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THE MEAN CURVATURE FLOW BY PARALLEL
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(Communicated by Lei Ni)

Abstract. It is shown that a hypersurface of a space form is the initial data
for a solution to the mean curvature flow by parallel hypersurfaces if and only
if it is isoparametric. By solving an ordinary differential equation, explicit
solutions are given for all isoparametric hypersurfaces of space forms. In par-
ticular, for such hypersurfaces of the sphere, the exact collapsing time into a
focal submanifold is given in terms of its dimension, the principal curvatures,

and their multiplicities.

1. Introduction

The Mean Curvature Flow (MCF) is a gradient-type flow for the volume func-
tional. Under the MCF, a closed hypersurface in R

n+1 locally evolves in the di-
rection where the volume element decreases the fastest and it eventually becomes
extinct. Along the flow singularities may occur, and one is interested in studying
such singularities. There is extensive literature on the subject starting with the
early work in material science dating from the 1920s. We refer the reader to the
excellent survey by Colding, Minicozzi, and Pedersen [7] and the references within.

In recent years, self-similar solutions to the MCF have been studied. These are
solutions given by the composition of isometries and homotheties. In the Euclidean
space, the simplest examples of self-similar solutions are the spheres and the cylin-
ders, which are self-contracting hypersurfaces. Other examples of self-contractile
hypersurfaces in the Euclidean space can be found in [2,10], and translation hyper-
surfaces are found in [6,8,13,14]. There are very few results on the mean curvature
flow in non-Euclidean spaces. In [9], Hungerbühler and Smoczyk considered a par-
ticular case of self-similar solutions evolving by the MCF by a group of isometries
of the ambient space, which are known as solitons, and presented several examples
of these hypersurfaces on Riemannian manifolds. In [11], Liu and Terng studied
the MCF on isoparametric submanifolds with higher codimension of the Euclidean
space and of the sphere, where they proved that the flow preserves the condition
of being isoparametric and develops singularities in finite time, converging to a
smooth submanifold of lower dimension.
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In this paper, we prove that any immersed hypersurface Mn of a space form
evolves through the MCF by parallel hypersurfaces if and only if M is an isopara-
metric hypersurface. The MCF of such a hypersurface is obtained by solving an
ordinary differential equation. We solve this equation for all isoparametric hyper-
surfaces of space forms. In particular, we provide explicit solutions to the MCF of
isoparametric hypersurfaces of the sphere and of the hyperbolic space, including the
exact collapsing time and the converging submanifold in terms of its dimension, the
principal curvatures, and their multiplicities. Our results are stated in the following
section and the proofs are given in Section 3.

2. Mean curvature flow of isoparametric hypersurfaces.

Main results

In what follows, Mn+1(κ) will be a space form of constant sectional curvature
κ ∈ {−1, 0, 1}, i.e., Rn+1 if κ = 0, Sn+1 ⊂ R

n+2 if κ = 1, and H
n+1 ⊂ L

n+2 if
κ = −1, where L

n+2 is the Lorentzian space. We consider F : Mn → M
n+1(κ)

a hypersurface immersed in the space form M
n+1(κ), with the induced metric

g(v, w) = 〈dF (v), dF (w)〉, for all vector fields v, w tangent to M . If F (M) is
oriented and N is a unit normal vector field, the second fundamental form of F (M)
is given by h (v, w) = −〈dN(v), dF (w)〉. Let e1, . . . , en be orthonormal vector
fields which are principal directions, and let κ1, . . . , κn, be the principal curvatures
of F (M), i.e., g(eı, ej) = δıj and h(eı, ej) = κıδıj, for 1 ≤ ı, j ≤ n. We will denote
the mean curvature by H =

∑n
ı=1 κı. When the principal curvatures κı of F (M)

do not depend on x, for all ı = 1, . . . , n, we say that F (M) is an isoparametric
hypersurface. From now on, we consider connected hypersurfaces.

Let F : Mn → M
n+1(κ) be an oriented hypersurface with a unit normal vector

field N . A one-parameter family of hypersurfaces F̂ : Mn × I → M
n+1(κ), I ⊂ R,

is a solution to the mean curvature flow (MCF) with initial condition F if

(2.1)

⎧⎨⎩
∂

∂t
F̂ (x, t) = Ĥ(x, t)N̂(x, t),

F̂ (x, 0) = F (x),

where Ĥt(.) = Ĥ(., t) =
∑n

i=1 k̂
t
i is the mean curvature and N̂ t(.) = N̂(., t) is a

unit normal vector field of F̂ t(M). When F is a minimal hypersurface, i.e., H = 0,

then the family F̂ (t, x) = F (x) gives a trivial solution to the MCF.
In this paper, we consider a special type of solution to the MCF by imposing

that the hypersurfaces F̂ t be parallel. We first introduce the following notation:

(2.2) c(ξ) =

⎧⎨⎩
1, if κ = 0,
cos(ξ), if κ = 1,
cosh(ξ), if κ = −1

and s(ξ) =

⎧⎨⎩
ξ, if κ = 0,
sin(ξ), if κ = 1,
sinh(ξ), if κ = −1.

Definition 2.1. Let F̂ : Mn × I → M
n+1(κ) be a solution to the mean curvature

flow in M
n+1(κ) with initial condition F : Mn → M

n+1(κ). We say F̂ is a solution
to the mean curvature flow by parallel hypersurfaces if there is a function ξ : I → R

such that ξ(0) = 0 and

(2.3) F̂ t(x) = c
(
ξ(t)

)
F (x) + s

(
ξ(t)

)
N(x),

for all t ∈ I, where c : R → R and s : R → R are the functions defined in (2.2).

We now state our main results.
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Theorem 2.2. Let F : Mn → M
n+1(κ) be a hypersurface in a space form M

n+1(κ).
Then F (M) is the initial data of a solution to the MCF by parallel hypersurfaces if
and only if F (M) is an isoparametric hypersurface.

As a consequence of the proof of this theorem, given in Section 3, one obtains
the MCF of the isoparametric hypersurfaces of space forms by solving an ordinary
differential equation. Namely, we prove the following.

Corollary 2.3. Let F : Mn → M
n+1(κ) be an isoparametric hypersurface with

unit normal vector field N and principal curvatures κı. Then the solution to the
MCF with initial data F is given by (2.3), where s and c are the functions defined
in (2.2) and ξ(t) is the solution of

ξ′(t) =
n∑

ı=1

κs (ξ (t)) + κıc (ξ (t))

c (ξ (t))− κıs (ξ (t))
, ξ(0) = 0.

As an application of Corollary 2.3, we explicitly obtain the MCF by parallel
hypersurfaces of the isoparametric hypersurfaces of Rn+1 and of Hn+1 in Propo-
sitions 2.4-2.7. The MCFs for a nonminimal hypersurface of Sn+1 with g distinct
curvatures are given in Propositions 2.8–2.12.

For the sake of completeness we include the result for isoparametric hypersurfaces
of the Euclidean space, without proof, since it is well known.

Proposition 2.4. Let F : Sm × R
n−m → R

n+1, m �= 0, be the immersion of a
cylinder (or sphere if m = n) in the Euclidean space, with m principal curvatures
equal to κ �= 0 and n−m null principal curvatures. Then, the solution to the MCF
with initial condition F (M) is

(2.4) F̂ t(x) = F (x) +
1−

√
1− 2mκ2t

κ
N(x),

for all t ∈ (−∞, t∗), where t∗ = 1
2mκ2 . Moreover, if m = n the solution collapses

into a point at t∗. If m �= n, then the solution collapses into an (n−m)-dimensional
plane of Rn+1, at t∗.

Proposition 2.5. Let F : Rn → H
n+1 ⊂ L

n+2 be the immersion of a horosphere
in the hyperbolic space, with unit normal vector field N and all principal curvatures
κ = ±1. Then, the solution to the MCF with initial data F is

(2.5) F̂ t(x) = cosh(nt)F (x) + κ sinh(nt)N(x),

for all t ∈ R. Moreover, F̂ t(Rn) is a horosphere for all t ∈ R.

The totally umbilic hypersurfaces of the hyperbolic space, different from the
horospheres, are treated in the following result.

Proposition 2.6. Let F : Mn → H
n+1 ⊂ L

n+2 be the immersion of a totally
umbilic hypersurface in the hyperbolic space, with unit normal vector field N and
all principal curvatures equal to κ where κ �∈ {0,±1}. Then, the solution to the
MCF with initial condition F (M) is given by
(2.6)

F̂ t(x) =
κ2e−nt −

√
1− κ2 + κ2e−2nt

κ2 − 1
F (x) +

κe−nt − κ
√
1− κ2 + κ2e−2nt

κ2 − 1
N(x).

(1) If 0 < |κ| < 1, then F̂ t is defined for t ∈ R, and it converges to a totally
geodesic n-dimensional manifold when t → +∞.
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(2) If |κ| > 1, then F̂ t is defined for t ∈ (−∞, t∗), where t∗ = 1
2n ln

(
κ2

κ2−1

)
,

and it collapses to a point at t∗.

For the hyperbolic cylinder, we have the following solution to the mean curvature
flow.

Proposition 2.7. Let F : Sm1 × H
m2 → H

n+1 ⊂ L
n+2 be the immersion of a

cylinder in the hyperbolic space, with m1 principal curvatures equal to κ1 > 1 and
m2 principal curvatures equal to κ2, such that κ1κ2 = 1. Then the solution to the
MCF with initial condition F is given by

(2.7) F̂ t(x) = cosh(ξ(t))F (x) + sinh(ξ(t))N(x),

where

(2.8) cosh(2ξ(t)) =
a�(t)− 2

√
q(t)

a2 − 4
, sinh(2ξ(t)) =

2�(t)− a
√
q(t)

a2 − 4
,

(2.9)

q(t) = �2(t)−a2+4; �(t) = (a−b)e−2nt+b, a = κ1+κ2, b = −m1 −m2

n
(κ1−κ2).

F̂ t is defined for all t ∈ (−∞, t∗) where t∗ = 1
2n ln

m1κ
2
1+m2

m1(κ2
1−1)

and it collapses into

an m2-dimensional focal submanifold at t∗.

We will now consider the isoparametric hypersurfaces of the sphere. Münzner
[12] showed that the number g of distinct principal curvatures, for an isoparametric
hypersurface Mn ⊂ S

n+1, is restricted to be 1, 2, 3, 4, or 6. Moreover, he showed
that connected isoparametric hypersurfaces of the sphere can be extended to com-
pact ones. Cartan [3] classified these hypersurfaces when g ≤ 3. If g = 1, then
Mn is a sphere obtained as the intersection of Sn+1 with a hyperplane of Rn+2. If
g = 2, then Mn must be the standard product of spheres Slr1 ×S

n−l
r2 ⊂ S

n+1, where

r21+r22 = 1. When g = 3, Cartan proved that there are only four distinct isoparamet-
ric hypersurfaces of Sn+1 with three distinct principal curvatures. Their dimensions
are n = 3m, where m = 1, 2, 4, or 8 and all the principal curvatures have the same
multiplicity m . The classification of the isoparametric hypersurfaces of the sphere
with g = 4 or 6 is still not complete. However, when g = 4, Münzner [12] (see also
Cecil–Chi–Jensen [5]) proved that the principal curvatures κ1, κ2, κ3, κ4 can be or-
dered so that their corresponding multiplicities satisfy m1 = m3 and m2 = m4.
When g = 6, Münzner [12] showed that all the principal curvatures must have the
same multiplicities m, and Abresch [1] showed that m = 1 or m = 2.

One can determine the principal curvatures of Mn ⊂ S
n+1 up to a constant. In

fact, for all g = 2, 3, 4, 6, let a ∈ R −1 < a < 1, and a = cos(gs), i.e., 0 < s < π/g.
We consider

(2.10) κj = cot

(
s+

j − 1

g
π

)
, j = 1, . . . , g.

The hypersurfaces for different values of the constant a are parallel in S
n+1.

In the next propositions, we consider the solution F̂ t to the MCF, by parallel
hypersurfaces, with initial data an isoparametric hypersurface F of the sphere.
Therefore,

(2.11) F̂ t (x) = cos(ξ(t))F (x) + sin(ξ(t))N (x) .
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The function ξ(t) will be determined in the following results, according to the
number g of distinct principal curvatures. We start considering the case g = 1, i.e.,
the umbilical hypersurfaces of Sn+1.

Proposition 2.8. Let F : Mn → S
n+1 ⊂ R

n+2 be the immersion of a totally
umbilic hypersurface in S

n+1, with unit normal vector field N and all principal
curvatures equal to κ �= 0. Then the solution to the MCF with F as initial data is
given by
(2.12)

F̂ t(x) =
κ2ent +

√
q(t)

κ2 + 1
F (x)+

κent − κ
√
q(t)

κ2 + 1
N(x), where q(t) = κ2+1−κ2e2nt.

F̂ t is defined for all t ∈ (−∞, t∗) where t∗ = 1
2n ln

(
κ2+1
κ2

)
, and it collapses to a

point at t∗.

Proposition 2.9. Let F : Slr1 × S
n−l
r2 → S

n+1 ⊂ Rn+2 be an isoparametric hyper-

surface in S
n+1, with two distinct principal curvatures κ1 and κ2 with multiplicities

l and n − l, respectively. Then κ1κ2 = −1, and assuming the immersion is not
minimal, we may consider κ1 >

√
(n− l)/l > 1. The solution to the MCF with

initial data F is F̂ t given by (2.11), where
(2.13)

cos(2ξ(t)) =
a q(t) + 2

√
a2 + 4− q2(t)

a2 + 4
, sin(2ξ(t)) =

2q(t)− a
√
a2 + 4− q2(t)

a2 + 4
,

and

(2.14) a = κ1 + κ2, b = − n− 2l

n
(κ1 − κ2), q(t) = (a+ b)e2nt − b.

F̂ t is defined for all t ∈ [0, t∗), where t∗ = 1
2n ln

(
l(κ2

1+1)

l(κ2
1+1)−n

)
, and it collapses into

an (n− l)-dimensional focal submanifold of F at t∗.

Proposition 2.10. Let F : Mn → S
n+1 ⊂ Rn+2 be a nonminimal isoparametric

hypersurface in S
n+1, with unit normal vector field N and three distinct principal

curvatures κ1, κ2, κ3. Then all the principal curvatures have the same multiplicity
m, where m = 1, 2, 4, or 8, i.e., n = 3m. Moreover, we may consider κ1 >

√
3/3

and κ2 and κ3 given by (2.10). The solution to the MCF with initial data F is F̂ t

given by (2.11), where

cos(3ξ(t)) =
a2e9mt + 3

√
q(t)

a2 + 9
, sin(3ξ(t)) =

a(3e9mt −
√
q(t))

a2 + 9
,

a = κ1 + κ2 + κ3 =
3κ1(κ

2
1 − 3)

3κ2
1 − 1

, q(t) = a2 + 9− a2e18mt.

(2.15)

F̂ t is defined for all t ∈ [0, t∗), where t∗ = 1
18m ln

(
1 + 9

a2

)
, and it collapses into a

2m-dimensional focal submanifold of F (M) at t∗.

Proposition 2.11. Let F : Mn → S
n+1 ⊂ Rn+2 be a nonminimal isoparametric

hypersurface of Sn+1, with unit normal vector field N and four distinct principal
curvatures κj, with multiplicities mj, j = 1, 2, 3, 4. Then we may consider

(2.16) κ1 > 1, κ2 =
κ1 − 1

κ1 + 1
, κ3 =

−1

κ1
, κ4 =

−(κ1 + 1)

κ1 − 1
,
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where the multiplicities mj satisfy m1 = m3 and m2 = m4, n = 2(m1 +m2). The

solution to the MCF with initial data F is F̂ t given by (2.11), where
(2.17)

cos(4ξ(t)) =
aq(t) + 4

√
a2 + 16− q2(t)

a2 + 16
, sin(4ξ(t)) =

4q(t)− a
√
a2 + 16− q2(t)

a2 + 16
,

(2.18)

a =

4∑
j=1

κj =
κ4
1 − 6κ2

1 + 1

κ1(κ2 − 1)
, b =

2(m1 −m2)(κ
2
1 + 1)2

nκ1(κ2
1 − 1)

, q(t) = (a+ b)e4nt − b.

Moreover, F̂ t is defined for all t ∈ [0, t∗), where t∗ = 1
4n ln

(
b+

√
a2+16

a+b

)
, and it

collapses into an (m1 + 2m2)-dimensional focal submanifold of F (M).

Proposition 2.12. Let F : Mn → S
n+1 ⊂ Rn+2 be a nonminimal isoparametric

hypersurface in S
n+1, with unit normal vector field N and six distinct principal

curvatures κj, j = 1, . . . , 6. Then n = 6m, where m = 1, 2, and we may consider

κ1 >
√
3 and κj given by (2.10), for 2 ≤ j ≤ 6. The solution to the MCF with

initial data F is F̂ t given by (2.11), where

(2.19) cos(6ξ(t)) =
a2e36mt + 6

√
q(t)

a2 + 36
, sin(6ξ(t)) =

a
(
6e36mt −

√
q(t)

)
a2 + 36

,

where

(2.20) a =

6∑
j=1

κj =
κ6
1 − 15κ4

1 + 15κ2
1 − 1

k1(κ2
1 − 3)(3κ2

1 − 1)
and q(t) = a2 + 36− a2e72mt,

which is defined for all t ∈ [0, t∗), where t∗ = 1
72m ln

(
1 + 36

a2

)
. Moreover, the

solution collapses into a 5m-dimensional focal submanifold of F (M) at t∗.

3. Proof of the main results

In order to prove our main results, we first state some well-known properties
of parallel hypersurfaces. In fact, our next lemma can be easily proved as a con-
sequence of (2.3) and the fact that the functions c(ξ) and s(ξ), defined by (2.2),
satisfy the properties

(3.1) c′(ξ) = −κs(ξ), s′(ξ) = c(ξ), c2(ξ) + κs2(ξ) = 1.

Lemma 3.1. Let F : Mn → M
n+1(κ) be an oriented hypersurface with unit normal

vector field N , and let F̃ ξ : Mn → M
n+1(κ) be a parallel hypersurface given by

F̃ ξ(x) = c(ξ)F (x) + s(ξ)N(x). Then, the unit vector field Ñξ normal to F̃ ξ and
the corresponding principal curvatures κ̃ξ

ı are given by

(3.2) Ñξ(x) = −κs(ξ)F (x) + c(ξ)N(x), κ̃ξ
ı (x) =

κs
(
ξ
)
+ κı(x)c

(
ξ
)

c
(
ξ
)
− κı(x)s

(
ξ
) ,

where κı(x) is the ıth principal curvature of F (M) on x ∈ M , for all ı = 1, . . . , n.
Moreover, if {e1, . . . , en} ⊂ TxM is an orthonormal basis of eigenvectors of the
second fundamental form of F (M), then

(3.3) g̃ξx(eı, ej) =
[
c(ξ)− κı(x)s(ξ)

]2
δıj.
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Proof of Theorem 2.2. Suppose that F̂ t is given by (2.3). Then, as a consequence
of (3.1),

∂

∂t
F̂ (x, t) = ξ′(t)

(
− κs(ξ(t))F (x) + c(ξ(t))N(x)

)
.(3.4)

If F̂ t is a solution to MCF, then (2.1) reduces to

ξ′(t)
(
− κs(ξ(t))F (x) + c(ξ(t))N(x)

)
= Ĥt(x)N̂ t(x),

and from (3.2) we conclude that

(3.5) ξ′(t) = Ĥt(x).

Therefore, for each t fixed, the mean curvature Ĥt is constant. Then, it follows
from a classical result of Cartan [3] (see also Theorem 3.6 in [4]) that F (M) is an
isoparametric hypersurface.

Reciprocally, if F (M) is an isoparametric hypersurface, let ξ(t) be the unique
solution of the ordinary differential equation

ξ′(t) =
n∑

ı=1

κ̂t
ı =

n∑
ı=1

κs (ξ (t)) + κıc (ξ (t))

c (ξ (t))− κıs (ξ (t))
,(3.6)

such that ξ(0) = 0, where κj is the jth principal curvature of F (M).

Considering F̂ t(x) given by (2.3), then (3.4) holds. Moreover, it follows from
Lemma 3.1 that

N̂ t(x) = −κs(ξ(t))F (x) + c(ξ(t))N(x)

and

Ĥt(x) =
n∑

ı=1

κ̂t
ı =

n∑
ı=1

κs (ξ (t)) + κıc ((t))

c ((t))− κıs ((t))
= ξ′(t).

Therefore,

∂

∂t
F̂ t(x) = Ĥt(x)N̂ t(x).

Moreover, since ξ(0) = 0, we have F̂ 0(x) = F (x), i.e., F̂ t is a solution to the
MCF. �

The proof of Corollary 2.3 is an immediate consequence of the proof given above.
From now on, we will apply Corollary 2.3 to obtain the mean curvature flow

whose initial data is a nonminimal isoparametric hypersurface of a space form, i.e.,
we will prove Propositions 2.4–2.12.

Proof of Proposition 2.5. From Corollary 2.3 and the fact that κ = ±1, we have

F̂ t(x) = cosh(ξ(t))F (x) + sinh(ξ(t))N(x), where ξ′(t) = κn. Integrating this equa-
tion, since ξ(0) = 0, we have ξ(t) = κnt, for all t ∈ R. Therefore, (2.5) follows.
Moreover, from (3.2), we have κ̂t

ı = κ ∀ı, which concludes the proof. �

Proof of Proposition 2.6. From Corollary 2.3, the solution to the MCF by parallel
hypersurfaces is given by

F̂ t(x) = cosh(ξ(t))F (x) + sinh(ξ(t))N(x),
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where

ξ′(t) = −n
sinh(ξ(t))− κ cosh(ξ(t))

cosh(ξ(t))− κ sinh(ξ(t))
.

Integrating the equation for ξ, with ξ(0) = 0, we have sinh(ξ(t)) = κ cosh(ξ(t))−
κe−nt. The square of this equation reduces to

(κ2 − 1) cosh2(ξ(t))− 2κ2e−nt cosh(ξ(t)) + κ2e−2nt + 1 = 0.

Therefore,

cosh (ξ (t)) =
κ2e−nt −

√
q(t)

κ2 − 1
, sinh (ξ (t)) =

κe−nt − κ
√
q(t)

κ2 − 1
,

where

q(t) = 1− κ2 + κ2e−2nt,

which proves (2.6). Let {E1, . . . , En} be a local orthonormal frame of principal
directions on F (M). It follows from Lemma 3.1 that the first fundamental form

and the principal curvatures of F̂ t are given, respectively, by ĝt(Eı, Ej) = q(t)δıj
and κ̂t = κe−nt/

√
(q(t).

If 0 < |κ| < 1, then q(t) > 0 and the solution is defined for all t ∈ R. Moreover,

since limt→+∞ κ̂t = 0, F̂ t(Hn) converges to a totally geodesic submanifold. If

|κ| > 1, then q(t∗) = 0, where t∗ = 1
2n ln

(
κ2

κ2−1

)
. Hence F̂ t(Sn) is defined for

t ∈ (−∞, t∗), and it collapses to a point at t∗. �

Proof of Proposition 2.7. It follows from Corollary 2.3 that the solution F̂ t is given
by (2.7) with ξ(t) satisfying

ξ′(t) = −n
2 sinh(2ξ(t))− a cosh(2ξ(t)) + b

2 cosh(2ξ(t))− a sinh(2ξ(t))
,

where a and b are given by (2.9). Integrating this equation with ξ(0) = 0, we get
2 sinh(2ξ(t)) = a cosh(2ξ(t))− b+(b−a)e−2nt. The square of this equation reduces
to

(a2 − 4) cosh2(2ξ(t))− 2a�(t) cosh(2ξ(t)) + �2(t) + 4 = 0,

where �(t) is given by (2.9). Therefore, we obtain cosh(2ξ(t)) and sinh(2ξ(t)) as in
(2.8). Without loss of generality, we are considering κ1 > κ2 > 0.

Moreover, F̂ t is defined for all t, for which q(t) = �2(t) − a2 + 4 > 0. Since
−a2 + 4 = −(κ1 − κ2)

2 and b− a = −2(m1κ1 +m2κ2)/n, we conclude that t < t∗,

where t∗ = 1/n ln m1κ1+m2κ2)
m1(κ1−κ2)

.

Let {E1, . . . , Em1
, Em1+1, . . . , Em1+m2

= En} be an orthonormal frame of prin-
cipal directions such that E1, . . . , Em1

are tangent to S
m1 and Em1+1, . . . , En are

tangent to H
m2 . It follows from (3.3) that ĝt

∗
(Eı, Ej) = 0 for 1 ≤ ı ≤ m1 and

ĝt
∗
(Eı, Ej) = κ2(κ1 − κ2)δıj for m1 + 1 ≤ ı, j ≤ n. Thus, the solution F̂ t collapses

into an m2-dimensional focal submanifold at t∗, since coth(ξ(t∗)) = κ1. �

We will now prove Propositions 2.8–2.12 that consider the MCF of isoparametric
hypersurfaces of the sphere.
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Proof of Proposition 2.8. It follows from Corollary 2.3 that the solution to the MCF
is given by (2.11), where ξ(t) satisfies

ξ′ (t) = n
sin (ξ (t)) + κ cos (ξ (t))

cos (ξ (t))− κ sin (ξ (t))
, with ξ(0) = 0.

Integrating this equation, we have sin (ξ (t)) = κ(ent − cos (ξ (t))). The square of
this equation reduces to(

κ2 + 1
)
cos2 (ξ (t))− 2κ2ent cos (ξ (t)) + κ2e2nt − 1 = 0.

Therefore, we obtain (2.12) and the solution is defined for all t ∈ (−∞, t∗) where

t∗ = 1
2n ln

(
κ2+1
κ2

)
. Let {E1, . . . , En} be a local orthonormal frame of principal

directions of F (M). From Lemma 3.1, we have ĝt (Eı, Ej) = q2(t)δıj. Since q(t
∗) =

0, we have ĝt
∗
(Eı, Ej) = 0, for all ı, j. Therefore, F̂ t(M) collapses into a point at

t∗. �

Proof of Proposition 2.9. Since we are considering that F is not a minimal hyper-
surface, we may assume that the mean curvature H > 0. Since (2.10) implies that

κ2 = −1/κ1, hence, without loss of generality, we may consider κ1 >
√
(n− l)/l

and n − l > l, i.e., κ1 > 1. It follows from Corollary 2.3 and a straightforward
computation that the solution of the mean curvature flow is given by (2.11), where
ξ(t) must satisfy

ξ′(t) = n
2 sin(2ξ(t)) + a cos(2ξ(t)) + b

2 cos(2ξ(t))− a sin(2ξ(t))
, ξ(0) = 0,

where a and b are given by (2.14). Integrating, we get

(3.7) 2 sin(2ξ(t)) + a cos(2ξ(t)) + b = (a+ b)e2nt.

This equation implies that cos(2ξ(t) must satisfy the algebraic equation

(a2 + 4) cos2(2ξ(t))− 2aq(t) cos(2ξ(t)) + q2(t)− 4 = 0,

where q(t) is given by (2.14). Solving for cos(2ξ(t)) with ξ(0) = 0 and using (3.7),
we get (2.13).

Let t∗ be such that a2 + 4− q2(t∗) = 0. Then, since a+ b = 2H/n > 0, we get

t∗ =
1

2n
ln

(
b+

√
a2 + 4

a+ b

)
=

1

2n
ln

(
l(κ2

1 + 1)

l(κ2
1 + 1)− n

)
,

and it follows from (2.13) that cot(2ξ(t∗))=a/2 and cot(ξ(t∗))=κ1. Let {E1, . . . , El}
and {El+1, . . . , En} be an orthonormal frame of principal vector fields correspond-
ing to κ1 and κ2, respectively. It follows from Lemma 3.1 that

ĝt
∗
(Ei, Ej) = sin(ξ(t∗))2(cot(ξ(t∗))− κ1)

2δij = 0

for

1 ≤ i, j ≤ l,

and

ĝt
∗
(Ei, Ej) = sin(ξ(t∗))2(cot(ξ(t∗)) + 1/κ1)

2δij �= 0,

for l + 1 ≤ i, j ≤ n. Therefore, F̂ t is defined for t ∈ [0, t∗), and when t tends to t∗,
the mean curvature flow collapses into an (n− l)-dimensional focal submanifold of
F (M). �
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Proof of Proposition 2.10. When g = 3 the three distinct principal curvatures are
determined by (2.10). Since H > 0 we may consider κ1 >

√
3/3. Then κ2 =

(κ1

√
3−3)/(3κ1+

√
3) and κ3 = (κ1

√
3+3)/(−3κ1+

√
3). Moreover, Cartan showed

that all the principal curvatures have the same multiplicity m, where m = 1, 2, 4,
or 8, and hence n = 3m. It follows from Corollary 2.3 and a straightforward
computation that the solution of the mean curvature flow is given by (2.11), where
ξ(t) must satisfy

ξ′(t) = 3m
3 sin(3ξ(t)) + a cos(3ξ(t))

3 cos(3ξ(t)) + a sin(3ξ(t))
,

where a =
∑3

j=1 κj. Integrating this equation, and using the fact that ξ(0) = 0, we
get

(3.8) 3 sin(3ξ(t)) + a cos(3ξ(t)) = ae9mt.

Considering the square of this equation, we obtain

(a2 + 9) cos2(3ξ(t))− 2a2e9mt cos(3ξ(t)) + a2e18mt − 9 = 0.

Solving this equation for cos(3ξ(t)) with ξ(0) = 0 and using (3.8) we obtain
cos(3ξ(t)) and sin(3ξ(t)) given by (2.15). Let t∗ be such that q(t∗) = 0. Then

t∗ =
1

18m
ln

(
1 +

9

a2

)
=

1

18m
ln

(
(κ2

1 + 2)3

κ2
1(κ

2
1 − 3)2

)
.

and it follows from (2.15) that cot(3ξ(t∗)) = a/3. Moreover, cot(ξ(t∗)) = κ1. When

t tends to t∗ the hypersurface F̂ t collapses into a 2m-dimensional focal submanifold
of F (M). In fact, considering Ej1, . . . , Ejm, j = 1, 2, 3, an orthonormal vector field
of principal direction corresponding to the principal curvature κj , we conclude

that ĝt
∗
(E1�, E1r) = sin(ξ(t∗))(cot(ξ(t∗)) − κ1) = 0 for all 1 ≤ �, r ≤ m, while

ĝt
∗
(Ej�, Ej�) �= 0 for j �= 1. �

Proof of Proposition 2.11. Since g = 4, it follows from (2.10) that we may consider
the principal curvature given by (2.16). Moreover, Münzner proved that the corre-
sponding multiplicities satisfy m1 = m3 and m2 = m4, hence n = 2(m1 +m2). It
follows from Corollary 2.3 and a straightforward computation that the solution of

the MCF F̂ t is given by (2.11), where ξ(t) must satisfy

ξ′(t) = n
4 sin(4ξ(t)) + a cos(4ξ(t)) + b

4cos(4ξ(t))− a sin(4ξ(t))
, ξ(0) = 0,

where a and b are the constants given by (2.18). Integrating, we get

(3.9) 4 sin(4ξ(t)) + a cos(4ξ(t)) + b = (a+ b)e4nt.

It follows from this equation that cos(4ξ(t)) must satisfy the algebraic equation

(a2 + 16) cos2(4ξ(t))− 2a
(
(a+ b)e4nt − b

)
cos(4ξ(t)) +

(
(a+ b)e4nt − b

)2 − 16 = 0.

Solving this equation for cos(4ξ) and considering ξ(0) = 0, the expression q(t)
defined by (2.18) and (3.9), we conclude that cos(4ξ(t)) and sin(4ξ(t)) are given by
(2.17).

Let t∗ be such that a2 + 16− q2(t∗) = 0. Then

t∗ =
1

4n
ln

(
b+

√
a2 + 16

a+ b

)
=

1

4n
ln

(
m1(κ

2
1 + 1)2

m1(κ2
1 + 1)2 − 2nκ2

1

)
.

It follows from (2.17) that cot(4ξ(t∗)) = a
4 and cot(ξ(t∗) = κ1.
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When t tends to t∗, the hypersurface collapses into an (n − m1)-dimensional
submanifold of Sn+1, which is a focal submanifold of F (M). In fact, if we consider
{E1, . . . , Em1

}, {Em1+1, . . . , Em1+m2
}, {Em1+m2+1, . . . , E2m1+m2

}, and
{E2m1+m2+1, . . . , En} an orthonormal frame of principal directions of FM , cor-
responding to κ1, κ2, κ3, κ4, respectively, then limt→t∗ ĝ

t(Eı, Ej) = 0 for all ı, j

such that 1 ≤ ı, j ≤ m1 and ĝt
∗
(E�, Er) = 0 for � �= r and � > m1 or r > m1, while

ĝt
∗
(E�, E�) �= 0, for m1 + 1 ≤ � ≤ n. �

Proof of Proposition 2.12. When g = 6 it follows from results of Münzner and
Abresch that all the principal curvatures have the same multiplicity m and that
m = 1, 2. Moreover, since F is not a minimal hypersurface we may consider that
κ1 >

√
3 and κj are given by (2.10) for 2 ≤ j ≤ 6. It follows from Corollary 2.3

and a straightforward computation that the solution is given by (2.11), where ξ(t)
must satisfy

ξ′(t) =
6m(a cos(6ξ(t)) + 6 sin(6ξ(t)))

6 cos(6ξ(t))− a sin(6ξ(t))
, ξ′(0) = 0.

Integrating this equation we get a cos(6ξ(t))+6 sin(6ξ(t)) = ae36mt. It follows from
this equation that cos(6ξ(t)) must satisfy the algebraic equation

(a2 + 36) cos2(6ξ(t))− 2a2e36mt cos(6ξ(t)) + a2e72mt − 36 = 0.

Solving this equation for cos(6ξ(t)) and considering ξ(0) = 0, we conclude that
cos(6ξ(t)) and sin(6ξ(t)) are given by (2.19). Let t∗ be such that q(t∗) = 0. Then
t∗ = 1

72m ln
(
1 + 36

a2

)
, and it follows from (2.19) that cot(6ξ(t∗)) = a/6. Moreover,

cot(ξ(t∗)) = κ1.

Then F̂ t is defined for t ∈ [0, t∗), and when t tends to t∗ the hypersurface it
collapses into a 5m-dimensional submanifold of S6m+1 that is a focal submanifold
of F (M). In fact, considering Ej1, Ejm, j = 1, . . . , 6, an orthonormal vector field of
principal directions corresponding to the principal vurvature κj , we conclude that

ĝt
∗
(E1�, E1r) = 0, for all 1 ≤ �, r ≤ m, while ĝt

∗
(Ej�, Ej�) �= 0, for j �= 1. �
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