + δT (δ, k))−1K0 =

δ

k
|Φ̃δ〉〈ψ1 ⊗ η|,

which is a rank one operator. Then, we need to study the inverse of (Id +K).

Let us consider Π⊥
δ , the projection onto (span {ψ1 ⊗ η})⊥ into the direction Φ̃δ

and Πδ = Id − Π⊥
δ , the projection onto span {Φ̃δ} into the direction normal to

(ψ1 ⊗ η). We can easily see that

(Id+K)Π⊥
δ = Π⊥

δ and (Id+K)Πδ = (1+
δ

k
〈Φ̃δ|ψ1⊗η〉)Πδ =

k + wδ(k)

k
Πδ.

Therefore, Id +K is invertible if and only if k + wδ(k) = 0, and

(3.11) (Id +K)−1 = Π⊥
δ +

k

k + wδ(k)
Πδ.

Let us consider the equation k + wδ(k) = 0. Using (3.2), for all κ ∈ (0,
√
λ2 − λ1),

for δ small enough, the equation has no solution for k ∈ D and |k| ≥ κ. We then
apply Rouché’s theorem inside the ball B(0, κ): consider the analytic functions
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hδ(k) = iμδ2 + k and fδ(k) = wδ(k) + k. The function hδ has exactly one root,
and on the circle C(0, κ), using again (3.2), there holds |hδ − fδ| ≤ hδ for δ small
enough. Thus, we deduce that the equation k+wδ(k) = 0 has exactly one solution
k(δ) in D, for each fixed δ small enough. In consequence, putting together (2.7),
(2.4), (3.10), and (3.11) we obtain that for all k ∈ D \ {0, k(δ)},

ηR(k)η =
(1
k
π1 ⊗ α0 +A0(k)

)(
Π⊥

δ +
k

k + wδ(k)
Πδ

)
(Id + δT (δ, k))−1.

By the definition of Π⊥
δ , we have that (π1 ⊗ α0)Π

⊥
δ = 0. This relation is crucial in

order to drop the degeneracy of the kernel near k = 0; indeed it provides

ηR(k)η =
1

k + wδ(k)
(π1 ⊗ α0)Πδ(Id + δT (δ, k))−1

+
k

k + wδ(k)
A0(k)Πδ(Id + δT (δ, k))−1 +A0(k)Π

⊥
δ (Id + δT (δ, k))−1.

Therefore, for δ sufficiently small, the weighted resolvent k 	→ ηR(k)η admits a
meromorphic extension to D \ {k(δ)}, where the pole k(δ) is given by the solution
of k + wδ(k) = 0.

Using (3.2), the asymptotic expansion of k(δ) follows immediately. Further, the
multiplicity of this resonance is the rank of the residue of ηR(k)η, which coincides
with the rank of (π1 ⊗α0)Πδ + k(δ)A0(k(δ))Πδ. It is one because Πδ is of rank one

with its range in span{Φ̃δ} and(
(π1⊗α0)+k(δ)A0(k(δ))

)
Φ̃δ =

i

2
〈Φ̃δ|ψ1⊗η〉(ψ1⊗η)+O(δ2) = −δμ

2
(ψ1⊗η)+O(δ2)

does not vanish for δ sufficiently small.
Finally let us prove that k(δ) ∈ iR. As a consequence of Lemma 3.1(ii), we have

that the function sδ, defined on R∩B(0, δ) by sδ(β) = i(iβ+wδ(iβ)), is real valued.
Moreover, using (3.2) for δ small, sδ(0) < 0 and sδ(−δ) > 0. In consequence, this
function admits a root β(δ) which is real. By uniqueness, k(δ) = iβ(δ). �

4. Upper thresholds

We now extend our analysis to the upper thresholds. We will show that if λq0 is
an eigenvalue of multiplicity m0 ≥ 1 of (−Δω), then m0 is a bound for the number
of resonances around λq0 .

Let (ψq0,j)j=1,...,m0
be a normalized basis of ker(−Δω − λq0). In analogy with

(3.3), for 1 ≤ j, l ≤ m0 define

(4.1)

μj,l = 〈∂ϕψq0,j |πq0∂ϕψq0,l〉 ||ε||2

+
1

2

∑
q 
=q0

(λq − λq0)〈∂ϕψq0,j |πq∂ϕψq0,l〉〈(D2
3 + λq − λq0)

−1ε|ε〉,

and let Υq0 be the matrix (μj,l).

Introduce r0 := min(
√
|λq0 − λq0−1|,

√
|λq0+1 − λq0 |) and the upper right part

of the complex plane C
++ := {k ∈ C

+; Re k > 0}.

Theorem 4.1. Suppose that λq0 is an eigenvalue of multiplicity m0 ≥ 1 of (−Δω),
that ε : R → R is a non-zero C1-function satisfying (1.1) with α > 2r0, and
that D ⊂ B(0, r0) is a compact neighborhood of zero. Then, for all δ sufficiently
small, the operator-valued function k 	→ (H(δ) − λq0 − k2)−1, initially defined in
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C++, admits a meromorphic extension on D, from ηL2(Ω) into η−1L2(Ω). This
extension has at most m0 poles, counted with multiplicity. These poles are among
the zeros (kl(δ))1≤l≤m0

of some determinant which satisfy

kl(δ) = −iνq0,l δ
2 + o(δ2), δ ↓ 0,

where (νq0,l)1≤l≤m0
are the eigenvalues of the matrix Υq0 .

Proof. Some points in this proof are close to what has been done for the first
threshold. We will keep the same notation and explain how to modify the arguments
of the previous sections. In analogy with Section 2 set

Φj,δ := − i

2
((∂ϕψq0,j⊗η−1ε′)+δ(∂2

ϕψq0,j⊗η−1ε2)) and K0 :=

m0∑
j=1

|Φj,δ〉〈ψq0,j⊗η|,

where K0 is of rank m0 for δ small enough, because due to the non-radiality of
ω, following the proof of [4, Proposition 2.2]), we check that {∂ϕψq0,j}0≤j≤m0

are
linearly independent. Then, the analoguous of Proposition 2.2 still holds. Here,
since λq0 is in the interior of the essential spectrum, the resolvent (H(δ) − z)−1

is initially defined for Im z > 0 near z = λq0 , and the extension of the weighted

resolvent is done with respect to k =
√
z − λq0 from C++ to a neighborhood of

k = 0.
Also, as in the proof of Theorem 3.2, we have for k ∈ C++, with R0(k) :=

(H0 − λq0 − k2)−1 (and similar notation for R(k)),

(4.2) ηR(k)η = ηR0(k)η(Id +K)−1(Id + δT (δ, k))−1,

where

K :=
δ

k
(Id + δT (δ, k))−1K0 =

δ

k

m0∑
j=1

|Φ̃j,δ〉〈ψq0,j ⊗ η|

is now of rank m0 for δ small enough with obvious notation for Φ̃j,δ.

Next, let Π⊥
δ be the projection over

(
ker(−Δω −λq0)⊗ span{η}

)⊥
in the direc-

tion of span{Φ̃1,δ, ..., Φ̃m0,δ} and Πδ := Id − Π⊥
δ . Then, the matrix of (Id +K)Πδ

in the basis {Φ̃j,δ}m0
1 is given, for k = 0, by

(4.3)
1

k

⎡
⎢⎣
k + ω1,1,δ(k) . . . ωm0,1,δ(k)

...
. . .

...
ω1,m0,δ(k) . . . k + ωm0,m0,δ(k)

⎤
⎥⎦ :=

1

k
Mδ(k),

where we have set wj,l,δ(k) = δ〈Φ̃j,δ|ψq0,l ⊗ η〉. Assume that Mδ(k) is invertible.
Then by (4.2)

ηR(k)η (Id + δT (δ, k))

=

⎛
⎝ i

2k

∑
j

|ψq0,j ⊗ η〉〈ψq0,j ⊗ η|+A0(k)

⎞
⎠(

Π⊥
δ + kMδ(k)

−1Πδ

)

=

⎛
⎝ i

2

∑
j

|ψq0,j ⊗ η〉〈ψq0,j ⊗ η|Mδ(k)
−1Πδ +A0(k)

(
Π⊥

δ + kMδ(k)
−1Πδ

)⎞⎠ .



4810 V. BRUNEAU, P. MIRANDA, AND N. POPOFF

In consequence, since the wl,k,δ are holomorphic, ηRη admits a meromorphic
extension to D, and the poles of this extension are the poles of

(4.4)
( i

2

∑
j

|ψq0,j ⊗ η〉〈ψq0,j ⊗ η|+ kA0(k)
)
Mδ(k)

−1Πδ.

Evidently, the poles are included in the set of zeros of the determinant of Mδ(k).
Define

Δ(k, δ) := det(Mδ(k)).

We can check as in Lemma 3.1 that

(4.5) wj,l,δ(k) = iμj,lδ
2 +O(δ3) + δ2kgj,l(k, δ),

where the μj,l are given by (4.1). Then

Δ(k, δ) = δ2m0det(kδ−2 + iμj,l + O(δ) + kgj,l(k, δ)),

and the zeros of Δ(·, δ) are the complex numbers of the form k = uδ2, with u being
a zero of

Δ̃(u, δ) := det(u+ iμj,l +O(δ) + δ2ugj,l(δ
2u, δ)).

Since

(4.6) Δ̃(u, δ) = Δ̃(u, 0) + δh(u, δ) = det(u+ iμj,l) + δh(u, δ),

where h is an analytic function in u and δ, taking the ball B(0, C) with C larger
than the modulus of the larger eigenvalue of Υq0 and applying Rouché’s theo-

rem, we conclude that all the zeros of Δ̃(·, δ) are inside this ball for δ suffi-
ciently small. Moreover, if we denote by νq0,l the eigenvalues of Υq0 , (4.6) yields
uq0,l(δ) = −i(νq0,l + o(1)). This immediately implies that all the zeros of Δ(·, δ) in
D, denoted by kl, are inside the ball B(0, Cδ2) and satisfy

kl(δ) = −iδ2(νq0,l + o(1)).

�

Remark 4.2. In the last theorem, ifm0 = 1, we are able to obtain extra information.
For instance, as in Theorem 3.2, for the unique zero of the determinant, k1(δ), we
have that k1(δ) = −iμq0δ

2 +O(δ3) with

μq0 := μ1,1 =
1

2

∑
q 
=q0

(λq − λq0)〈∂ϕψq0 |πq∂ϕψq0〉〈ε|(D2
3 + λq − λq0)

−1ε〉.

Then, as in the proof of Theorem 3.2, kq0 is a pole of multiplicity one when μq0 = 0.
It is also important to notice that, for q < q0, the operator (D

2
3+λq−λq0)

−1 has to
be understood as the limit of (D2

3+λq−λq0−k2)−1, acting in weighted spaces, when
k → 0. It is not a self-adjoint operator anymore; therefore μq0 is not necessarily
real. Actually, in general, it has a non-zero imaginary part coming from the first
terms when q < q0. Indeed, thanks to (2.3), for q < q0, the imaginary part of
2(λq0 − λq)

1/2 〈ε|(D2
3 + λq − λq0)

−1ε〉 is given by

−
(∫

R

cos(
√
λq0 − λq x3) ε(x3) dx3

)2

−
(∫

R

sin(
√
λq0 − λq x3) ε(x3) dx3

)2

= −
√
2π|ε̂(

√
λq0 − λq)|2,
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where ε̂ is the Fourier transform of ε. Then, the imaginary part of μq0 is

Im(μq0) = −
√

2π(λq0
−λq)

4

∑
q<q0

‖πq∂ϕψq0‖2 |ε̂(
√
λq0 − λq)|2.

This identity allows us to give sufficient conditions on the eigenfunctions of −Δω

and on ε̂, so that μq0 = 0, giving rise to a unique resonance of multiplicity one,
with Re k1(δ) < 0.

For m0 > 1 the resonances (i.e., the poles of (4.4)) would be the poles of Mδ(k)
−1

when the operator
∑

j |ψq0,j ⊗ η〉〈ψq0,j ⊗ η| is invertible on the range of Πδ. This
property will be satisfied as soon as the matrix Υq0 is invertible, but it does not
hold in general.
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[8] T. Ekholm, H. Kovař́ık, and D. Krejčǐŕık, A Hardy inequality in twisted waveguides, Arch.
Ration. Mech. Anal. 188 (2008), no. 2, 245–264, DOI 10.1007/s00205-007-0106-0. MR2385742

[9] V. V. Grushin, On the eigenvalues of a finitely perturbed Laplace operator in infinite cylin-
drical domains (Russian, with Russian summary), Mat. Zametki 75 (2004), no. 3, 360–371,
DOI 10.1023/B:MATN.0000023312.41107.72; English transl., Math. Notes 75 (2004), no. 3-4,
331–340. MR2068799

[10] Evans M. Harrell II, Perturbation theory and atomic resonances since Schrödinger’s time,
Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birth-

day, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 227–248,
DOI 10.1090/pspum/076.1/2310205. MR2310205
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