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ON THE LOSS OF MAXIMUM PRINCIPLES FOR

HIGHER-ORDER FRACTIONAL LAPLACIANS

NICOLA ABATANGELO, SVEN JAROHS, AND ALBERTO SALDAÑA

(Communicated by Svitlana Mayboroda)

Abstract. We study the existence and positivity of solutions to problems in-
volving higher-order fractional Laplacians (−Δ)s for any s > 1. In particular,
using a suitable variational framework and the nonlocal properties of these op-
erators, we provide an explicit counterexample to general maximum principles
for s ∈ (n, n + 1) with n ∈ N odd, and we mention some particular domains
where positivity preserving properties do hold.

1. Introduction

In this paper we show that the so-called positivity preserving properties fail in
general for the higher-order fractional Laplacian. This is stated in the following
result.

Theorem 1.1. Let N ∈ N, let k ∈ N be odd, let s ∈ (k, k + 1), let D ⊂ RN be an
open set, let A be an open ball compactly contained in RN \D, and let Ω := D ∪A.
There are f ∈ C∞(Ω) and a sign-changing u ∈ Cs(RN ) ∩ C∞(Ω) ∩ L∞(RN ) such
that

(−Δ)su = f > 0 in Ω, u = 0 on RN\Ω;
in particular u � 0 in D and u > 0 in A. If Ω is a bounded set, then the solution
u is unique.

Before we give a precise definition for the operator (−Δ)s (see (1.2) below) and
discuss our strategy to prove Theorem 1.1, we motivate the study of higher-order
powers of the Laplacian.

In the study of elliptic partial differential equations, most of the analysis has
been focused on second-order problems, which effectively describe many natural
phenomena. The available results on existence and qualitative properties in this
setting have achieved a remarkable degree of sophistication, to a large extent due to
very powerful analytic techniques derived from maximum principles, for instance,
Harnack inequalities, Hopf lemmas, and sub- and supersolutions methods.

The theory for elliptic higher-order (i.e., higher than 2) operators, on the other
hand, is comparatively underdeveloped. Some of the main difficulties that appear
in their study is precisely the lack of maximum principles, the fact that the set
of solutions is usually larger and more complex, and a much more subtle relation-
ship between regularity of solutions, boundary conditions, and smoothness of the
domain.
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Nevertheless, higher-order operators appear in many important models com-
ing, for instance, from continuum mechanics, biophysics, and differential geometry.
They appear, for example, in the study of thin elastic plates, stationary surface
diffusion flow, Paneitz–Branson equations, Willmore surfaces, suspension bridges,
phase-transition, and membrane biophysics; see [13,23] and the references therein.
The study of higher-order operators is also motivated by the understanding of basic
questions in the theory of partial differential equations, to identify the key elements
which yield existence, uniqueness, qualitative properties, and regularity of solutions.

The paradigmatic higher-order operator is given by powers of the Laplacian
(−Δ)m, m ∈ N, also known as the polyharmonic operator. The validity and charac-
terization of positivity preserving properties in this case is an active field of research,
and many basic questions are still open. For example, consider m = 2, i.e., the bi-
laplacian operator Δ2u = Δ(Δu), for which maximum principles are known to
be a very delicate issue and do not hold in general. To obtain well-posedness in
boundary value problems, the bilaplacian requires extra boundary conditions (b.c.),
for instance Dirichlet b.c. u = ∂νu = 0 on ∂Ω. The validity of maximum principles
for the bilaplacian with Dirichlet b.c. is particularly delicate, and the geometry of
the domain plays an essential role. It is known that Δ2u ≥ 0 in Ω and u = ∂νu = 0
on ∂Ω implies that u ≥ 0 if Ω is a ball, for example, since the corresponding Green
function can be computed explicitly in this case and it is nonnegative. However,
if Ω ⊂ R2 is an ellipse with semiaxis 1 and 1

5 , then one can give an elementary
counterexample (a polynomial of degree 7) showing that the maximum principle
does not hold; see [27]. We also refer to [17] for counterexamples involving even
powers of the Laplacian and to [29] for a counterexample to the trilaplacian, which
seems to be the only available counterexample for odd powers. See also [13] and
the references therein for a survey on positivity preserving properties for boundary
value problems involving polyharmonic operators.

In this paper, we study the loss of positivity preserving properties for higher-
order fractional powers of the Laplacian (−Δ)s, s > 1. Some known results for this
operator are the following. General regularity results have been proved in [14], a
Pohožaev identity and an integration by parts formula is given in [24], a comparison
between different higher-order fractional operators is done in [20], spectral results
are obtained in [15], and other aspects of nonlinear problems are considered in
[12, 18, 19, 22]. A discussion on the pointwise definition of (−Δ)s can be found in
[1] and explicit integral representations of solutions in balls in [3]. Furthermore,
the operator (−Δ)s with s ≥ 1 appears naturally in geometry, for example, in the
prescribed Q-curvature equation (−Δ)N/2u = KeNu [8]. We believe that the study
of higher-order fractional powers of the Laplacian can be a powerful tool to improve
our understanding of the qualitative differences between solutions of second-order
and higher-order equations, particularly in the transition between the Laplacian
and the bilaplacian, which exhibit very different properties between them.

To continue our discussion on (−Δ)s for s > 1, let us first consider the case
(−Δ)σ with σ ∈ (0, 1), N ∈ N, and u ∈ C∞

c (RN ). This operator is known as the
fractional Laplacian and can be represented via the principal value integral

(−Δ)σu(x) := cN,σP.V.

∫
RN

u(x)− u(y)

|x− y|N+2σ
dy := cN,σ lim

ε→0+

∫
|x−y|>ε

u(x)− u(y)

|x− y|N+2σ
dy

(1.1)
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for x ∈ RN , where cN,σ := 4σπ−N/2σ(1−σ)
Γ(N

2 +σ)

Γ(2−σ) is a normalization constant and

Γ denotes the Gamma function. This operator is used to model nonlocal interactions
[5]. Since (−Δ)s is a nonlocal operator, boundary value problems are solved by
prescribing boundary conditions in the whole complement of the domain (see, e.g.,
[16]). In this case, as mentioned in [6, Remark 4.2], the maximum principle holds
in a weak setting for σ ∈ (0, 1) using the Dirichlet-to-Neumann extension from [7]
and testing the equation with u− := −min{u, 0}. This also follows directly from
the nonlocal bilinear form

Eσ(ϕ, ψ) : =
cN,σ

2

∫
RN

∫
RN

(ϕ(x)− ϕ(y))(ψ(x)− ψ(y))

|x− y|N+2σ
dx dy

=

∫
RN

|ξ|2σFϕ(ξ)Fψ(ξ) dξ,

where F denotes the Fourier transform; see [5]. In particular, if Ω ⊂ RN is an open
set, u is in the fractional Sobolev space Hs(RN ), u ≥ 0 in RN \Ω, and Eσ(u, ϕ) ≥ 0
for all nonnegative ϕ ∈ Hσ(RN ) with ϕ ≡ 0 in RN\Ω, then u ≥ 0 in Ω.

For m ∈ N0, σ ∈ (0, 1), and s = m + σ, the operator (−Δ)s can be defined via
finite differences (see [1, equation (1)]), namely,

(−Δ)su(x) :=
cN,s

2

∫
RN

δm+1u(x, y)

|y|N+2s
dy, x ∈ RN ,(1.2)

where

δm+1u(x, y) :=
m+1∑

k=−m−1

(−1)k
(
2(m+ 1)

m+ 1− k

)
u(x+ ky) for x, y ∈ RN

is a finite difference of order 2(m+1) and cN,s is a positive normalization constant
(for the precise value, see [1, equation (2)]). The Fourier symbol of (−Δ)s as given
in (1.2) is |ξ|2s (see [25, Lemma 25.3] or [1, Theorem 1.9]); moreover, if Ω ⊂ RN

is an open set and u ∈ C∞(Ω) ∩ L∞(RN ), then (−Δ)su(x) = (−Δ)m(−Δ)σu(x)
for every x ∈ Ω (see [1, Corollary 1.3]). In general the fractional Laplacian (−Δ)σ

cannot be interchanged freely with the Laplacian (−Δ), as this would require extra
regularity assumptions on u, particularly across the boundary ∂Ω (see [1]).

To find solutions for (−Δ)s, we use the following variational setting. For Ω ⊂ RN

open we define the fractional Sobolev space with zero boundary conditions

Hs
0(Ω) := {u ∈ Hs(RN ) : u ≡ 0 on RN \ Ω}(1.3)

equipped with the norm ‖u‖Hs
0(Ω) := (

∑
|α|≤m ‖∂αu‖2L2(Ω) + Es(u, u))

1
2 , where

(1.4) Es(u, v) :=

⎧⎪⎪⎨⎪⎪⎩
Eσ(Δ

m
2 u,Δ

m
2 v), if m is even,

N∑
k=1

Eσ(∂kΔ
m−1

2 u, ∂kΔ
m−1

2 v), if m is odd,

for u, v ∈ Hs
0(Ω). For f ∈ L2(Ω) a function u ∈ Hs

0(Ω) is a weak solution of

(−Δ)su = f in Ω, u = 0 on RN \ Ω(1.5)

if

Es(u, ϕ) =
∫
Ω

f(x)ϕ(x) dx for all ϕ ∈ Hs
0(Ω).(1.6)
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The following result shows that maximum principles do not hold in the weak
setting, and it is the main tool to show Theorem 1.1.

Theorem 1.2. Let N ∈ N, let D ⊂ RN be an open set, let s ∈ (k, k + 1) for some
k ∈ N odd, and let A be a nonempty ball compactly contained in RN \D. There is
a nonnegative function f ∈ L2(Ω) such that the problem (1.5) in Ω = D ∪ A has a
sign-changing weak solution u ∈ Hs

0(Ω) ∩ C(RN ) with u � 0 in D and u � 0 in A.

Theorem 1.2 is particularly interesting for s ∈ (1, 32 ), because in this case [4,
Théorème 1] implies that u− ∈ Hs(Ω) if u ∈ Hs(Ω). Since this is the main
ingredient in the proof of maximum principles for s ∈ (0, 1]—which uses u− as a
test function—it was expected that maximum principles would hold for s ∈ (0, 32 ).
Theorem 1.2, however, reveals that it is not the belonging of u− to the space of test
functions as to the reason why maximum principles hold for s ∈ (0, 1], and that this
positivity preserving property immediately fails to hold in general for s ∈ (1, 2).

To show Theorem 1.2 we construct an explicit counterexample, which exploits
the nonlocal nature of the operator and the fact that the domain is disconnected.
For dimensions N ≥ 2 it is possible to use a perturbation argument to extend
Theorem 1.2 to connected domains (see for example [3, Theorem 3.6]). If N = 1,
then connected domains are intervals and the maximum principle holds, as discussed
below.

The proof of Theorem 1.2 also reveals that an essential role is played by the
following fact due to integration by parts: for u ∈ Hs(RN ), φ ∈ C∞

c (RN ), and
u, φ ≥ 0 with supp u ∩ suppφ = ∅, we have that Es(u, φ) < 0 if s ∈ (0, 1) and
Es(u, φ) > 0 if s ∈ (k, k+1) with k ∈ N odd. This is the main reason why the proof
of maximum principles for s ∈ (0, 1) cannot be extended to s ∈ (1, 3

2 ); see Remark
4.6. Another consequence of this fact is the following remarkable property.

Proposition 1.3. Let m ∈ N0, let σ ∈ (0, 1), let s = m + σ, let Ω ⊂ RN be a
smooth bounded domain, and let g ∈ C∞

c (Ω)\{0} be a nonnegative function. Then
(−1)m+1(−Δ)sg > 0 in RN \ Ω.

Note that this is a purely nonlocal phenomenon. Another direct consequence of
Theorem 1.2 is the following.

Corollary 1.4. Let Ω ⊂ RN be an open set such that RN \Ω has nonempty interior,
and let s ∈ (k, k+1) for some k ∈ N odd. There is a function u ∈ Hs(RN )∩C(RN)
satisfying (1.6) with a nonnegative function f ∈ L2(Ω) such that u � 0 in Ω and
u ≥ 0 in RN\Ω.

In particular, maximum principles for (−Δ)s with s > 1 cannot hold in general
for a notion of a supersolution.

To close this introduction let us mention some particular domains where max-
imum principles do hold for (−Δ)s with s > 1. If Ω = RN , then solutions are
given by a convolution with the fundamental solution [25, equation (25.32) and
Theorem 26.3] (which is positive in some cases); if Ω is a ball, then the associated
Green function is positive [2, 9], which immediately implies a positivity preserving
property. Similarly, by [3, Theorem 1.10] the Green function of two disjoint unitary
balls is positive if s ∈ (k, k + 1) with k ∈ N even (this is also the reason why our
counterexample cannot be applied for s in this range). Finally, the Green function
for the halfspace and for the complement of the ball are also positive, and we give
the details in a future work.
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Although our approach to prove Theorem 1.2 cannot be used for s ∈ (k, k + 1)
with k ∈ N, even we expect that general maximum principles do not hold for any
s > 1. However, finding a counterexample for s in this range remains an open
problem.

2. Notation

Let N ∈ N and U,D ⊂ RN be nonempty measurable sets. For h ∈ C(RN ), we
say that h � 0 (resp., h � 0) in U if h ≤ 0 in U and infU h < 0 (resp., h ≥ 0
in U and supU h > 0). We denote by 1U : RN → R the characteristic function
and by |U | the Lebesgue measure. The notation D � U means that D is compact
and contained in the interior of U . The distance between D and U is given by
dist(D,U) := inf{|x− y| : x ∈ D, y ∈ U}. For x ∈ RN and r > 0 let Br(x) denote
the open ball centered at x with radius r; moreover, we fix B := B1(0).

If u is in a suitable function space, we use Fu to denote the Fourier transform of
u. For any s ∈ R, we defineHs(RN ) :=

{
u ∈ L2(RN ) : (1 + |ξ|2) s

2 Fu ∈ L2(RN )
}
;

moreover, if U is open, we define Hs
0(U) as in (1.3) and, if U is smooth, we put

Hs(U) := {u1U : u ∈ Hs(RN )}.
For m ∈ N0, σ ∈ (0, 1), s = m+ σ, and U open, we write Cs(U) (resp., Cs(U))

to denote the space of m-times continuously differentiable functions in U (resp.,
U) whose derivatives of order m are σ-Hölder continuous in U . Moreover, for
s ∈ [0,∞], Cs

c (U) := {u ∈ Cs(RN ) : supp u � U} and Cs
0(U) := {u ∈ Cs(RN ) :

u ≡ 0 on RN \ U}, where supp u := {x ∈ U : u(x) = 0} is the support of u.
Recall (1.4). If m ∈ N is odd we also use the following vector notation:

Eσ(∇Δ
m−1

2 u,∇Δ
m−1

2 u) :=

N∑
k=1

Eσ(∂kΔ
m−1

2 u, ∂kΔ
m−1

2 u) = Es(u, u).

Let u : U → R be a function. We use u+ := max{u, 0} and u− := −min{u, 0}
to denote the positive and negative part of u, respectively. Finally, Γ denotes the
standard Gamma function, and if f : U × D → R we write Δxf(x, y) to denote
derivatives with respect to x, whenever they exist in some appropriate sense.

3. Variational framework

Let Ω ⊂ RN be an open set, and fix m ∈ N0 := {0, 1, 2, . . .}, σ ∈ (0, 1), and
s = m + σ. Recall the space Hs

0(Ω) as defined in (1.3) equipped with the bilinear
form Es(·, ·) defined in (1.4). Since the particular variational framework presented
in the introduction does not seem to have been used before in the literature, we
begin by showing the equivalence between the definition of a weak solution (see
(1.6)) and the definition of a solution via the Fourier transform F .

Proposition 3.1. Let f ∈ L2(Ω). The function u ∈ Hs(RN ) is a weak solution of
(1.5) if and only if ∫

RN

|ξ|2sFu(ξ)Fϕ(ξ) dξ =

∫
RN

f(x)ϕ(x) dx

for all ϕ ∈ Hs
0(Ω). Moreover, the operator (−Δ)s : H2s(RN ) → L2(Ω) given by

(−Δ)su = F−1(| · |2sFu) is well defined and

Es(u, φ) =
∫
RN

(−Δ)su(x)ϕ(x) dx for all ϕ ∈ Hs(RN ).
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Proof. Let ϕ ∈ Hs
0(Ω), and let u ∈ Hs(RN ). If m is even, then∫

RN

|ξ|2sFu(ξ)Fϕ(ξ) dξ =

∫
RN

|ξ|sFu(ξ) · |ξ|sFϕ(ξ) dξ

=

∫
RN

(−Δ)
σ
2 Δ

m
2 u(x) · (−Δ)

σ
2 Δ

m
2 ϕ(x) dx

=
cN,σ

2

∫
RN

∫
RN

(Δ
m
2 u(x)−Δ

m
2 u(y)) · (Δm

2 ϕ(x)−Δ
m
2 ϕ(y))

|x− y|N+2σ
dxdy,

and if m is odd, then

2

cN,σ

∫
RN

|ξ|2sFu(ξ)Fϕ(ξ) dξ =
2

cN,σ

∫
RN

|ξ|s−1(−i)ξFu(ξ) · iξ|ξ|s−1Fϕ(ξ) dξ

=
2

cN,σ

∫
RN

|ξ|s−1(−i)ξFu(ξ) · (−iξ|ξ|s−1Fϕ(ξ)) dξ

=
2

cN,σ

∫
RN

(−Δ)σ/2∇Δ
m−1

2 u(x) · (−Δ)σ/2∇Δ
m−1

2 ϕ(x) dx

=

∫
RN

∫
RN

(∇Δ
m−1

2 u(x)−∇Δ
m−1

2 u(y)) · (∇Δ
m−1

2 ϕ(x)−∇Δ
m−1

2 ϕ(y))

|x− y|N+2σ
dxdy.

This proves the first part. If, in addition, u ∈ H2s(RN ), then∫
RN

|(−Δ)su(x)|2 dx =

∫
RN

|ξ|4s |Fu(ξ)|2 dξ = E2s(u, u) < ∞,

by standard properties of the Fourier transform. Now the last part follows from
the above calculations. �

Remark 3.2. If u ∈ H2s(RN ), then it follows from the proof of Proposition 3.1 that

(−Δ)su = (−Δ)m(−Δ)σu = (−Δ)σ(−Δ)mu

=

{
(−Δ)

m
2 (−Δ)σ(−Δ)

m
2 u for m even,

div(−Δ)
m−1

2 (−Δ)σ(−Δ)
m−1

2 ∇u for m odd,

where (−Δ)σ is defined as in (1.1); see also [1, Corollary 1].

3.1. Poincaré inequality and principal eigenvalues. For completeness, we
now show that Es satisfies a Poincaré-type inequality in bounded domains. This
yields that Es is a scalar product and that (Hs

0(Ω), Es) is a Hilbert space. Let
λ1,s = λ1,s(Ω) and λ1,1 = λ1,1(Ω) denote the first eigenvalue of ((−Δ)s,Hs

0(Ω))
and of (−Δ, H1

0 (Ω)), respectively.

Proposition 3.3 (Poincaré inequality). Let Ω ⊂ RN be an open and bounded set
with Lipschitz boundary. For all u ∈ Hs

0(Ω) we have that

Es(u, u) ≥ λ1,s‖u‖2L2(Ω)

and

Es(u, u) ≥
{
λ1,σ‖Δ

m
2 u‖2L2(Ω) if m is even,

λ1,σ‖∇Δ
m−1

2 u‖2L2(Ω) if m is odd,
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where

λ1,s = λ1,s(Ω) := min
u∈Hs

0(Ω)\{0}

Es(u, u)
‖u‖2L2(Ω)

> 0,(3.1)

λ1,s ≥ λ
m
2
1,1λ1,σ if m is even, and λ1,s ≥ λ

m+1
2

1,1 λ1,σ if m is odd. In particular,

lim
r→0

inf
|Ω|=r

λ1,s(Ω) = ∞. Moreover, (Hs
0(Ω), Es(·, ·)) is a Hilbert space.

Proof. Let u ∈ Hs
0(Ω), and let m even. By standard estimates we have

Eσ((−Δ)
m
2 u, (−Δ)

m
2 u) ≥ λ1,σ‖(−Δ)

m
2 u‖2L2(Ω) ≥ λ

m
2
1,1λ1,σ‖u‖2L2(Ω).

Clearly this also implies that E1+σ is a scalar product and (3.1) follows. The case
m odd is analogous.

We now prove that Hs
0(Ω) is complete with respect to Es. Let (un)n ⊂ Hs

0(Ω)
be a Cauchy sequence with respect to Es. Hence by the above inequality it follows
that un → u ∈ L2(Ω) for n → ∞, where we use L2(Ω) = {u ∈ L2(RN ) : u =
0 on RN \ Ω}. Thus there is a subsequence (unk

)k such that unk
→ u a.e. in Ω as

k → ∞. By Fatou’s Lemma we have

Es(u, u) ≤ lim inf
k→∞

Es(unk
, unk

) ≤ sup
k∈N

Es(unk
, unk

) < ∞

so that u ∈ Hs
0(Ω). Again by Fatou’s Lemma we have for any k ∈ N

Es(u− unk
, u− unk

) ≤ lim inf
j→∞

Es(unj
− unk

, unj
− unk

)

≤ sup
j≥k

Es(unj
− unk

, unj
− unk

) < ∞,

which gives unk
→ u in Hs

0(Ω) for k → ∞ since (unk
)k is a Cauchy sequence with

respect to Es. This shows the completeness. �

Remark 3.4. The assumption on the Lipschitz regularity of the boundary in Propo-
sition 3.3 can be removed if one argues instead with the Sobolev embedding of
Hm

0 (Ω) into L2(Ω), but in this case the estimates for λ1,s are not clear, since they
rely on integration by parts.

Remark 3.5. For Ω smooth and m = 1 we have the strict inequality λ1,s = λ1,1+σ >
λ1,1λ1,σ. Indeed, let Asu :=

∑
i∈N

ai(u)λ
s
i,1ei denote the spectral fractional Lapla-

cian, where ei and λi,1 > 0 are the eigenfunctions and eigenvalues of −Δ in H1
0 (Ω)

and ai(u) :=
∫
Ω
uei dx is the projection of u in the direction ei; see [20, 26]. We

also introduce the following associated quadratic forms as in [20]:

QD
s [u] :=

∫
RN

|ξ|2s|Fu(ξ)|2 dξ, u ∈ Dom(QD
s ),

QN
s [u] :=

∑
j∈N

λs
j,1ai(u)

2, u ∈ Dom(QN
s ),

where Dom(QD
s ) := {u ∈ S ′(RN ) : QD

s [u] < ∞, supp(u) ⊂ Ω}, Dom(QN
s ) := {u ∈

S ′(RN ) : QN
s [u] < ∞}, and S ′ denotes the space of tempered distributions. Then,

by [20, Theorem 1 and Lemma 2] we have that QD
s [u] > QN

s [u] and Dom(QD
s ) ⊂

Dom(QN
s ) for s ∈ (1, 2). Thus

λ1,s = inf
u∈Dom(QD

s )
QD

s [u] ≥ inf
u∈Dom(QN

s )
QN

s [u] = λs
1,1,
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since the first eigenvalue of As is given by λs
1,1, as is easily seen from the definition

of As. Furthermore, λ1,σ < (λ1,1)
σ for σ ∈ (0, 1) by [26, Theorem 1]. Thus, if

s = 1 + σ we have that λ1,s ≥ (λ1,1)
s = λ1,1(λ1,1)

σ > λ1,1λ1,σ, as claimed.

An immediate consequence of Proposition 3.3 and Remark 3.4 is the following.

Corollary 3.6. Let Ω ⊂ RN be an open bounded set. Then for any f ∈ L2(Ω)
there is a unique weak solution u ∈ Hs

0(Ω) of (−Δ)su = f in Ω.

Proof. The statement follows from the Riesz Theorem, since Es is a scalar product
on Hs

0(Ω) by Proposition 3.3 and Remark 3.4. �

4. Counterexample to general maximum principles

We begin with some auxiliary results.

Lemma 4.1. Let Ω ⊂ RN be open. Then Cs+ε
c (Ω) ⊂ Hs

0(Ω) for every ε > 0.

Proof. Let m be even, and without loss of generality assume that ε ∈ (0, 1 − σ).
Let f ∈ Cm,σ+ε

c (Ω) and D := supp(f). There is C > 0 such that

|(−Δ)
m
2 f(x)− (−Δ)

m
2 f(y)|2 ≤ C|x− y|2σ+2ε

and |f(x)|2 ≤ C for all x, y ∈ RN . Let R > 0 so that D � U := BR(0) and
dist(D,RN \ U) ≥ 1. Then

Eσ((−Δ)
m
2 f, (−Δ)

m
2 f) ≤ C

∫
U

∫
U

|x− y|2ε−N dxdy

+ 2C

∫
D

∫
RN\U

|x− y|−N−2σ dxdy < ∞.

The case m is odd follows similarly. �

Lemma 4.2. Let Ω ⊂ RN be open, and let u ∈ C2m+2
c (Ω). Then

Es(u, v) =
∫
Ω

(−Δ)su(x)v(x) dx for all v ∈ Hs
0(Ω).

Proof. This is a consequence of Proposition 3.1 and Lemma 4.1. A direct proof can
also be done using integration by parts if Ω has a Lipschitz boundary. �

Corollary 4.3. For every f ∈ C2m+2
c (RN ) there exists a positive constant C =

C(N,m, σ, f) > 0 such that Es(f, ϕ) ≤ C
∫
RN ϕ(y) dy for all nonnegative ϕ ∈

Hs(RN ) and

‖(−Δ)sf‖L∞(RN ) ≤ C.

Proof. Note that by Lemma 4.2 we have Es(f, ϕ) =
∫
RN (−Δ)sf(x)ϕ(x) dx. More-

over, since f ∈ C2m+2
c (RN ) we have (−Δ)mf ∈ C2

c (R
N ), and thus there is C > 0

such that (see, e.g., [28]) ‖(−Δ)sf‖L∞(RN ) ≤ C. Hence Es(f, ϕ) ≤ C
∫
RN ϕ(y) dy as

claimed. �

Lemma 4.4. Let U,D ⊂ RN be open sets with Lipschitz boundary and let dist(U,D)
> 0, let φ ∈ Hs

0(U), and let g ∈ Hs
0(D). Then

Es(g, ϕ) =
CN,s

2

∫
U

∫
D

ϕ(x)g(y)

|x− y|N+2s
dxdy, where CN,s =

22s Γ(N/2 + s)

πN/2 Γ(−s)
.

(4.1)
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Proof. Let g, φ be as stated. If m is even, we have using Green’s formula

Es(g, ϕ) = −cN,σ

2

∫
U

∫
D

(−Δ)
m
2 φ(x)(−Δ)

m
2 g(y)

|x− y|N+2σ
dydx

= −cN,σ

2

∫
U

φ(x)

∫
D

(−Δ)
m
2 g(y)(−Δ)

m
2
x |x− y|−N−2σ dydx

= −cN,σ

2

∫
U

φ(x)

∫
D

g(y)(−Δ)
m
2
y (−Δ)

m
2
x |x− y|−N−2σ dydx

= −cN,σ

2

∫
U

φ(x)

∫
D

g(y)(−Δ)my |x− y|−N−2σ dydx,

where we used (−Δ)
m
2
y |x− y|−N−2σ = (−Δ)

m
2
x |x− y|−N−2σ .

If m is odd we have by integration by parts

Es(g, ϕ) = −cN,σ

2

∫
U

∫
D

∇(−Δ)
m−1

2 φ(x)∇(−Δ)
m−1

2 g(y)

|x− y|N+2σ
dydx

=
cN,σ

2

∫
U

(−Δ)
m−1

2 φ(x)

∫
D

∇(−Δ)
m−1

2 g(y)∇x|x− y|−N−2σ dydx

= −cN,σ

2

∫
U

(−Δ)
m−1

2 φ(x)

∫
D

∇(−Δ)
m−1

2 g(y)∇y|x− y|−N−2σ dydx

= −cN,σ

2

∫
U

(−Δ)
m−1

2 φ(x)

∫
D

(−Δ)
m−1

2 g(y)(−Δy)|x− y|−N−2σ dydx

= −cN,σ

2

∫
U

φ(x)

∫
D

g(y)(−Δy)
m|x− y|−N−2σ dydx,

where the last step follows as in the case m is even. Hence to finish the proof, note
that for x ∈ U , y ∈ D and k > 0 we have (−Δ)y|y − x|−k dy = k(N − k − 2)|y −
x|−k−2, which gives

(−Δ)my |y − x|−N−2σ = −(N + 2σ)(2σ + 2)(−Δ)m−1
y |y − x|−N−2σ−2

= (−1)m
m−1∏
i=0

(N + 2σ + 2i)(2σ + 2(i+ 1))|y − x|−N−2σ−2m.

We now calculate the constant in (4.1). The above computations give

(4.2) CN,s = (−1)m+1cN,σ

m−1∏
i=0

(N + 2σ + 2i)(2σ + 2(i+ 1))

= (−1)m
22σ Γ(N/2 + σ)

πN/2 Γ(−σ)

m−1∏
i=0

(N + 2σ + 2i)(2σ + 2(i+ 1)).
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Recall that cN,σ is the constant appearing in (1.1). We are now going to extensively
use the basic property of the Gamma function tΓ(t) = Γ(t+ 1). We have

CN,s = (−1)m
22σ Γ(N/2 + σ)

πN/2 Γ(−σ)

m−1∏
i=0

(N + 2σ + 2i)(2σ + 2i+ 2)

= (−1)m
22s Γ(N/2 + σ)

πN/2 Γ(−σ)

m−1∏
i=0

(N/2 + σ + i)(σ + i+ 1)

=
22s Γ(N/2 + s)

πN/2 Γ(−σ)

m−1∏
i=0

(−σ − i− 1) =
22s Γ(N/2 + s)

πN/2 Γ(−s)
,

and the proof is complete. �

Using the calculations in [10, Table 3, p. 549] (see also [24, Lemma 2.2] or
[9, Corollary 9]) we have the following.

Corollary 4.5. Let r > 0, let x0 ∈ RN , let s = m + σ with m ∈ N0, and let
σ ∈ (0, 1]. Then the unique weak solution ψr,x0

∈ Hs
0(Br(x0)) of (−Δ)sψr,x0

= 1
in Br(x0) and ψr,x0

= 0 on RN \Br(x0) is given for x ∈ Br(x0) by

ψr,x0
(x) =

{
γN,s(r

2 − |x− x0|2)s, if |x− x0| < r,

0, if |x− x0| ≥ r,

where γN,s =
Γ(N

2 )4−s

Γ(s+1)Γ(N
2 +s)

.

We are now ready to construct the counterexample.

Proof of Theorem 1.2. Let m ∈ N be odd, let σ ∈ (0, 1), let s := m + σ, and let
D ⊂ RN be an open set such that RN \ D has nonempty interior, A be an open
ball compactly contained in the interior of RN \ D. Let g ∈ C∞

c (D)\{0} be a
nonnegative function, and let ψ ∈ Hs

0(A) be the weak solution given by Corollary
4.5; in particular, ψ ≥ 0 in RN and Es(ψ, φ) =

∫
A
φ dx for all φ ∈ Hs

0(A).
Let Ω = D ∪ A, C = C(N,m, σ) > 0 be the constant given by Lemma 4.4, and

let f : Ω → R be given by

f(x) :=

⎧⎪⎪⎨⎪⎪⎩
a− C

∫
D

g(y)|x− y|−N−2s dy for x ∈ A,

aC

∫
A

ψ(y)|x− y|−N−2s dy − (−Δ)sg(x) for x ∈ D,

(4.3)

where a > 0 is chosen large enough such that f > 0 in Ω, which is possible by
Corollary 4.3 and because dist(D,A) > 0. Observe that f ∈ L2(Ω) since

|f(x)| ≤ a1A(x) +
(
aC‖ψ‖L∞(A)

∫
A

|x− y|−N−2s dy + C̃
‖(−Δ)mg‖C2(D)

1 + |x|N+2σ

)
1D(x)

for x ∈ Ω and for some C̃ = C̃(N, σ, g) by [11, Lemma 2.1] and Remark 3.2. Let
u ∈ Hs

0(Ω) be given by

u(x) := aψ(x)− g(x) for x ∈ RN .(4.4)

We now show that u is a sign-changing weak solution of

(−Δ)su = f > 0 in Ω, u = 0 on RN \ Ω.(4.5)



HIGHER-ORDER FRACTIONAL LAPLACIANS 4833

Let ϕ ∈ Hs
0(Ω). Then ϕ = ϕD +ϕA for some ϕD ∈ Hs

0(D) and ϕA ∈ Hs
0(A). Since

m is odd we have

Es(u, φD) = a Es(ψ, φD)− Es(g, φD)

= aC

∫
D

∫
A

φD(x)ψ(y)

|x− y|N+2s
dy dx−

∫
D

(−Δ)sg φD dx,

by Lemma 4.4 and Remark 3.2. Thus Es(u, φD) =
∫
D
f(x)φD(x) dx. Analogously,

Es(u, φA) = a Es(ψ, φA)− Es(g, φA) = a

∫
A

φA dx− C

∫
A

∫
D

φA(x)g(y)

|x− y|N+2s
dy dx,

which yields that Es(u, φA) =
∫
A
f(x)φA(x) dx. Therefore Es(u, φ) = Es(f, φ) for

all ϕ ∈ Hs
0(Ω) and u is a sign-changing weak solution of (4.5) as claimed. �

Proof of Theorem 1.1. Let N ∈ N, let k ∈ N be odd, let s ∈ (k, k+1), let D ⊂ RN

be an open set, let A be a nonempty ball compactly contained in RN \D, and let
Ω := D ∪ A. Let f ∈ C∞(Ω) ∩ L∞(Ω) be given by (4.3), and let u ∈ Cs(RN ) ∩
C∞(Ω) ∩ L∞(RN ) be given by (4.4). Then,∫

Ω

f(x)ϕ(x) dx = Es(u, ϕ) =
∫
Ω

u(x)(−Δ)sϕ(x) dx

=

∫
Ω

(−Δ)su(x)ϕ(x) dx for ϕ ∈ C∞
c (Ω),

where the first equality follows from Theorem 1.2, the second equality from Lemma
4.2, and the third equality can be argued by the Fourier transform or by [1, Lemma
1.5], which uses only direct calculations. Then, by the fundamental lemma of
calculus of variations, (−Δ)su(x) = f(x) for all x ∈ Ω. Finally, if Ω is bounded,
the uniqueness of u follows from Corollary 3.6. �

Proof of Proposition 1.3. Let ϕ ∈ Hs
0(R

N \Ω)\{0} be nonnegative. Then, by Lem-
mas 4.2 and 4.4,

(−1)m+1

∫
RN\Ω

(−Δ)sg(x)ϕ(x) dx = (−1)m+1Es(g, ϕ)

= C

∫
Ω

∫
RN\Ω

ϕ(x)g(y)

|x− y|N+2s
dx dy > 0.

Since ϕ is arbitrarily chosen, we obtain that (−1)m+1(−Δ)sg > 0 in RN \ Ω. �

Remark 4.6. If u ∈ Hs(RN ) and s ∈ (0, 3
2 ), then u± ∈ Hs(RN ), by [4, Théorème

1]. Hence Es(|u|, |u|) = Es(u, u) + 4Es(u+, u−), where |Es(u+, u−)| < ∞. In fact,
[21, Theorem 1] implies that Es(u+, u−) is nonnegative. In particular, if u ≡ |u| in
RN , then Es(|u|, |u|) > Es(u, u) > 0, which is the main reason why the proof of the
maximum principle for s ∈ (0, 1) cannot be applied to s ∈ (1, 32 ).
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