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Abstract. In this note, we study the Liouville equation Δu = −eu on a
graph G satisfying a certain isoperimetric inequality. Following the idea of W.
Ding, we prove that there exists a uniform lower bound for the energy,

∑
G eu,

of any solution u to the equation. In particular, for the 2-dimensional lattice
graph Z

2, the lower bound is given by 4.

1. Introduction

The Liouville equation

(1.1) Δu+ eu = 0

on 2-dimensional manifolds has been extensively studied in the literature. From
the point of view of the theory of partial differential equations, it is critical, i.e., on
the borderline of Sobolev embedding theorems in the 2-dimensional case, which is
closely related to the so-called Moser-Trudinger inequalities; see e.g., [1, 12, 14] for
references.

Let u be a solution to the Liouville equation on the plane with finite energy, i.e.,

(1.2)

⎧⎨
⎩
Δu+ eu = 0,∫

R2

eu < ∞.

An interesting argument initiated by Weiyue Ding, see [2], shows that∫
R2

eu ≥ 8π.

The key ingredient of the proof is the following isoperimetric inequality: for any
bounded domain Ω of finite perimeter in R

2,

(1.3) Length(∂Ω)2 ≥ 4π ·Area(Ω),

where Length(∂Ω) (Area(Ω), resp.) denotes the length of the boundary of Ω (the
area of Ω, resp.). The estimate is sharp since one can construct a family of explicit
solutions,

(1.4) Fx0,λ(x) := ln

[
32λ2

(4 + λ2|x− x0|2)2

]
, λ > 0, x0 ∈ R
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whose energy attains the above lower bound. Based on a delicate argument using
moving plane methods, Chen and Li [2] further proved that all solutions to (1.2)
are exactly given by (1.4).

As is well known, one of the difficulties for the analysis on graphs lies in the
lack of chain rules for discrete Laplace operators. While linear equations have
been studied extensively on graphs, people recently began to consider nonlinear
problems on graphs, such as semilinear equations. For semilinear equations with
the nonlinearity of power type, one refers to, e.g., [6, 7, 9, 10]. A class of semilinear
equations with the exponential nonlinearity, so-called Kazdan-Warner equations,
has been studied by [3–5,8] on graphs. The exponential nonlinearity usually causes
additional difficulties for the analysis in the discrete setting. In this paper, we study
the Liouville type equations on graphs, analogous to (1.1), which are special cases
of Kazdan-Warner equations. Following W. Ding’s idea, we prove a uniform lower
bound of the energy for the solutions to the Liouville equations on graphs satisfying
isoperimetric inequalities analogous to (1.3); see Theorem 2.1. As a corollary, for the
2-dimensional lattice graph which is a discrete analog of R2, we obtain an explicit
lower bound for the energy of solutions to the Liouville equation; see Corollary 2.3.
This could be regarded as a preliminary step to understanding the Liouville type
equations on infinite graphs.

The paper is organized as follows: in the next section, we introduce the basic
setting and state our main results. Section 3 is devoted to the proof of Theorem 2.1.

2. Basic setting and main results

Let (V,E) be a simple, undirected, and locally finite graph, where V denotes
the set of vertices and E denotes the set of edges. Two vertices x and y are called
neighbors, denoted by x ∼ y, if there is an edge connecting them, i.e., {x, y} ∈ E.
We assign weights on vertices and edges as follows:

μ : V → (0,∞), V � x �→ μx,

and

w : E → (0,∞), E � {x, y} �→ wxy = wyx,

and call the quadruple G = (V,E, μ, w) a weighted graph. For discrete measure
spaces (V, μ) and (E,w), we write μ(A) :=

∑
x∈A μx and w(B) :=

∑
e∈B we for any

subsets A ⊂ V,B ⊂ E. For simplicity, for a function u on V we write∫
V

u =
∑
x∈V

u(x)μx,

whenever it makes sense.
The Laplacian on G = (V,E, μ, w) is defined as, for any function u on V and

x ∈ V,

Δu(x) =
1

μx

∑
y∈V :y∼x

wxy(u(y)− u(x)).

For any vertex x, its weighted degree is given by

Deg(x) :=

∑
y:y∼x wxy

μx
.
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The Laplacian is a bounded operator on �2(V, μ), i.e., the Hilbert space of �2 sum-
mable functions on V w.r.t. the measure μ, if and only if

(BLap) Deg(G) := sup
x∈V

Deg(x) < ∞.

In this paper, we always assume (BLap) holds.
For any finite subset Ω in V, we denote by

∂Ω := {{x, y} ∈ E : x ∈ Ω, y ∈ V \ Ω, or vice versa}
the (edge) boundary of Ω. We say that a weighted graph G = (V,E, μ, w) satisfies
the 2-dimensional isoperimetric inequality, denoted by IS2, if

(IS2) CIS := inf
(w(∂Ω))2

μ(Ω)
> 0,

where the infimum is taken over all finite Ω ⊂ V ; see [13].
In this note, we study the discrete Liouville equation

(2.1) Δu+ eu = 0

on a weighted graph G. Following W. Ding, see Lemma 1.1 in [2], we obtain
our main result, a discrete analog of the energy estimate for the solutions to the
Liouville equation under the assumption of the isoperimetric inequality.

Theorem 2.1. Let G be a weighted graph satisfying (BLap) and infx∈V μx > 0.
Suppose that (IS2) holds, then for any solutions u of (2.1),∫

V

eu ≥ CIS

Deg(G)
.

Remark 2.2. One may generalize the result to the following equation:

(2.2) Δu+ F (u) = 0,

for some nonnegative function F on R satisfying F ′ ≥ 0 and F ′′ ≥ 0.

We denote by Z
2 the standard lattice graph with the set of vertices {(x, y) ∈

R
2 : x, y ∈ Z}, the set of edges

{{(x1, y1), (x2, y2)} : |x1 − x2|+ |y1 − y2| = 1},
and weights μ ≡ 4 and w ≡ 1. It is known that it satisfies (IS2) with CIS = 4; see
Theorem 6.30 in [11]. Then by the above theorem we have the following corollary.

Corollary 2.3. For any solution u of (2.1) on the lattice Z
2, we have∫

Z2

eu ≥ 4.

This suggests the following interesting problems for further investigation.

Problem 1. What is the sharp constant in Corollary 2.3, i.e.,

C := inf

∫
Z2

eu,

where the infimum is taken over all solutions to (2.1) on Z
2?

Problem 2. Is there any solution u to (2.1) on Z
2 with finite energy, i.e.,

∫
Z2 e

u <
∞?
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3. Proof of Theorem 2.1

For any σ ∈ R, set

Ωσ = {x ∈ V |u(x) ≥ σ}.
It is no restriction to assume that Ωσ is finite for any σ; otherwise by infx∈V μx > 0,∫

V

eu = +∞.

By (2.1),∫
Ωσ

eu =

∫
Ωσ

−Δu =
∑
x∈Ωσ

∑
y∈V :y∼x

wxy(u(x)− u(y))

=
∑
x∈Ωσ

∑
y∈Ωσ :y∼x

wxy(u(x)− u(y)) +
∑
x∈Ωσ

∑
y �∈Ωσ :y∼x

wxy(u(x)− u(y)).

We denote the first summand by A. Then

A =
∑

x,y∈Ωσ :x∼y

wxy(u(x)− u(y))

=−
∑

x,y∈Ωσ :x∼y

wxy(u(y)− u(x))

=−
∑
y∈Ωσ

∑
x∈Ωσ :x∼y

wxy(u(y)− u(x)) = −A.

This yields that A = 0, and we get

(3.1)

∫
Ωσ

eu =
∑

e={x,y}∈E,u(x)<σ≤u(y)

wxy(u(y)− u(x)).

For any σ ∈ R, let

G(σ) =
∑

e={x,y}∈E,u(x)<σ≤u(y)

wxy/
(
u(y)− u(x)

)
.

For any subset K ⊂ R, we denote by 1K the characteristic function on K; i.e.,
1K(σ) = 1 if σ ∈ K, and 1K(σ) = 0 otherwise. We have

∫ +∞

−∞
eσG(σ)dσ =

∫ +∞

−∞
eσ

∑
e={x,y}∈E,u(y)>u(x)

wxy

(
u(y)− u(x)

)−1
1(u(x),u(y)](σ)dσ

=
∑

e={x,y}∈E,u(y)>u(x)

wxy

(
u(y)− u(x)

)−1
∫ +∞

−∞
eσ1(u(x),u(y)](σ)dσ

=
∑

e={x,y}∈E,u(y)>u(x)

wxy
eu(y) − eu(x)

u(y)− u(x)

≤
∑

e={x,y}∈E,u(y)>u(x)

wxye
u(y)

≤ Deg(G)
∑
y∈V

eu(y)μy,
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where we have used the elementary inequality eb−ea

b−a ≤ eb for any a < b and the

definition of Deg(G) in (BLap). Hence by the above inequality,

(3.2)

∫ +∞

−∞
eσG(σ)

∫
Ωσ

eudσ ≤
∫
V

eu
∫ +∞

−∞
eσG(σ)dσ ≤ Deg(G)

(∫
V

eu
)2

.

On the other hand, by (3.1) and the Cauchy-Schwarz inequality,

G(σ)

∫
Ωσ

eu

=

⎛
⎝ ∑

e={x,y}∈E,u(x)<σ≤u(y)

wxy

u(y)− u(x)

⎞
⎠

⎛
⎝ ∑

e={x,y}∈E,u(x)<σ≤u(y)

wxy(u(y)− u(x))

⎞
⎠

≥

⎛
⎝ ∑

e={x,y}∈E,u(x)<σ≤u(y)

wxy

⎞
⎠

2

= (w(∂Ωσ))
2

≥ CIS · μ(Ωσ),

where the last inequality follows from the isoperimetric inequality. This yields that∫ +∞

−∞
eσG(σ)

∫
Ωσ

eu ≥ CIS

∫ +∞

−∞
μ(Ωσ)e

σ = CIS

∫
V

eu.

We prove the theorem by combining the above inequality with (3.2).
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