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EQUIVALENCES OF FAMILIES OF STACKY TORIC

CALABI-YAU HYPERSURFACES

CHARLES F. DORAN, DAVID FAVERO, AND TYLER L. KELLY

(Communicated by Lev Borisov)

Abstract. Given the same anti-canonical linear system on two distinct toric
varieties, we provide a derived equivalence between partial crepant resolutions
of the corresponding stacky hypersurfaces. The applications include: a derived
unification of toric mirror constructions, calculations of Picard lattices for
linear systems of quartics in P3, and a birational reduction of Reid’s list to 81
families.

1. Introduction

Mirror symmetry predicts a correspondence between algebraic and symplectic
geometry. This is frequently described by looking at pairs of Calabi-Yau varieties,
X,X∨, whose complex and Kähler deformations are interchanged. This summary
is a bit misleading: given X, there is not even a single agreed upon construction
in mathematics of the “mirror” X∨. In this article, we restrict ourselves to the
toric setting where several extremely explicit constructions have been put forward
[GP90,BH93,Bat94,BB96,Cla17b,Kra09,ACG16].

A priori, these differing toric mirrors look quite different. They are non-isomor-
phic as stacks, and are hypersurfaces in distinct toric Fano varieties. Let us give a
brief example.

Example 1.1. Consider the Calabi-Yau threefolds

X1 := {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0} ⊂ P4,

X2 := {x5
1 + x4

2x3 + x5
3 + x4

4x5 + x4x
4
5 = 0} ⊂ P4.
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While the Batyrev mirrors to both X1 and X2 both are hypersurfaces in
P4/(Z /5Z)3, their Berglund-Hübsch-Krawitz mirrors are

X∨
1 = {x5

1 + x5
2 + x5

3 + x5
4 + x5

5 = 0} ⊂ P4/(Z /5Z)3,

X∨
2 = {x5

1 + x4
2 + x2x

5
4 + x4

4x5 + x4x
4
5 = 0} ⊂ P4(4, 5, 3, 4, 4).

Note the Berglund-Hübsch-Krawitz mirrors are not even in the same toric variety
and are seemingly unrelated. However, mirror symmetry intuits that the complex
deformation from X1 to X2 corresponds to a birational transformation between
X∨

1 and X∨
2 . Furthermore, the homological mirror symmetry conjecture predicts

thatX∨
1 andX∨

2 should be derived equivalent, asX1 and X2 are symplectomorphic.
Together, these predictions can be seen as a way of unifying the constructions above
through category theory and birational geometry. With this ansatz, we will prove
the following.

Theorem 1.2. Consider two Calabi-Yau hypersurfaces X1 and X2 in the same
toric Fano variety and suppose that one uses one of the following mirror construc-
tions to provide mirrors X∨

1 and X∨
2 to X1 and X2, respectively:

(1) Batyrev mirror symmetry [Bat94],
(2) Berglund-Hübsch-Krawitz mirror symmetry [BH93,Kra09],
(3) Artebani-Comparin-Guilbot mirror symmetry [ACG16], and
(4) Clarke mirror symmetry [Cla17b].

Then X∨
1 is birational to X∨

2 and we have an equivalence of derived categories on

the level of stacks Db(cohX∨
1 ) ∼= Db(cohX∨

2 ).

This question of comparing toric mirror constructions via birational and derived
equivalence has much recent history. In the case of Berglund-Hübsch-Krawitz mir-
ror duality, this question was answered on the level of birational equivalence in
[Bor13,Sho14,Kel13,Cla14]. Derived equivalence of the Berglund-Hübsch-Krawitz
mirrors to hypersurfaces in the same Gorenstein toric Fano variety was proven in
[FK16a] from an examination of the secondary fan associated to the anti-canonical
linear system. The analogous question for Batyrev-Borisov mirrors was solved for
both birational equivalence [Li16,Cla17a] and derived equivalence [FK17].

In this paper, we recover and generalize these results for hypersurfaces by show-
ing that intersecting polytopes associated to linear systems on toric varieties leads to
both birational identifications and derived equivalences among Calabi-Yau Deligne-
Mumford stacks. We then specialize our results to applications for mirror construc-
tions.

To set up our technical tool, let us introduce a bit of notation. Let N and M
be dual lattices and NR := N ⊗Z R. Let Σ ⊆ NR be a complete fan and set ∇Σ to
be the convex hull of all minimal generators uρ ∈ N of the rays ρ in Σ(1). Recall
that for a given polytope ∇ ⊂ NR, we define its polar polytope ∇∗ as the set

∇∗ := {m ∈ MR|〈m,n〉 ≥ −1 for all n ∈ ∇}.

As usual, on a toric variety XΣ, we can use the rays ρ ∈ Σ(1) to enumerate the
variables xρ. Then each lattice point m in ∇∗

Σ corresponds to a monomial xm via
the correspondence

m ←→ xm :=
∏

ρ∈Σ(1)

x〈m,uρ〉+1
ρ .
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Moreover, m ∈ ∇∗
Σ if and only if xm lies in the anti-canonical linear system for

the toric variety XΣ. Hence, a set of lattice points Ξ ⊆ ∇∗
Σ ∩ M determines an

anti-canonical linear system FΞ given by the space spanned by the corresponding
monomials. Rephrasing, a linear combination of elements in Ξ give a polynomial∑

cmxm which corresponds to a hypersurface Zw,Σ in XΣ or a stacky hypersurface
Zw,Σ in the Cox stack XΣ (see Definition 2.2).

Definition 1.3. We say that a finite set of lattice points Ξ ⊆ ∇∗
Σ ∩M is good if

Conv(Conv Ξ∗ ∩N) has a unique interior lattice point.

Theorem 1.4 (Theorem 2.7). Let Σ1,Σ2 ⊆ NR be complete fans and let

Ξ ⊆ ∇∗
Σ1

∩ ∇∗
Σ2

∩M

be a good collection of lattice points inside the intersection of the two corresponding
anti-canonical linear systems. Assume that the associated toric varieties XΣ1

, XΣ2

are projective and that the polynomial corresponding to w ∈ FΞ is irreducible.

Then there exist partial resolutions Z̃w,Σ1
, Z̃w,Σ2

of the corresponding hypersurfaces
Zw,Σ1

,Zw,Σ2
in the toric stacks XΣ1

,XΣ2
and a derived equivalence

Db(coh Z̃w,Σ1
) ∼= Db(coh Z̃w,Σ2

).

Furthermore, Zw,Σ1
and Zw,Σ2

are birational.

In Subsection 3.1, we describe when the resolutions are unnecessary and/or
when the family is birational and derived equivalent to a hypersurface in a Fano
Gorenstein toric variety. In Subsection 3.2, we examine Reid’s list of the 95
weighted-projective 3-spaces where the generic anti-canonical hypersurface has at
most Gorenstein singularities. While only fourteen of the weighted-projective spaces
correspond to reflexive polytopes, i.e., are Gorenstein toric Fano varieties, each fam-
ily of K3 surfaces in a weighted-projective 3-space on the list corresponds to the
generic family of K3 surfaces on some Gorenstein toric Fano 3-fold. Some of these
Gorenstein toric Fano 3-folds are repeated, yielding 81 distinct families after re-
solving singularities. In Subsection 3.3, we illustrate how our theorem can be used
to realize many families of K3 surfaces as quartic linear systems in P3. This recov-
ers the normal form for an (E8 ⊕ E7 ⊕ H)-polarized family of K3 surfaces in P3

discovered independently by Clingher and Doran [CD12] and by Vinberg [Vin13].
Our method, for example, provides 429 ways to realize 52 of the families on Reid’s
list as families of hypersurfaces in P3 up to birational equivalence. Finally, in Sub-
section 3.4, we provide a homological unification of mirror constructions, proving
Theorem 1.2.

2. Derived equivalences of hypersurfaces in linear systems

2.1. Background. We work over a field κ of characteristic 0. Let N be a lattice.

Consider a fan Σ ⊆ NR with n rays. We can construct a new fan in RΣ(1) given by

Cox(Σ) := {Cone(eρ| ρ ∈ σ)| σ ∈ Σ}.
Enumerating the rays, this fan is a subfan of the standard fan for An

κ := An:

Σt := {Cone(ei| i ∈ I)| I ⊆ {1, ..., n}}.
Hence, the associated toric variety XCox(Σ) over κ is an open subset of An.

Definition 2.1. We call XCox(Σ) the Cox open set associated to Σ.
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This quasi-affine variety also comes with the action of a subgroup of the standard
torus Gn

m restricted from its scaling action on An. This is described as follows. Let
M be the dual lattice to N and consider the right exact sequence given by the
divisor class map

M
divΣ−→ Zn π−→ Cl(XΣ) → 0(2.1)

m �→
∑

ρ∈Σ(1)

〈uρ,m〉eρ,

where Zn represents the group of torus invariant divisors with basis eρ and Cl(XΣ)
is the divisor class group of XΣ.

By applying Hom(−,Gm), we get a left exact sequence

0 −→ Hom(Cl(XΣ),Gm)
π̂−→ Gn

m

̂divΣ−→ GdimM
m .

We set

SΣ := Hom(Cl(XΣ),Gm) ⊆ Gn
m.

Definition 2.2. The Cox stack associated to Σ is the global quotient stack

XΣ := [XCox(Σ)/SΣ].

We can also associate a polytope to our fan

(2.2) ∇Σ := Conv(uρ|ρ ∈ Σ(1)),

where uρ is the minimal generator for a ray ρ ∈ Σ(1). Recall that any polytope
∇ ⊂ NR has a polar polytope ∇∗ in MR:

∇∗ := {m ∈ MR|〈m,n〉 ≥ −1 for all n ∈ ∇}.

For any finite subset of lattice points

Ξ := {m1, ...,mt} ⊆ ∇∗
Σ ∩M,

we get a linear system FΞ of anti-canonical functions on XΣ defined by

w :=
∑
m∈Ξ

cmxm.

Any such element can be realized both as a hypersurface Zw,Σ in the toric variety
XΣ and as a hypersurface Zw,Σ in the stack XΣ. The set of all lattice points of ∇∗

Σ

gives the complete anti-canonical linear system F∇∗
Σ∩M .

Let us recall the following theorem about derived equivalences amongst such
hypersurfaces which comes from varying GIT quotients for the action of SΣ on An.

Theorem 2.3. Let Σ1,Σ2 be simplicial fans with full-dimensional convex support
such that

∇Σ1
= ∇Σ2

.

Assume that XΣ1
and XΣ2

are quasi-projective varieties with nef anti-canonical
bundles. Then for any function w ∈ FΞ, as above, there is an equivalence of
categories,

Db(cohZw,Σ1
) ∼= Db(cohZw,Σ2

).
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Proof. If Zw,Σ1
,Zw,Σ2

are smooth, this is a toric case of Corollary 4.5 of [Kaw05].
For toric varieties, this can be made entirely explicit using Theorem 2 and Theorem
3 of [HW12]. The result also follows from Theorem 5.2.1 of [BFK12] (version 2 on
arXiv) or Cor 4.8 and Prop 5.5 of [H-L15]. For an explicit statement of the theorem
in this language, specialize Corollary 5.15(3) of [FK16b] to hypersurfaces. �

Proposition 2.4. Let Σ1,Σ2 ⊆ NR be fans such that ∇Σ1
= ∇Σ2

and

w =
∑

m∈∇∗
Σ1

∩M

cmxm

be irreducible. Then, the varieties Zw,Σ1
, Zw,Σ2

are birational.

Proof. By definition, these two hypersurfaces are defined by the same function on
the open dense torus. �

2.2. Blowups and resolutions. In this section, we compare partial crepant res-
olutions of toric hypersurfaces by reducing to the situation of Theorem 2.3 and
give a proof of the main result Theorem 1.4. First, we give the definition of a star
subdivision (called a generalized star subdivision in [CLS11]).

Definition 2.5. Given a fan Σ ⊆ NR and a primitive element v ∈ |Σ| ∩ N , we
define the star subdivision of Σ at v to be the fan Σ∗(v) consisting of the following
cones:

• σ, where v /∈ σ ∈ Σ.
• Cone(τ, v), where v /∈ τ ∈ Σ and {v} ∪ τ ⊆ σ ∈ Σ.

Recall that by doing a star subdivision, one obtains an induced projective toric
morphism XΣ∗(v) → XΣ (Proposition 11.1.6 of [CLS11]) and that a toric resolution
of singularities ofXΣ can always be obtained through a sequence of star subdivisions
(Theorem 11.1.9 of [CLS11]). We now take a certain sequence of star subdivisions
which doesn’t necessarily resolve XΣ but produces a desired structure we use later.

Proposition 2.6. Let Σ ⊆ NR be a complete fan and Δ ⊆ ∇∗
Σ be a full dimensional

lattice polytope. Then, there is a simplicial fan Σstar with ∇Σstar = Conv(Δ∗ ∩N)
obtained from a sequence of star subdivisions of Σ.

Proof. First take the simplicial refinement of Σ (this is obtained by a sequence of
star subdivisions; see Proposition 11.1.7 of [CLS11]). This does not change the rays
of Σ hence does not alter ∇Σ. Now, star subdivides the refinement in all the new
lattice points in Conv(Δ∗ ∩N) and we call the resultant fan Σstar. �

Theorem 2.7. Let Σ1,Σ2 ⊆ NR be complete fans and let Ξ ⊆ ∇∗
Σ1

∩ ∇∗
Σ2

∩M be
a good collection of lattice points inside the intersection of the two corresponding
anti-canonical linear systems. Assume that the associated toric varieties XΣ1

, XΣ2

are projective and that the polynomial corresponding to w ∈ FΞ is irreducible.

Then there exist partial resolutions Z̃w,Σ1
, Z̃w,Σ2

of the corresponding hypersurfaces
Zw,Σ1

,Zw,Σ2
in the toric stacks XΣ1

,XΣ2
and a derived equivalence

Db(coh Z̃w,Σ1
) ∼= Db(coh Z̃w,Σ2

).

Furthermore, Zw,Σ1
and Zw,Σ2

are birational.
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Proof. Notice that ∇Σ1
,∇Σ2

⊆ Conv(Ξ)∗. Furthermore, since they are lattice
polytopes, ∇Σ1

,∇Σ2
⊆ Conv(Conv(Ξ)∗ ∩N).

By Proposition 2.6, we may blowup XΣ1
,XΣ2

to obtain XΣstar
1

,XΣstar
2

with

Conv(Conv(Ξ)∗ ∩N) = ∇Σstar
1

= ∇Σstar
2

.

Since Ξ is good (Definition 1.3), it follows that ∇Σstar
1

,∇Σstar
2

have a unique interior
lattice point. Hence, the anti-canonical divisors on XΣstar

1
, XΣstar

2
are nef. The

statement then follows from Theorem 2.3 and Proposition 2.4. �

Remark 2.8. In general, the stacks Zw,Σ1
,Zw,Σ2

are not isomorphic, e.g., the inertia
stacks may differ (see, e.g., Section 5.3 of [Kel13]).

Remark 2.9. If Z̃w,Σ1
and Z̃w,Σ2

are connected, then they have trivial canonical
bundle by the adjunction formula. Hence, the partial resolutions are crepant.

Corollary 2.10. Let Σ1,Σ2 ⊆ NR be complete simplicial fans and Ξ ⊆ (∇∗
Σ1

∩
∇∗

Σ2
) ∩ M be a good subset. Assume that XΣ1

, XΣ2
are projective. Suppose that

Zw,Σ1
,Zw,Σ2

are smooth connected hypersurfaces in XΣ1
,XΣ2

defined by the same
function,

w =
∑
m∈Ξ

cmxm.

Then

Db(cohZw,Σ1
) ∼= Db(cohZw,Σ2

).

Proof. Using Theorem 2.7, we know that Db(coh Z̃w,Σ1
) ∼= Db(coh Z̃w,Σ2

), where

Z̃w,Σi
is the zero locus in XΣstar

i
as defined in Proposition 2.6. It suffices to prove

that under these additional hypotheses that Db(coh Z̃w,Σi
) ∼= Db(cohZw,Σi

). Our

strategy to prove this result is to compare the spaces Ṽ := tot(−KXΣstar
i

) and

V := tot(−KXΣi
) using geometric invariant theory. This may not be done directly,

but can be done after partially compactifying V . The desired equivalence will then
be obtained by constructing said partial compactificationXΣ̄ of V which can instead

be compared with Ṽ using Corollary 4.7 of [FK16a].
We now argue that there exists a semiprojective toric variety XΣ̄ such that V is

open (torically) in XΣ̄ and the support of Σ̄ is equal to the support of the fan for

Ṽ. This can be done iteratively. Starting with the fan Σ ⊆ NR × R for V , we can
construct a new fan Γ by taking an external star subdivision with respect to the
lattice point (n, 1) ∈ N ×Z, where n is a minimal generator of a ray in Σstar

i (1) but
not in Σi(1). Since Ξ is good, the fans for V have full convex support, thus V is
semiprojective. Hence, Σ is obtained from a regular triangulation in the hyperplane
NR×{1}, i.e., there exist weights ωi for all minimal generators (uρi

, 1) ∈ NR×{1} so
that every simplex of Σ is in NR×{1} in the lower hull, as described on page 740 of
[CLS11]. By choosing a weight ω sufficiently large for the point (n, 1) along with the
weights ωi, one can show that the simplices defined via the star subdivision along
(n, 1) create a regular triangulation of Conv((n, 1), (uρi

, 1)). Since this triangulation
is regular, XΓ is semiprojective. We iterate this process until we arrive at XΣ̄.

The global section w corresponds to a global function W on XΓ and Ṽ. As
Ξ ⊆ ∇∗

Σi
, we have that Ξ× {1} ⊆ |Σ̄|∨. For any fan Ψ with support |Σ̄|, we have a

function W corresponding to w by taking W =
∑

m∈Ξ cm
∏

ρ∈Ψ(1) x
〈(m,1),uρ〉
ρ . For
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the line bundles V and Ṽ , there is one new ray in their fans compared to XΣi
and

XΣstar
i

, which we denote by u corresponding to the ray generated by (0, 1). For
these line bundles, W is simply uw.

We are now squarely in the context of Section 4 of [FK16a]. Namely, we have

two fans: Σ̄ and the fan Σstar
i for Ṽ. Both fans have ray generators in NR × {1},

have the same support, and correspond to semiprojective toric varieties (Ṽ is also
semiprojective since Ξ is good). Furthermore, V is open in XΣ̄. Hence, the result
will now follow from Corollary 4.7 of [FK16a] assuming the conditions are satisfied.
Phrased geometrically, Corollary 4.7 of [FK16a] requires that the critical locus of
W does not intersect the boundary XΣ̄\V . This is shown as follows.

First, the assumption that Zw,Σi
is smooth implies that the critical locus ∂W |V

of W in V is contained in the zero section of the bundle. Hence, it is projective as
Zw,Σi

is projective. Therefore, ∂W |V is closed in XΣ̄. Furthermore,

∂W |XΣ̄
∩ V = ∂W |V .

It follows that XΣ̄ ∩ V and XΣ̄ ∩ ∂W |V are open subsets which separate ∂W |XΣ̄

into two connected components. Hence, (XΣ̄\V)∩ ∂W |XΣ̄
must be empty if ∂w|XΣ̄

is connected.
We now show that ∂W |XΣ̄

is connected. First, since Zw,Σstar
i

is smooth and

connected, the critical locus of W is equal to Zw,Σstar
i

inside the zero section of Ṽ.
In particular, it is connected. Now, the torus equivariant birational map from Ṽ to
XΣ̄ admits a factorization (Theorem A of [W	lo97])

Z1

���
��

��
��

�

����
��
��
��

· · ·

���
��

��
��

��

����
��
��
��

Zn

���
��

��
��

�

����
��
��
��
�

Ṽ X1 Xn−1 XΣ̄

where each map in the diagram is a blowup and all maps are as varieties over A1

via the global function W on each space. Since ∂W is connected on Ṽ it follows
that its preimage is connected in Z1. Hence, the image is connected in X1 but this
is just ∂W on X1. Continuing, we get that ∂W is connected in XΣ̄, as desired. �

3. Applications and examples

3.1. Reflexivity, genericness, and smoothness.

Proposition 3.1 (Bertini, Mullet). Let XΣ be a projective toric variety. The
generic stacky hypersurface in a basepoint free linear system Z ⊆ XΣ is smooth and
connected.

Proof. This is Proposition 6.7 of [Mul09]. �
Proposition 3.2. Let Σ ⊆ NR be a simplicial fan such that ∇Σ is reflexive. Assume
XΣ is projective. Any linear system which contains the vertices of ∇Σ is basepoint
free.

Proof. Consider the special case where Σ is the normal fan of ∇∗
Σ. Note that any

facet Fσ of ∇Σ is the convex hull Conv(uρ | ρ ∈ σ(1)) for some maximal cone σ.
Since ∇Σ is reflexive, there is a lattice point mσ ∈ ∇∗

Σ so that 〈mσ, f〉 = −1 for
all f ∈ Fσ hence 〈mσ, uρ〉 = −1 for all ρ ∈ σ(1). By Proposition 6.1.1 of [CLS11],
since mσ ∈ ∇∗

Σ = P−KXΣ
, the anti-canonical divisor is basepoint free. The general
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case follows: any simplicial fan Σ′ that satisfies our hypotheses corresponds to toric
variety XΣ′ which is a blowup of the toric variety XΣ in our special case, and we
then use the fact that the pullback of a basepoint free linear system is a basepoint
free linear system. �
Corollary 3.3. Let Σ1,Σ2 ⊆ NR be complete fans and let Ξ ⊆ ∇∗

Σ1
∩ ∇∗

Σ2
∩ M

be a finite set. Assume that XΣ1
, XΣ2

are projective and that Conv(Ξ) is reflexive.

Let ˜ΣConv(Ξ) be a simplicial resolution of the normal fan to Conv(Ξ).
Then for a generic choice of coefficients

w :=
∑
m∈Ξ

cmxm

the following categories are equivalent:

Db(cohZ
w, ˜ΣConv(Ξ)

) ∼= Db(coh Z̃w,Σ1
) ∼= Db(coh Z̃w,Σ2

),

where Z̃w,Σi
is a smooth stacky crepant resolution of the hypersurface defined by w

in the stack XΣi
. Moreover, Zw,Σ1

, Zw,Σ2
, Zw,ΣConv(Ξ)

are all birational.

Proof. Since Conv(Ξ) is reflexive, Ξ is good. Hence, we may apply Theorem 2.7

for the comparison between the Z̃w,Σi
. The adjunction formula tells us that

Z̃w,Σ1
, Z̃w,Σ2

are smooth Deligne-Mumford stacks with trivial canonical bundle,
hence the resolutions are crepant.

To compare with Z
w, ˜ΣConv(Ξ)

, notice that it is smooth and connected by Propo-

sitions 3.1 and 3.2. Hence, we may apply Corollary 2.10. �
We now will give a criteria for when the generic stacky anti-canonical hypersur-

face is smooth in a finite quotient of weighted-projective space.

Definition 3.4. Given a subset I ⊆ {0, . . . , n}, we say that a monomial p ∈
κ[x0, . . . , xn] is an I-root if p =

∏
i∈I x

ri
i for some ri ∈ Z>0. We say that p is an

I-pointer if p = xj

∏
i∈I x

ri
i for some ri ∈ Z>0 and j /∈ I.

Theorem 3.5 (Fletcher). Let XΣ = Pn(a0, . . . , an)/G where G is a finite abelian
group acting multiplicatively. The generic stacky member Zw,Σ of an anti-canonical
linear system FΞ in XΣ is smooth if for every non-empty I ⊆ {0, ..., n} there exists
an I-root or an I-pointer in Ξ.

Proof. Theorem 8.1 of [Fl00] states the same for the generic member without a
finite group action. The proof demonstrates that the sum over these monomials is
smooth. Since smoothness is an open property of a linear system, the result follows.
Furthermore, since smoothness is a property of polynomials in An+1 \0, it does not
depend on whether or not we quotient by Gm or Gm ×G. �
Remark 3.6. One can also compare with similar results obtained by Kreuzer and
Skarke. See Theorem 1 of [KS92].

Corollary 3.7. Let XΣ1
, XΣ2

be quotients weighted-projective spaces by a finite
group and let Ξ ⊆ ∇∗

Σ1
∩∇∗

Σ2
∩M be a good set. Assume that for every non-empty

I ⊆ {0, ..., n} there exists an I-root or an I-pointer in Ξ for both XΣ1
, XΣ2

. Then
for a generic choice of coefficients

w :=
∑
m∈Ξ

cmxm
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there is an equivalence of categories, Db(cohZw,Σ1
) ∼= Db(cohZw,Σ2

). Moreover,
Zw,Σ1

, Zw,Σ2
are birational.

Proof. For a generic choice of coefficients, Zw,Σ1
,Zw,Σ2

are smooth by Theorem 3.5.
The result follows from Corollary 2.10. �

3.2. Equivalence in Reid’s list of 95 families. In [KM12], Kobayashi and Mase
find birational correspondences between members of Reid’s list of all 95 families of
K3 surfaces in weighted-projective space whose generic anti-canonical hypersurface
has Gorenstein singularities. Here, we will recover these birational correspondences
by considering the complete linear systems ∇∗

Σ ∩M for each XΣ on Reid’s list (see
equation (2.2)).

Corollary 3.8. Suppose XΣ = P3(a1, a2, a3, a4) is a weighted-projective space on
Reid’s list. The polytope Δ := Conv(∇∗

Σ ∩M) is reflexive and Zw,Σ and Z
w,˜ΣΔ

are

birational if w ∈ F∇∗
Σ∩M is irreducible, where Σ̃Δ is a simplicial resolution of the

normal fan to Δ. Hence, generically, the minimal resolutions of Zw,Σ and Z
w,˜ΣΔ

are isomorphic K3 surfaces. Finally, generically, the stacks Zw,Σ and Z
w,˜ΣΔ

are

smooth and there is an equivalence of categories, Db(cohZw,Σ) ∼= Db(cohZ
w,˜ΣΔ

).

Proof. Proof of reflexivity and smoothness is exhaustive using Macaulay 2 [GS] and
Theorem 3.5.1 The rest follows directly from Corollary 3.3. �

The weighted projective space XΣ = P3(a1, a2, a3, a4) is Gorenstein if and only if
ai divides

∑
ai for all i. This is also equivalent to ∇Σ being reflexive, in which case

Δ = ∇∗
Σ. Only the first 14 weighted-projective spaces on Reid’s list are Goren-

stein. The remaining 81 non-Gorenstein weighted-projective spaces have generic
anti-canonical hypersurfaces which are birational to generic anti-canonical hyper-
surfaces in a (different) Gorenstein Fano toric variety. After crepantly resolving,
the associated stacks are derived equivalent and generically smooth.

There are several weighted-projective 3-spaces that correspond to the same Δ.
Using the indexing of reflexive polytopes in [Sage], we organize these cases into the
following table:

Reid’s families index(Δ)
14, 28, 45, 51 4080

20, 59 3045
26, 34 1114
27, 49 1949
38, 77 3731

Reid’s families index(Δ)
43, 48 745

46, 65, 80 88
50, 82 4147
56, 73 2

68, 83, 92 221

In particular, all families in the same row are pointwise birational and derived
equivalent after resolving.

Remark 3.9. There are, in fact, 104 weighted projective 3-spaces such that the
generic member of the complete anti-canonical linear system Zw,Σ is smooth. In-
deed, in dimensions 2 and 3 this is equivalent to Conv(Ξ) being reflexive where FΞ

is the complete anti-canonical linear system. In higher dimensions this is no longer
true. An excellent summary of the intricate relationship between polytopes and
generic smoothness can be found in Section 2.4 of [ACG16].

1The Macaulay2 code is available at www.ualberta.ca/˜favero/code.html.

http://www.ualberta.ca/~favero/code.html
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3.3. Some normal forms in P3. Let XΣ be a 3-dimensional projective toric
variety. If Ξ ⊆ ∇∗

Σ∩M is a finite set and Conv(Ξ) is reflexive, then, by Corollary 3.3,
the generic member Zw,Σ of FΞ is birational to Zw,ΣConv(Ξ)

where ΣConv(Ξ) is the

normal fan to Conv(Ξ). Therefore, the resolutions are isomorphic. In particular,
the Picard lattices of the resolutions are isomorphic.

Recall that, for every weighted-projective space on Reid’s list, there is a reflex-
ive polytope Δ associated to it so that the polytope corresponds to the complete
anti-canonical linear system. Suppose that Conv(Ξ) is isomorphic to one of the
reflexive polytopes Δ corresponding to a weighted-projective space on Reid’s list,
i.e., Conv(Ξ) = Conv(∇∗

Σ′ ∩M) where X ′
Σ is a weighted-projective space appear-

ing on Reid’s list. By applying Corollary 3.8, we see that Zw,Σ, Zw,ΣConv(Ξ)
are

also birational to the corresponding hypersurface Zw,Σ′ in the weighted projective

space XΣ′ on Reid’s list. Hence, for the resolutions, Z̃w,Σ, ˜Zw,ΣConv(Ξ)
, Z̃w,Σ′ we can

describe the Picard lattices

Pic(Z̃w,Σ) = Pic( ˜Zw,ΣConv(Ξ)
) = Pic(Z̃w,Σ′)

by invoking Belcastro’s computation of Picard ranks for generic K3 surfaces in each
weighted-projective space on Reid’s list [Bel02].

Now, consider the special case where Σ is the normal fan to a standard 3-
dimensional simplex so that XΣ = P3. In this case, we consider linear systems
FΞ spanned by quartic monomials in P3. Up to taking convex hull of Ξ ⊆ ∇∗

Σ∩M ,
there are 429 such choices of linear systems of quartics so that Conv(Ξ) is isomor-
phic to some Δ corresponding to a family on Reid’s list. These 429 choices cover
exactly 52 of the 95 families on Reid’s list and give 44 distinct Picard lattices.2

In conclusion, using Corollary 3.3, we can find 429 linear systems of quartics
in P3 for which we can describe the Picard lattice of a resolution of the generic
member. In total, these linear systems provide 44 distinct Picard lattices.

Remark 3.10. Up to taking convex hull, there are 20260 linear systems of quar-
tics in P3 such that Conv(Ξ) is 3-dimensional and reflexive. Exactly 3615 of the
4319 3-dimensional reflexive polytopes occur in such a way.3 The corresponding
Picard lattice is described in [Roh04] but nowhere are they listed in terms of the
classification of symmetric unimodular lattices in the K3 lattice.

Example 3.11. Consider the set

Ξ = {(−1,−1,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}
and the corresponding linear system

Fc = c1x
2yz + c2xy

2z + c3xyz
2 + c4w

4 + c5xyzw

of quartics in P3.
Then Conv(Ξ) = Δ0 is the reflexive polytope of index 0 in Sage. Hence, a

resolution of a generic member of this family is polarized by (E8 ⊕E8 ⊕ 〈−4〉 ⊕H)
since this appears as Reid family 52 in the weighted-projective space P3(7, 8, 9, 12).

Example 3.12. Consider the set

Ξ = {(−1,−1,−1), (−1,−1, 0), (0, 0, 0), (−1, 1, 0), (2,−1, 0), (−1,−1, 1)}

2The Macaulay2 code and full lists can be found at www.ualberta.ca/˜favero/code.html.
3The Sage code and full lists can be found at www.ualberta.ca/˜favero/code.html.

http://www.ualberta.ca/~favero/code.html
http://www.ualberta.ca/~favero/code.html
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and the corresponding linear system

Fc = c1w
4 + c2w

3z + c3xyzw + c4y
2wz + c5x

3z + c6w
2z2

of quartics in P3.
Then Conv(Ξ) = Δ88 is the reflexive polytope of index 88 in Sage. Hence,

a resolution of a generic member of this family is polarized by (E8 ⊕ E8 ⊕ H)
since this appears as Reid families 46, 65, and 80 in the weighted-projective spaces
P3(5, 6, 22, 33), P3(3, 5, 11, 14), and P3(4, 5, 13, 22), respectively.

Example 3.13. In this example we produce a family of (E8 ⊕ E7 ⊕H)-polarized
K3 surfaces in a blowup of P3. This was achieved independently by Clingher and
Doran [CD12] and Vinberg [Vin13] using non-toric methods.

Consider the set

Ξ = {(−1,−1,−1), (−1,−1, 0), (0, 0, 0), (−1, 1, 0), (2,−1, 0), (−1,−1, 1), (0,−1, 1)}
and the corresponding linear system

Fc = c1w
4 + c2w

3z + c3xyzw + c4y
2wz + c5x

3z + c6w
2z2 + c7xz

2w

of quartics in P3.
Then Conv(Ξ) = Δ221 is the reflexive polytope of index 221 in Sage. Hence,

a resolution of a generic member of this family is polarized by (E8 ⊕ E7 ⊕ H)
since this appears as Reid families 68, 83, and 92 in the weighted-projective spaces
P3(3, 4, 10, 13), P3(4, 5, 18, 27), and P3(3, 5, 11, 19), respectively.

Remark 3.14. Bruzzo and Grassi (Theorem 3.8 of [BG12]) prove that, given the
family F of anti-canonical hypersurfaces in a complete, simplicial toric variety XΣ,
the Picard rank of a very general hypersurface X ∈ F is the Picard rank of XΣ. It
is an interesting problem to find subloci of hypersurfaces of higher Picard rank than
XΣ. While our resolutions are of higher Picard rank, the hypersurfaces themselves
are not, a priori, in the Noether-Lefschetz locus as they are sometimes not smooth.

3.4. Equivalences of exotic mirror constructions.

3.4.1. Artebani-Comparin-Guilbot mirror symmetry. We now prove Theorem 1.2.
The following definition comes form [ACG16].

Definition 3.15. Let Δ1 ⊆ Δ2 be polytopes in MQ. We say that (Δ1,Δ2) is a
good pair if Δ1 and Δ∗

2 are lattice polytopes with a unique interior lattice point.

If (Δ1,Δ2) is a good pair, then we can define a family of Calabi-Yau hypersur-
faces by looking at the special linear system associated to Ξ = Δ1∩M corresponding
to anti-canonical sections in the toric variety XΣΔ2

. Note that ∇ΣΔ2
= Δ∗

2 by the

construction of the anti-canonical polytope Δ2. Notice that if (Δ1,Δ2) is a good
pair, then so is (Δ∗

2,Δ
∗
1). In this situation, we may regard the lattice points of

Δ∗
2 as a linear system Ξ∗ on XΣΔ∗

1
where ∇ΣΔ∗

1
= Δ1. Artebani, Comparin, and

Guilbot use this to propose the following mirror duality:

Zw,ΣΔ2
←→ Zŵ,ΣΔ∗

1
,

where w is a generic member of the linear system Conv(Δ∗
2)∩N and ŵ is a generic

member of the linear system Conv(Δ1) ∩M .
Fixing Δ2 and choosing two good pairs (Δ1,Δ2) and (Δ′

1,Δ2), amounts to being
able to choose different hypersurfaces in XΣΔ2

which are symplectomorphic. Hence,
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mirror symmetry predicts that the B-model of the mirror remains the same. This
phenomenon is realized via derived categories.

Corollary 3.16. Let (Δ′
1,Δ2) and (Δ1,Δ2) be two good pairs. Then for a generic

choice of

ŵ :=
∑

m∈Conv(Δ∗
2)∩M

cmxm,

the two corresponding mirror coarse moduli spaces Zŵ,ΣΔ1
, Zŵ,ΣΔ′

1
are birational

and the partial resolutions Z̃ŵ,ΣΔ1
and Z̃ŵ,ΣΔ′

1
are derived equivalent. Moreover, if

both Zŵ,ΣΔ1
and Zŵ,ΣΔ′

1
are smooth, then they are derived equivalent.

Proof. Set Ξ = Conv(Δ∗
2) ∩M . Since Δ∗

2 has a unique interior lattice point, Ξ is
good. The polytopes Δ1 and Δ′

1 have a unique interior point and ∇ΣΔ1
= Δ1 and

∇ΣΔ′
1
= Δ′

1, hence XΣΔ1
and XΣΔ′

1
have nef anti-canonical bundles. The result

now follows from Theorem 2.7 and Corollary 2.10, depending on the smoothness of
the stacks. �

Remark 3.17. The birational aspect of this result was first proven as Proposition
3.5 in [ACG16].

3.4.2. Clarke mirror symmetry. While Clarke’s construction was originally created
in the Landau-Ginzburg setting, we will specialize to the Calabi-Yau case and
give an interpretation along the lines of [ACG16]. In [Cla17b], Clarke proves his
construction is a generalization of the Batyrev and Berglund-Hübsch-Krawitz con-
structions. As always, M and N are dual lattices and Σ ⊆ NR a fan. We work over
the field κ = C. Recall from equation (2.1) that there is a right exact sequence:

M
divΣ−→ Zn π−→ Cl(XΣ) → 0(3.1)

m �→
∑

ρ∈Σ(1)

〈uρ,m〉eρ.

Now consider a finite set Ξ ⊆ ∇∗
Σ ∩M with the origin in the interior of its convex

hull. This gives another right exact sequence,

N
monΞ−→ ZΞ q−→ coker(monΞ) → 0(3.2)

n �→
∑
m∈Ξ

〈m,n〉em.

The realization of XΣ as a GIT quotient amounts to a choice of an SΣ-lineariza-
tion of OAn or, equivalently, an element of D ∈ Cl(XΣ). Indeed, the fan Σ can be
recovered from (3.1) and D as the normal fan to the polytope (π ⊗Z R)−1(D ⊗Z

R) ∩ Rn
≥0.

Similarly, a specific hypersurface with non-zero monomial coefficients in FΞ is
a choice of coefficients c ∈ (C∗)Ξ which, up to reparametrization by the torus
N ⊗Z (C∗)Ξ, amounts to a choice q(c) ∈ coker(monΞ) ⊗Z C. Here, the Z-module
structure on C is the multiplicative structure.

Clarke’s mirror construction simply exchanges the roles of the two right exact
sequences above and the choices D ⊗Z C∗, q(c). More precisely, given XΣ and an
equivalence class q(c) in a linear system Ξ, we get two stacks,

Zq(c),Σ,ZD⊗ZC∗,ΣΞ,q(c)
,
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where ΣΞ,q(c) is the fan associated to (3.2) and q(c), i.e., the normal fan to the

polytope (q ⊗Z R)−1(im q(c)) ∩ RΞ
≥0.

Definition 3.18 (Clarke [Cla17b]). The stacks Zq(c),Σ and ZD⊗ZC∗,ΣΞ,q(c)
are called

mirror to one another.

Remark 3.19. To complete the symmetry, one can more generally choose the right
exact sequence (3.1) and an element D̄ ∈ Cl(XΣ)⊗Z C. This amounts to a choice
of B-field on XΣ [Cla17b].

Remark 3.20. Since we only choose an equivalence class of the defining polynomial
w, the stacks above are only defined as subsets of XΣ,XΣΞ

up to reparametrization

by GΣ(1)
m ,GΞ

m.

If we choose different anti-canonical linear systems Ξ1,Ξ2 and non-zero coeffi-
cients

ci : Ξi → C∗,

then we get two smooth stacky Calabi-Yau hypersurfaces Zq(c1),Σ and Zq(c2),Σ in
XΣ. While this varies only the complex structure of the Calabi-Yau hypersurface,
the mirrors will lie in different toric varieties, which gives us the same phenomenon
as before. We show this with a few extra assumptions on the toric variety XΣ and
linear systems Ξi:

Corollary 3.21. Let XΣ be a projective variety, let ∇Σ ∩N be a good set, and let
Ξ1,Ξ2 ⊆ ∇∗

Σ be finite sets such that Conv(Ξi) is full-dimensional with the origin in
its interior. Choose coefficients ci : Ξi → C∗ and consider the stacky hypersurfaces
Zq(c1),Σ,Zq(c2),Σ ⊆ XΣ. Then the two corresponding mirror coarse moduli spaces
ZD⊗ZC∗,ΣΞ1,q(c1)

, ZD⊗ZC∗,ΣΞ2,q(c2)
are birational. Moreover, the partial resolutions

˜ZD⊗ZC∗,ΣΞ1,q(c1)
and ˜ZD⊗ZC∗,ΣΞ2,q(c2)

are derived equivalent.

Proof. The mirror stack ZD⊗ZC∗,ΣΞi,q(ci)
is an anti-canonical member of F∇Σ∩N in

XΣΞi,q(ci)
. By looking at the exact sequence (3.2), we see that the rays of ∇ΣΞi,q(ci)

are the elements of Ξi. Therefore, ∇ΣΞi,q(ci)
= Conv(Ξi) ⊆ MR Hence,

∇Σ ⊆ ∇∗
ΣΞ1,q(c1)

∩∇∗
ΣΞ2,q(c2)

⊆ NR.

Notice that XΣΞi,q(ci)
has a nef anti-canonical bundle since

Ξi ⊆ Conv(Conv(∇Σ)
∗ ∩M)

has a unique interior lattice point. Therefore, ZD⊗ZC∗,ΣΞ1,q(c1)
,ZD⊗ZC∗,ΣΞ2,q(c2)

satisfy the hypotheses of Theorem 2.7. �
Proof of Theorem 1.2. The mirror construction of Artebani-Comparin-Guilbot is a
special case of Clarke’s construction where (Conv(Ξ1),∇∗

Σ) = (Δ1,Δ2) is a good
pair, so the theorem follows from Corollary 3.21. Batyrev mirror symmetry is the
special case of Corollary 3.16 where Δ1 = Δ2. Similarly, Berglund-Hübsch-Krawitz
mirror symmetry is a special case by Theorem 2 of [ACG16] and does not require
resolutions as BHK mirrors are smooth. �
Remark 3.22. In the special case of Berglund-Hübsch-Krawitz mirror symmetry,
the birational aspect was first proven by Shoemaker in [Sho14] and the derived
aspect was proven in [FK16a]. The latter assumes that XΣ is Gorenstein. The
result above drops the Gorenstein assumption.
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Remark 3.23. Aspinwall and Plesser [AP15] provide a general mirror construction
for Landau-Ginzburg models associated to two Gorenstein cones which are con-
tained in one another’s duals. In their theory, they allow non-geometric phases
as gauged linear sigma models. Comparing these phases relates to an algebraic
condition which inspired our results; see Section 4 and especially Corollary 4.7 of
[FK16a]. The method of the current paper is a toric description which focuses only
on geometric phases related to Gorenstein cones of index 1.
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