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ON UNIQUENESS SETS OF ADDITIVE EIGENVALUE

PROBLEMS AND APPLICATIONS

HIROYOSHI MITAKE AND HUNG V. TRAN

(Communicated by Joachim Krieger)

Abstract. In this paper, we provide a simple way to find uniqueness sets
for additive eigenvalue problems of first and second order Hamilton–Jacobi
equations by using a PDE approach. An application in finding the limiting
profiles for large time behaviors of first order Hamilton–Jacobi equations is
also obtained.

1. Introduction

Let T
n be the usual n-dimensional torus. Let the Hamiltonian H = H(x, p) ∈

C2(Tn × R
n) be such that

(H1) for every x ∈ T
n, p �→ H(x, p) is convex,

(H2) uniformly for x ∈ T
n,

lim
|p|→∞

H(x, p)

|p| = +∞ and lim
|p|→∞

(
1

2
H(x, p)2 +DxH(x, p) · p

)
= +∞.

The first order additive eigenvalue (ergodic) problem corresponding to H is

(E) H(x,Dw) = c in T
n.

Here, (w, c) ∈ C(Tn) × R is a pair of unknowns. It was shown in [14] that there
exists a unique constant c ∈ R, which is called the ergodic constant of (E), such that
(E) has a viscosity solution w ∈ C(Tn). Without loss of generality, we normalize
the ergodic constant c to be zero henceforth.

We emphasize here that since (E) is not monotone in w, viscosity solutions of
(E) are not unique even up to additive constants in general (see examples in [14],
[13, Chapter 5.5], [12, Chapter 6]). It is therefore fundamental to understand why
this nonuniqueness phenomenon appears, and in particular, to find a uniqueness
set for (E). Here, a uniqueness set for (E) denotes a set A ⊂ T

n satisfying that
for any viscosity solutions v, w ∈ C(Tn) of (E), if v = w on A, then v = w on T

n.
It turns out that this has deep relations to Hamiltonian dynamics and weak KAM
theory. In fact, a uniquenesss set for (E) has already been studied in [7, 8] in the
context of weak KAM theory.
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In this short paper, we provide a new and simple way to look at this phenom-
enon for (E) by using PDE techniques. Our approach is quite general and robust,
which is indeed applicable in studying the nonuniqueness phenomenon for second
order (degenerate viscous) Hamilton–Jacobi equations which appears in stochastic
optimal control of the form

(VE) H(x,Dw) = tr
(
A(x)D2w

)
+ c in T

n,

as well. Here, H is the Hamiltonian as above, and A : Tn → M
n×n
sym is the diffusion

matrix, where M
n×n
sym is the set of all n × n real symmetric matrices, and (w, c) ∈

C(Tn)× R is a pair of unknowns.

1.1. Settings and main results. We first recall the definition of Mather mea-
sures. Consider the following minimization problem:

(1.1) min
μ∈F

∫∫
Tn×Rn

L(x, v) dμ(x, v),

where L is the Legendre transform of H, that is,

L(x, v) = sup
p∈Rn

(p · v −H(x, p)) for (x, v) ∈ T
n × R

n,

and

F =

{
μ ∈ P(Tn × R

n) :

∫∫
Tn×Rn

v ·Dφ(x) dμ(x, v) = 0 for all φ ∈ C1(Tn)

}
.

Here, P(Tn×R
n) is the set of all Radon probability measures on T

n×R
n. Measures

which belong to F are called holonomic measures associated with (E).

Definition 1 (Mather measures). Let M̃ ⊂ F be the set of all minimizers of (1.1).

Each measure in M̃ is called a Mather measure.

As we normalize c = 0, we actually have that (see [7, 8, 15, 16] for instance)

(1.2) min
μ∈F

∫∫
Tn×Rn

L(x, v) dμ(x, v) = −c = 0.

See [17], [12, Lemma 6.12] for a proof of a more general version of this fact. Here
is our first main result.

Theorem 1.1. Assume (H1)–(H2). Let w1, w2 be any viscosity solutions of ergodic
problem (E). Assume further that∫∫

Tn×Rn

w1(x) dμ(x, v) ≤
∫∫

Tn×Rn

w2(x) dμ(x, v) for all μ ∈ M̃.

Then w1 ≤ w2 in T
n.

Let M be the projected Mather set on T
n, that is,

M =
⋃

μ∈ ˜M

supp (proj
Tnμ).

Theorem 1.1 gives the following straightforward result.

Corollary 1.2. Assume (H1)–(H2). Let w1, w2 be any viscosity solutions of ergodic
problem (E). Assume further that w1 = w2 on M. Then w1 = w2 in T

n.
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Corollary 1.2 was derived in [7, Theorem 4.12.6], [8, Theorem 10.4] earlier. We
provide a simple proof for Theorem 1.1 in Section 2, which is a new application
of the nonlinear adjoint method introduced in [5] (see also [18]). A generalization
of Theorem 1.1 to the second order (degenerate viscous) setting, Theorem 4.1, is
given in Section 4. It is worth mentioning that the result of Theorem 4.1 is new in
the literature.

1.2. Application. We provide here an application in large time behavior. In this
context, we need to strengthen the convexity of H in (H1).

(H1’) There exists γ > 0 such that

D2
ppH(x, p) ≥ γIn for all (x, p) ∈ T

n × R
n.

Here, In is the identity matrix of size n.
Under assumptions (H1’), (H2) and that the ergodic constant c = 0, for given

u0 ∈ Lip (Tn), the viscosity solution u ∈ C(Tn × [0,∞)) of the Cauchy problem

(C)

{
ut +H(x,Du) = 0 in T

n × (0,∞),

u(x, 0) = u0(x) on T
n,

has the following large time behavior:

(1.3) lim
t→∞

‖u(·, t)− v‖L∞(Tn) = 0,

where v ∈ Lip (Tn) is a viscosity solution of (E). This result was first proved in
[6]. Notice that there are various different ways to prove it (see [2, 3, 12] and the
references therein). We say that v is the asymptotic profile of u, and denote it by
u∞, or u∞[u0] to display the clear dependence on the initial data u0.

We now give a representation formula for u∞[u0].

Theorem 1.3 (Asymptotic profiles). Assume that (H1’) and (H2) hold, and the
ergodic constant c = 0. For given u0 ∈ Lip (Tn), let u∞[u0] be the corresponding
asymptotic profile. Then, we have

(i) u∞[u0](y) = u−
0 (y) for all y ∈ M,

(ii) u∞[u0](x) = min
{
d(x, y) + u−

0 (y) : y ∈ M
}
for all x ∈ T

n.

Here,

u−
0 (x) = sup {v(x) : v ≤ u0 on T

n, and v is a subsolution to (E)} ,
d(x, y) = sup {v(x)− v(y) : v is a subsolution to (E)} .

Theorem 1.3 was first proved in [4, Theorem 3.1], and we give an elementary
proof of this in Section 3, which is simpler.

2. Uniqueness set of the ergodic problem

We present in this section the proof of Theorem 1.1.

Proof of Theorem 1.1. We use ideas introduced in [3].
For each i = 1, 2 and each ε > 0, let uε

i be the viscosity solution to the Cauchy
problem

(2.1)

{
ε(uε

i )t +H(x,Duε
i ) = ε4Δuε

i in T
n × (0, 1),

uε
i (x, 0) = wi(x) on T

n.



4816 H. MITAKE AND H. V. TRAN

Without the viscosity term, (2.1) becomes

(2.2)

{
ε(ui)t +H(x,Dui) = 0 in T

n × (0, 1),

ui(x, 0) = wi(x) on T
n.

It is clear that the unique viscosity solution to (2.2) is ui(x, t) = wi(x) for all
(x, t) ∈ T

n × [0, 1) because wi is a viscosity solution to (E). Thanks to (H2), by a
standard argument, there exists C > 0 independent of ε such that

(2.3) ‖Duε
i‖L∞(Tn×(0,1)) ≤ C

and

(2.4) ‖uε
i − wi‖L∞(Tn×(0,1)) ≤ Cε.

See [12, Propositions 4.15 and 5.5] for the proofs of similar versions of (2.3) and
(2.4) for instance. Our plan is to use uε

1, u
ε
2 to deduce the conclusion as ε → 0.

For any x0 ∈ T
n, let σε be the solution to{

−εσε
t − div(DpH(x,Duε

2)σ
ε) = ε4Δσε in T

n × (0, 1),

σε(x, 1) = δx0
on T

n.

Here δx0
is the Dirac delta mass at x0.

By convexity of H in (H1), we have

ε(uε
1 − uε

2)t +DpH(x,Duε
2) ·D(uε

1 − uε
2) ≤ ε4Δ(uε

1 − uε
2).

Multiply this by σε, integrate on T
n, and note that∫

Tn

(
−DpH(x,Duε

2) ·D(uε
1 − uε

2) + ε4Δ(uε
1 − uε

2)
)
σε dx

=

∫
Tn

(
div(DpH(x,Duε

2)σ
ε) + ε4Δσε

)
(uε

1 − uε
2) dx = −

∫
Tn

εσε
t (u

ε
1 − uε

2) dx.

Thus,
d

dt

∫
Tn

(uε
1 − uε

2)σ
ε dx ≤ 0,

which yields, for each t ∈ [0, 1],

(uε
1 − uε

2)(x0, 1) ≤
∫
Tn

(uε
1 − uε

2)(x, t)σ
ε(x, t) dx,

and hence,

(2.5) (uε
1 − uε

2)(x0, 1) ≤
∫ 1

0

∫
Tn

(uε
1 − uε

2)σ
ε dxdt.

In light of the Riesz theorem, there exists νε ∈ P(Tn × R
n) such that

(2.6)∫∫
Tn×Rn

ϕ(x, p) dνε(x, p) =

∫ 1

0

∫
Tn

ϕ(x,Duε
2)σ

ε dxdt for all ϕ ∈ Cc(T
n × R

n).

Then, (2.5) becomes

(2.7) (uε
1 − uε

2)(x0, 1) ≤
∫∫

Tn×Rn

(uε
1 − uε

2) dν
ε(x, p).
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Thanks to (2.3), we have that supp(νε) ⊂ T
n × B(0, C). There exists {εj} → 0

such that νεj ⇀ ν ∈ P(Tn × R
n) as j → ∞ weakly in the sense of measures. We

set μ ∈ P(Tn × R
n) to be such that

(2.8)

∫∫
Tn×Rn

ϕ(x, p) dν(x, p) =

∫∫
Tn×Rn

ϕ(x,DvL(x, v)) dμ(x, v).

If L is not strictly convex in v, then we approximate H (hence L) by strictly
convext ones. We provide a proof that μ is a Mather measure in Lemma 2.1 below
for completeness (see also [17, Proposition 2.3], [12, Proposition 6.11]).

Sending j → ∞ in (2.7) and using (2.4) to yield

w1(x0)− w2(x0) ≤
∫∫

Tn×Rn

(w1 − w2) dμ(x, v) ≤ 0. �

Lemma 2.1. For each ε > 0, let νε be the measure defined in (2.6). Assume that
there exists a sequence {εj} → 0 such that νεj ⇀ ν ∈ P(Tn×R

n) as j → ∞ weakly
in the sense of measures. Let μ be a measure defined through ν by (2.8). Then μ
is a Mather measure.

Proof. Fix any φ ∈ C1(Tn), and consider a family {φm} ⊂ C∞(Tn) such that
φm → φ in C1(Tn) as m → ∞.

Multiply the adjoint equation with φm and integrate on T
n × [0, 1] to imply

ε

∫
Tn

φm(x)σε(x, 0) dx− εφm(x0) +

∫ 1

0

∫
Tn

DpH(x,Duε
2) ·Dφm(x)σε(x, t) dxdt

= ε4
∫ 1

0

∫
Tn

Δφm(x)σε(x, t) dxdt.

Let ε = εj → 0 and m → ∞ in this order to get∫∫
Tn×Rn

DpH(x, p) ·Dφ(x) dν(x, p) =

∫∫
Tn×Rn

v ·Dφ(x) dμ(x, v) = 0.

Thus, μ ∈ F .
We rewrite (2.1) as

ε(uε
2)t +DpH(x,Duε

2) ·Duε
2 − ε4Δuε

2 = DpH(x,Duε
2) ·Duε

2 −H(x,Duε
2).

Multiply this by σε and integrate on T
n × [0, 1] to yield

εuε
2(x0, 1)− ε

∫
Tn

uε
2(x, 0)σ

ε(x, 0) dx

=

∫ 1

0

∫
Tn

(DpH(x,Duε
2) ·Duε

2 −H(x,Duε
2))σ

ε dxdt.

We again let ε = εj → 0 to achieve that

0 =

∫∫
Tn×Rn

(DpH(x, p) · p−H(x, p)) dν(x, p) =

∫∫
Tn×Rn

L(x, v) dμ(x, v).

Also, note that we have

(2.9)

∫∫
Tn×Rn

L(x, v) dμ ≥ 0 for all μ ∈ F ,

which, together with (1.2), completes the proof. See [12, Lemma 6.12] for a proof
of (2.9). �
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3. Application

In this section, we always assume that (H1’)–(H2) hold and that the ergodic
constant c = 0.

Lemma 3.1. Assume that u0 is a viscosity subsolution of (E). Then,

u∞[u0] = u0 on M.

Proof. We write u∞ for u∞[u0] in the proof for simplicity.
By the usual comparison principle, we have u(x, t) ≥ u0(x) for all (x, t) ∈ T

n ×
[0,∞). Hence, u∞ ≥ u0 on T

n.
Next, let ρ be a standard mollifier in R

n. For each δ > 0, let ρδ(x) = δ−nρ(δ−1x)
for all x ∈ R

n. Let uδ = ρδ ∗ u. Then due to the convexity of H in p, uδ is a
subsolution to

uδ
t +H(x,Duδ) ≤ Cδ in T

n × (0,∞).

For any Mather measure μ ∈ M̃, by the holonomic and minimizing properties, we
have

d

dt

∫∫
Tn×Rn

uδ(x, t) dμ =

∫∫
Tn×Rn

(uδ
t + v ·Duδ − L(x, v)) dμ

≤
∫∫

Tn×Rn

uδ
t +H(x,Duδ) dμ ≤ Cδ.

Therefore, for any T > 0,∫∫
Tn×Rn

uδ(x, T ) dμ ≤
∫∫

Tn×Rn

(u0)
δ(x) dμ+ CδT.

Let δ → 0 and T → ∞ in this order to yield∫∫
Tn×Rn

u∞ dμ ≤
∫∫

Tn×Rn

u0 dμ.

Combined with u∞ ≥ u0 on T
n, we obtain u∞ = u0 on M, which completes the

proof. �

Remark 1. Notice that we get

u(x, t) = u0(x) for all x ∈ M, t ∈ [0,∞),

in the above proof.

We present next the proof of Theorem 1.3. Before proceeding to the proof, it is
important to note that d has the following representation formula:

d(x, y) = inf

{∫ t

0

L(γ(s),−γ̇(s)) ds : t > 0, γ ∈ AC([0, t],Tn), γ(0) = x, γ(t) = y

}
.

See [7] for instance.

Proof of Theorem 1.3. It is enough to give only the proof of (i). The second claim
(ii) follows immediately from Corollary 1.2, claim (i), and the representation for-
mulas of d as well as of solutions to (E).

By the definition of u−
0 , we have u−

0 ≤ u0 on T
n. In light of the comparison

principle, u−
0 ≤ u on T

n × [0,∞), which implies u−
0 ≤ u∞ on T

n.
We prove the reverse inequality holds on M. Fix y ∈ M and z ∈ T

n. Set
wz

0(x) = u0(z) + d(x, z) for x ∈ T
n. Then, note that wz

0 is a viscosity subsolution
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to (E). Let w be the solution to (C) with initial data wz
0 . Thanks to Lemma 3.1,

we get

(3.1) w(y, t) = wz
0(y) = u0(z) + d(y, z) for all t ∈ [0,∞).

For a large t > 1, pick γ : [0, t] → T
n to be an optimal path such that γ(0) = y and

w(y, t) = wz
0(γ(t))+

∫ t

0

L(γ(s),−γ̇(s)) ds = u0(z)+d(γ(t), z)+

∫ t

0

L(γ(s),−γ̇(s)) ds.

On the other hand, for any ε > 0, there exists tε > 0 and a path γ : [t, t+tε] → T
n

with γ(t+ tε) = z satisfying

d(γ(t), z) ≥
∫ t+tε

t

L(γ(s),−γ̇(s)) ds− ε.

Combine the two relations above to imply

(3.2) wz
0(y) + ε ≥ u0(z) +

∫ t+tε

0

L(γ(s),−γ̇(s)) ds ≥ u(y, t+ tε).

By letting t → ∞ in (3.2), one gets

wz
0(y) + ε ≥ u∞(y).

Next, let ε → 0 to conclude that u0(z) + d(y, z) ≥ u∞(y). Vary z to yield

u∞(y) ≤ min
z∈Tn

(u0(z) + d(y, z)).

Notice here that in view of the inf-stability of viscosity subsolutions to convex first
order Hamilton–Jacobi equations, we have minz∈Tn(u0(z)+d(y, z)) = u−

0 (y), which
finishes the proof. �

4. Generalization: Degenerate viscous cases

In this section, we present a generalization of Theorem 1.1 to (VE) in the intro-
duction. We need the following assumptions.

(H2’) There exist γ > 1 and C > 0 such that, for all (x, p) ∈ T
n × R

n,⎧⎪⎪⎨⎪⎪⎩
1

C
|p|γ − C ≤ H(x, p) ≤ C(|p|γ + 1),

|DxH(x, p)| ≤ C(1 + |p|γ),
|DpH(x, p)| ≤ C(1 + |p|γ−1).

(H3) A(x) = (aij(x))1≤i,j≤n ∈ M
n×n
sym with A ≥ 0, and aij ∈ C2(Tn) for all

1 ≤ i, j ≤ n.

By normalization, we always assume that c = 0 in this section. In fact, under
assumptions (H1), (H2’), and (H3), for any w ∈ C(Tn) solving (VE), w ∈ Lip (Tn)
(see [1, Theorem 3.1]).

Definition 2. Let M̃V be the set of all minimizers of the minimizing problem

(4.1) min
μ∈F

∫∫
Tn×Rn

L(x, v) dμ(x, v),



4820 H. MITAKE AND H. V. TRAN

where

FV =

{
μ ∈ P(Tn × R

n) :

∫∫
Tn×Rn

v ·Dφ− aijφxixj
dμ(x, v) = 0

for all φ ∈ C2(Tn)

}
.

Each measure in M̃V is called a generalized Mather measure.

The notion of generalized Mather measures was first introduced and analyzed in
[9,10]. Because of normalization that c = 0, as in the first order case, one has that

(4.2) min
μ∈FV

∫∫
Tn×Rn

L(x, v) dμ(x, v) = 0.

The proof of this claim follows [12, Lemma 6.12]. To be more precise, [12, Lemma
6.12] deals with the special case A(x) = a(x)In where a ∈ C2(Tn, [0,∞)) and In
is the identity matrix of size n. For general diffusion matrix A satisfying (H3),
we perform first inf-sup convolutions, and additionally a convolution by using a
standard mollifier for a solution w of (VE). See also [11] for a form of (4.2) in fully
nonlinear, degenerate elliptic PDE settings.

Theorem 4.1. Assume (H1), (H2’), (H3). Let w1, w2 be any continuous viscosity
solutions of ergodic problem (E). Assume further that∫∫

Tn×Rn

w1(x) dμ(x, v) ≤
∫∫

Tn×Rn

w2(x) dμ(x, v) for all μ ∈ M̃V .

Then w1 ≤ w2 in T
n.

Proof. We basically repeat the proof of Theorem 1.1.
For each k = 1, 2 and each ε > 0, let uε

k be the solution to the Cauchy problem{
ε(uε

k)t +H(x,Duε
k) = aij(u

ε
k)xixj

+ ε4Δuε
k in T

n × (0, 1),

uε
k(x, 0) = wk(x) on T

n.

Without the viscosity ε4Δuε
k, (2.1) becomes

(4.3)

{
ε(uk)t +H(x,Duk) = aij(uk)xixj

in T
n × (0, 1),

uk(x, 0) = wk(x) on T
n.

It is clear that the unique viscosity solution to (4.3) is uk(x, t) = wk(x) for all
(x, t) ∈ T

n × [0, 1) because of the fact that wk is a solution to (VE). Thanks to
(H2’) (see [12, Theorem 4.5] for instance), there exists C > 0 independent of ε such
that

(4.4) ‖Duε
i ‖L∞(Tn×(0,1)) ≤ C and ‖uε

i − wi‖L∞(Tn×(0,1)) ≤ Cε.

As above, we use uε
1, u

ε
2 to deduce the conclusion as ε → 0.

For any x0 ∈ T
n, let σε be the solution to{

−εσε
t − div(DpH(x,Duε

2)σ
ε) = (aijσ

ε)xixj
+ ε4Δσε in T

n × (0, 1),

σε(x, 1) = δx0
on T

n.

Here δx0
is the Dirac delta mass at x0.

By convexity of H, we have

ε(uε
1 − uε

2)t +DpH(x,Duε
2) ·D(uε

1 − uε
2) ≤ aij(u

ε
1 − uε

2)xixj
+ ε4Δ(uε

1 − uε
2).
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Multiply this by σε and integrate on T
n to yield

d

dt

∫
Tn

(uε
1 − uε

2)σ
ε dx ≤ 0.

Hence,

(4.5) (uε
1 − uε

2)(x0, 1) ≤
∫ 1

0

∫
Tn

(uε
1 − uε

2)σ
ε dxdt.

Let νε ∈ P(Tn × R
n) be the measure satisfying∫∫

Tn×Rn

ϕ(x, p) dνε(x, p) =

∫ 1

0

∫
Tn

ϕ(x,Duε
2)σ

ε dxdt for all ϕ ∈ Cc(T
n × R

n).

Then, (4.5) becomes

(4.6) (uε
1 − uε

2)(x0, 1) ≤
∫∫

Tn×Rn

(uε
1 − uε

2) dν
ε(x, p).

Thanks to (4.4), we have that supp(νε) ⊂ T
n × B(0, C). There exists {εj} → 0

such that νεj ⇀ ν ∈ P(Tn × R
n) as j → ∞ weakly in the sense of measures. We

set μ ∈ P(Tn × R
n) to be such that∫∫

Tn×Rn

ϕ(x, p)dν(x, p) =

∫∫
Tn×Rn

ϕ(x,DvL(x, v)) dμ(x, v).

If L is not strictly convex in v, then we approximate H (hence L) by strictly convex
ones. Note that μ is a generalized Mather measure defined in Definition 2. We refer
to [17, Proposition 2.3] or [12, Proposition 6.11] for the details.

Send j → ∞ in (4.6) and use (4.4) to yield

w1(x0)− w2(x0) ≤
∫∫

Tn×Rn

(w1 − w2) dμ(x, v) ≤ 0. �

Let MV be the generalized projected Mather set on T
n, that is,

MV =
⋃

μ∈ ˜MV

supp (proj
Tnμ).

Theorem 4.1 gives the following straightforward result.

Corollary 4.2. Assume (H1), (H2’), (H3). Let w1, w2 be any continuous viscosity
solutions of ergodic problem (VE). Assume further that w1 ≤ w2 on MV . Then
w1 ≤ w2 in T

n.
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