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A CLASS OF COMPLETELY MIXED MONOTONIC FUNCTIONS

INVOLVING THE GAMMA FUNCTION WITH APPLICATIONS

ZHEN-HANG YANG AND JING-FENG TIAN

(Communicated by Mourad Ismail)

Abstract. In this paper, we introduce the notion of completely mixed mono-
tonicity of a function of several variables, very few of which have appeared. We
give a necessary and sufficient condition for a function constructed by ratios
of gamma functions to be completely mixed monotonic. From this, some new
inequalities for gamma, psi, and polygamma functions are derived.

1. Introduction

Recall that a function f is called completely monotonic (for short, CM) on an
interval I if f has derivatives of all orders on I and satisfies

(−1)
k
(f (x))

(k) ≥ 0

for all k ≥ 0 on I (see [1], [2]). A function f is called logarithmically completely
monotonic (for short, LCM) on an interval I if f has derivatives of all orders on I
and its logarithm ln f satisfies

(−1)k (ln f (x))(k) ≥ 0

for all k ∈ N on I (see [3], [4]). The celebrated Bernstein–Widder’s Theorem [2, p.
161, Theorem 12b] states that a necessary and sufficient condition that f(x) should
be completely monotonic for 0 < x < ∞ is that

f (x) =

∫ ∞

0

e−xtdα (t) ,

where α (t) is nondecreasing and the integral converges for 0 < x < ∞.
For convenience, we denote the sets of the completely and logarithmically com-

pletely monotonic functions on I by C [I] and L [I], respectively.
We now introduce the notion of a completely monotonic function in several

variables.

Definition 1 ([5, Theorem 4.2.2]). A function f (x1, x2, . . . , xk) is called completely
monotonic in a cone X = X1 ×X2 × · · · ×Xk if it is C∞ and satisfies

(−1)n1+n2+···+nk
∂n1+n2+···+nkf

∂xn1
1 ∂xn2

2 · · · ∂xnk

k

≥ 0
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for all combinations n1, n2, . . . , nk ≥ 0. This class of completely monotonic func-
tions is denoted by C [X].

Remark 1. To avoid confusion with univariate functions, we prefer to say that
f (x1, x2, . . . , xk) is completely mixed monotonic on X.

Remark 2. If a function f (x1, x2, . . . , xk) is completely mixed monotonic in a cone
X, then f is completely monotonic in every xj on Xj , j = 1, 2, . . . , k.

The classical Euler’s gamma function Γ is defined by

(1.1) Γ (x) =

∫ ∞

0

tx−1e−tdt

for x > 0, and its logarithmic derivative ψ (x) = Γ′ (x) /Γ (x) is known as the psi
or digamma function, while ψ′, ψ′′, . . . are called polygamma functions.

In 1986, Ismail, Lorch and Muldoon [6] showed that the function

x �→ xb−aΓ (x+ a)

Γ (x+ b)

for a > b ≥ 0 is logarithmically completely monotonic on (0,∞) if and only if
a+ b ≥ 1. In the same year, Bustoz and Ismail [7] further presented some complete
monotonicity results involving ratios of gamma functions. Since then, many papers
on this topic have been published; see for example, [4], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20].

However, there are very few articles on complete mixed monotonicity in various
journals. The aim of this paper is to investigate the complete mixed monotonicity
of the ratio Gp,q (x, y) /Gr,s (x, y), where

(1.2) Gp,q (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Γ (x+ p) Γ (y + q)

Γ (y + p) Γ (x+ q)

]1/((p−q)(x−y))

if (p− q) (x− y) �= 0,

exp

[
ψ (x+ p)− ψ (y + p)

x− y

]
if p = q, x �= y,

exp

[
ψ (x+ p)− ψ (x+ q)

p− q

]
if p �= q, x = y,

exp [ψ′ (x+ p)] if p = q, x = y

for x, y > −min (p, q).
The rest of this paper is organized as follows. In Section 2, we list some properties

of an important auxiliary function ηu,v : R −→ R defined for u, v ∈ R by

(1.3) ηu,v (t) =

⎧⎨
⎩

e−ut − e−vt

v − u
if u �= v,

te−ut if u = v.

These properties, especially Properties 3-4, are crucial to the proof of our results.
In Sections 3, the necessary and sufficient conditions for ln (Gp,q (x, y) /Gr,s (x, y))
to be completely mixed monotonic are stated and proved. In the last section, as
applications, some new inequalities involving gamma, psi, and polygamma functions
are established.
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2. Properties of the auxiliary function ηu,v(t)

The auxiliary function ηu,v (t) has the following properties, which were listed in
[21, Section 2].

Property 1. We have

ηu,v (t) = t

∫ 1

0

exp (−utx− vt (1− x)) dx,(2.1)

ηu,v (t) =

⎧⎪⎨
⎪⎩

e−(u+v)t/2 sinh [(u− v) t/2]

(u− v) /2
if u �= v,

te−ut if u = v.

(2.2)

Property 2. Let u, v, t ∈ R. Then ηu,v (t) satisfies that
(i) ηu,v (t) > (<) 0 for t > (< 0);
(ii) ηu,v (t) = ηv,u (t);
(iii) e−ρtηu−ρ,v−ρ (t) = ηu,v (t) for any ρ ∈ R.

Property 3. Let u, v, r, s ∈ R, and let ηu,v be defined on (0,∞) by (2.1). Then
the comparison inequality ηu,v (t) ≥ ηr,s (t) holds for all t > 0 if and only if

(2.3) u+ v ≤ r + s and min (u, v) ≤ min (r, s) .

The auxiliary function ηu,v (t) also has a new property.

Property 4. The function (u, v) �→ ηu,v (t) is strictly completely mixed monotonic
on R

2 for t ∈ (0,∞).

Proof. Using integral representation (2.1), we immediately get

(2.4) (−1)n
∂nηu,v

∂uk∂vn−k
= tn+1

∫ 1

0

xk (1− x)n−k exp (−utx− vt (1− x)) dx > 0

for t ∈ (0,∞), which proves the completely mixed monotonicity of ηu,v (t) with
respect to (u, v) on R

2. �

3. Main results

With the aid of those properties of ηu,v (t) presented in the previous section, the
aim of this section is to investigate the complete mixed monotonicity of (p, q, x, y)
�→ Gp,q (x, y) and the necessary and sufficient conditions for (x, y) �→
ln(Gp,q (x, y) /Gr,s (x, y)) to be completely mixed monotonic.

Theorem 1. Let Gp,q (x, y) be defined by (1.2). Then (p, q, x, y) �→ ln (Gp,q (x, y))
is completely mixed monotonic on Ω, where

Ω = {x, y > −min (p, q) , p, q, x, y ∈ R} .
Proof. To prove the desired assertion, we need an integral representation of
lnGp,q (x, y):

(3.1) lnGp,q (x, y) =

∫ ∞

0

ηp,q (t) ηx,y (t)
dt

t (1− e−t)
,

where ηp,q (t) is defined by (1.3). In fact, by using the integral representation of
ln Γ (z) [22, p. 258, (6.1.50)]

(3.2) ln Γ (z) =

∫ ∞

0

[
(z − 1) e−t − e−t − e−zt

1− e−t

]
dt

t
(Re (z) > 0),
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we get that for (x− y) (u− v) �= 0,

lnGp,q (x, y) =
ln Γ (x+ p) + ln Γ (y + q)− ln Γ (y + p)− ln Γ (x+ q)

(p− q) (x− y)

=

∫ ∞

0

e−t(x+p) + e−t(y+q) − e−t(y+p) − e−t(x+q)

(p− q) (x− y)

dt

t (1− e−t)

=

∫ ∞

0

e−tp − e−tq

q − p

e−tx − e−ty

y − x

dt

t (1− e−t)
=

∫ ∞

0

ηp,q (t) ηx,y (t)
dt

t (1− e−t)
,

which is also true for (p− q) (x− y) = 0.
Now by (2.4) we have

(−1)n1+n2+n3+n4
∂n1+n2+n3+n4 [lnGp,q (x, y)]

∂pn1∂qn2∂xn3∂yn4

=

∫ ∞

0

[
(−1)

n1+n2
∂n1+n2ηp,q (t)

∂pn1∂qn2

] [
(−1)

n3+n4
∂n3+n4ηx,y (t)

∂xn3∂yn4

]
dt

t (1− e−t)
> 0,

which completes the proof. �

Remark 3. Theorem 1 yields x, y �→ lnGp,q (x, y) ∈ C [(−min (p, q) ,∞)], that is to
say, lnGp,q (x, y) is a CM function both in x and y on (−min (p, q) ,∞). This was
first proved in [10, Theorem 3] by Qi.

Theorem 2. For fixed p, q, r, s ∈ R, ρ = min (p, q, r, s), let Gp,q (x, y) be defined on

(−min (p, q) ,∞)2 by (1.2). Then ln (Gp,q/Gr,s) ∈ C
[
(−ρ,∞)2

]
if and only if

(3.3) p+ q ≤ r + s and min (p, q) ≤ min (r, s) .

Proof. From the integral representation (3.1), we obtain

(3.4) ln
Gp,q (x, y)

Gr,s (x, y)
=

∫ ∞

0

[ηp,q (t)− ηr,s (t)]
ηx,y (t)

t (1− e−t)
dt.

We first prove the sufficiency. By the integral representation (3.1) we easily find
that

(3.5) (−1)
n ∂n ln (Gp,q/Gr,s)

∂xk∂yn−k
=

∫ ∞

0

ηp,q (t)− ηr,s (t)

t (1− e−t)

[
(−1)

n ∂nηx,y (t)

∂xk∂yn−k

]
dt.

The application of Property 3 yields ηp,q (t) − ηr,s (t) ≥ 0 if p + q ≤ r + s and
min (p, q) ≤ min (r, s), while ηx,y (t) is completely mixed monotonic in (x, y) on

(−ρ,∞)
2
due to Property 4. This proves the sufficiency.

The necessity can follow from the inequality ln (Gp,q (x, x) /Gr,s (x, x)) ≥ 0, that
is, Gp,q (x, x) ≥ Gr,s (x, x), for all x > −ρ. If (p− q) (r − s) �= 0, then this is
equivalent to

ψ (x+ p)− ψ (x+ q)

p− q
≥ ψ (x+ r)− ψ (x+ s)

r − s
,

which can be changed into

(3.6) ψ−1
1

(∫ p

q
ψ1 (x+ t) dt

p− q

)
− x ≤ ψ−1

1

(∫ r

s
ψ1 (x+ t) dt

r − s

)
− x,

where ψn = (−1)n−1 ψ(n) is decreasing on (0,∞).
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It has been shown in [20, Theorem 1.3] that

lim
x→−min(p,q)

Aψn
(x; p, q) = lim

x→−min(p,q)

[
ψ−1
n

(∫ p

q
ψn (x+ t) dt

p− q

)
− x

]
= min (p, q) ,

lim
x→∞

Aψn
(x; p, q) = lim

x→∞

[
ψ−1
n

(∫ p

q
ψn (x+ t) dt

p− q

)
− x

]
=

p+ q

2
.

Then letting x → ∞ in inequality (3.6) yields

p+ q

2
≤ r + s

2
,

which is the first necessary condition. We claim that the second one is min (p, q) ≤
min (r, s). If not, that is, min (p, q) > min (r, s), this indicates ρ = min (p, q, r, s)
= min (r, s). Taking x → −ρ = −min (r, s) in inequality (3.6) leads to

ψ−1
1

(∫ p

q
ψ1 (t−min (r, s)) dt

p− q

)
+min (r, s) ≤ min (r, s) ,

which is obviously a contradiction. Clearly, this is also true if (p− q) (r − s) = 0.
We thus prove the desired assertion. �

For p �= q and s = r + 1, r, the ratio Gp,q (x, y) /Gr,s (x, y) can be written as

Gp,q (x, y)

Gr,r+1 (x, y)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
y + r

x+ r

)1/(x−y) [
Γ (x+ p) Γ (y + q)

Γ (x+ q) Γ (y + p)

]1/((p−q)(x−y))

if x �= y,

exp

(
ψ (x+ p)− ψ (x+ q)

p− q
− 1

x+ r

)
if x = y,

Gp,q (x, y)

Gr,r (x, y)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
Γ (x+ p) Γ (y + q)

Γ (x+ q) Γ (y + p)

]1/((p−q)(x−y))

exp

[
−ψ (x+ r)− ψ (y + r)

x− y

]
if x �= y,

exp

[
ψ (x+ p)− ψ (x+ q)

p− q
− ψ′ (x+ r)

]
if x = y.

Then by Theorem 2, the following corollaries are immediate.

Corollary 1. For p, q, r ∈ R, ρ = min (p, q, r), let Gp,q (x, y) be defined on

(−min (p, q) ,∞)2 by (1.2). Then ln (Gp,q/Gr,r+1) ∈ C
[
(−ρ,∞)2

]
if and only if

r ≥ max [(p+ q − 1) /2,min (p, q)], while ln (Gr,r+1/Gp,q) ∈ C
[
(−ρ,∞)

2
]
if and

only if r ≤ min [(p+ q − 1) /2,min (p, q)].

Corollary 2. For p, q, r ∈ R, ρ = min (p, q, r), let Gp,q (x, y) be defined on

(−min (p, q) ,∞)2 by (1.2). Then ln (Gp,q/Gr,r) ∈ C
[
(−ρ,∞)2

]
if and only if

r ≥ (p+ q) /2, while ln (Gr,r/Gp,q) ∈ C
[
(−ρ,∞)

2
]
if and only if r ≤ min (p, q).
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The integral representation (3.4) together with ηx,x (t) = te−xt and (iii) of Prop-
erty 2 gives

ln
Gp,q (x, x)

Gr,s (x, x)
=

∫ ∞

0

[ηp,q (t)− ηr,s (t)]
e−xt

1− e−t
dt(3.7)

=

∫ ∞

0

[ηp−ρ,q−ρ (t)− ηr−ρ,s−ρ (t)]
e−(x+ρ)t

1− e−t
dt,

which, by Bernstein–Widder’s Theorem [2, p. 161, Theorem 12b] and Property 3,
implies that the following.

Theorem 3. For fixed p, q, r, s ∈ R, ρ = min (p, q, r, s), let Gp,q (x, y) be defined

on (−min (p, q) ,∞)2 by (1.2). Then the function x �→ ln [Gp,q (x, x) /Gr,s (x, x)] is
completely monotonic on (−ρ,∞) if and only if the conditions of (3.3) are satisfied.

Denote by

(3.8) Wu,v (x) =

⎧⎪⎪⎨
⎪⎪⎩

(
Γ (x+ u)

Γ (x+ v)

)1/(u−v)

if u �= v,

exp [ψ (x+ u)] if u = v

for x > −min (u, v). It is evident that

ln
Gp,q (x, x)

Gr,s (x, x)
=

d

dx

[
ln

Wp,q (x)

Wr,s (x)

]
and lim

x→∞
ln

Wp,q (x)

Wr,s (x)
= 0,

of which the latter follows from Γ (x+ p) /Γ (x+ q) ∼ xp−q as x → ∞. Then
by Theorem 3 we immediately get the following corollary, which was proved in
[21, Theorem 3.1].

Corollary 3. For fixed p, q, r, s ∈ R, ρ = min (p, q, r, s), let Wu,v (x) be defined on
(−min (u, v) ,∞) by (3.8). Then ln (Wp,q/Wr,s) ∈ C [(−ρ,∞)] if and only if

p+ q ≥ r + s and min (p, q) ≥ min (r, s) .

Theorem 4. For fixed p, q, r, s ∈ R, ρ = min (p, q, r, s), let Gp,q (x, y) be defined on

(−min (p, q) ,∞)
2
by (1.2). Then Gp,q/Gr,s is log-convex on (−ρ,∞)

2
if and only

if the conditions of (3.3) are satisfied.

Proof. We first prove the sufficiency. It suffices to prove

∂2 ln (Gp,q/Gr,s)

∂x2

∂2 ln (Gp,q/Gr,s)

∂y2
−
[
∂2 ln (Gp,q/Gr,s)

∂x∂y

]2
≥0 and

∂2 ln (Gp,q/Gr,s)

∂x2
> 0

if the conditions of (3.3) are satisfied. First, Property 3 and identity (2.4) yield

P (t) =
ηp,q (t)− ηr,s (t)

t (1− e−t)
> 0 and

∂2ηx,y (t)

∂x2
= t3

∫ 1

0

θ2eφ(θ)dθ > 0,

where φ (θ) = − (θx+ (1− θ) y) t, which implies

∂2 ln (Gp,q/Gr,s)

∂x2
=

∫ ∞

0

P (t)
∂2ηx,y (t)

∂x2
dt > 0.
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Second, application of the Cauchy–Schwarz inequality yields

∂2 ln (Gp,q/Gr,s)

∂x2

∂2 ln (Gp,q/Gr,s)

∂y2
=

∫ ∞

0

P (t)
∂2ηx,y (t)

∂x2
dt

∫ ∞

0

P (t)
∂2ηx,y (t)

∂y2

≥
(∫ ∞

0

P (t)

√
∂2ηx,y (t)

∂x2

∂2ηx,y (t)

∂y2
dt

)2

≥
(∫ ∞

0

P (t)
∂2ηx,y (t)

∂x∂y
dt

)2

,

where the last inequality holds due to

∂2ηx,y (t)

∂x2

∂2ηx,y (t)

∂y2
−
(
∂2ηx,y (t)

∂x∂y

)2

=

(
t3
∫ 1

0

θ2eφ(θ)dθ

)(
t3
∫ 1

0

(1− θ)
2
eφ(θ)dθ

)
−
(
t3
∫ 1

0

θ (1− θ) eφ(θ)dθ

)2

≥ 0,

which proves the sufficiency.
Conversely, if Gp,q/Gr,s is log-convex on (−ρ,∞)2, then ∂2 ln (Gp,q/Gr,s) /∂x

2 > 0
for all x, y > −ρ. From the identity (2.4) we clearly see that limx→∞ ∂ηx,y (t) /∂x =
limx→∞ ηx,y (t) = 0. It then follows that ln (Gp,q (x, y) /Gr,s (x, y)) > 0 for all
x, y > −ρ. From the proof of necessity of Theorem 2, we find that this implies
p+ q ≤ r + s and min (p, q) ≤ min (r, s), which proves the necessity.

This completes the proof. �

4. Some new inequalities for gamma, psi, and polygamma functions

Over the past decades, bounding for certain ratios of gamma functions has been
researched by many researchers; see for example, Wendel [23], Gautschi [24], Kečkić
and Vasić [25], Kershaw [26], Lorch [27], Laforgia [28], Alzer [29], Elezović et al.
[30], Batir [31], Qi et al. [32], [34], [33], Merkle [35], and Yang and Tian [37].

More bounding for such ratios can be found in Qi’s review article [16] and recent
papers [36], [17], [18], [20] and references therein.

From completely (mixed) monotonicity of those functions presented in the third
section, we can deduce many known inequalities for gamma, psi, and polygamma
functions. In this section, we only list some new inequalities to illustrate applica-
tions of our results.

Corollary 4. Let p > q > 0 with p+ q − 1 > 0. Then the double inequality

(4.1)
Γ (p)

Γ (q)

(
1 +

x

r1

)p−q

<
Γ (x+ p)

Γ (x+ q)
<

Γ (p)

Γ (q)

(
1 +

x

r2

)p−q

holds for x > 0 if r1 ≥ max (q, (p+ q − 1) /2) and r2 ≤ min (q, (p+ q − 1) /2).
In particular, for p = 1, q ∈ (0, 1), and r1 = q, r2 = q/2, we have

(4.2)
1

Γ (q)

(
1 +

x

q

)1−q

<
Γ (x+ 1)

Γ (x+ q)
<

1

Γ (q)

(
1 +

2x

q

)1−q

for x > 0.
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Proof. Corollary 1 tells us that the function ln (Gp,q/Gr,r+1) ∈ C
[
(−ρ,∞)2

]
if

and only if r ≥ max ((p+ q − 1) /2,min (p, q)), where ρ = min (q, r), and so x �→
ln (Gp,q (x, y) /Gr,r+1 (x, y)) ∈ C [(−ρ,∞)] for y > −ρ. Therefore, when r ≥
max ((p+ q − 1) /2, q), we obtain that for x > 0,

0 = lim
x→∞

ln
Gp,q (x, y)

Gr,r+1 (x, y)
< ln

Gp,q (x, y)

Gr,r+1 (x, y)
<

Gp,q (0, y)

Gr,r+1 (0, y)
,

that is,

(4.3)
1 <

(
y + r

x+ r

)1/(x−y) [
Γ (x+ p) Γ (y + q)

Γ (x+ q) Γ (y + p)

]1/((p−q)(x−y))

<

(
y + r

r

)−1/y [
Γ (p) Γ (y + q)

Γ (q) Γ (y + p)

]−1/((p−q)y)

.

Letting y = 0 and r = r1 in the left-hand side inequality in (4.3) yields

1 <

(
r1

x+ r1

)1/x [
Γ (x+ p) Γ (q)

Γ (x+ q) Γ (p)

]1/((p−q)x)

,

which is equivalent to the left-hand side inequality in (4.1).
Similarly, by the complete monotonicity of x �→ ln (Gp,q (x, y) /Gr,r+1 (x, y)) on

(−ρ,∞) for r ≤ min ((p+ q − 1) /2,min (p, q)), we can obtain the right-hand side
inequality in (4.1).

Taking p = 1, q ∈ (0, 1), r1 = max (q, q/2) = q, and r2 = min (q, q/2) = q/2 in
(4.1) gives (4.2), which completes the proof. �

Corollary 5. Let t ∈ (0, 1), and let y ∈ (0,∞). Then we have

(4.4)

(
2y

t+ 2y

)2(2y+1)

et(2+ψ(1+y)) <
Γ (t+ y)

Γ (y)
<

(
y

t+ y

)y+1

et(1+ψ(1+y)),

(4.5)(
y + 1

y + t

)y+1

e−(1−t)(1+ψ(1+y)) <
Γ (t+ y)

Γ (1 + y)
<

(
2y + 1

2y + t

)2(2y+1)

e−(1−t)(2+ψ(1+y)).

Proof. Letting p = 1, q ∈ (0, 1), and x → y in the first inequality in (4.3) gives

1 < exp

(
ψ (1 + y)− ψ (q + y)

1− q
− 1

r1 + y

)

for y > 0 and r1 ≥ max (min (p, q) , (p+ q − 1) /2) = q, which is reduced to

1

r1 + y
<

ψ (1 + y)− ψ (q + y)

1− q
.

This is reversed for r2 ≤ min (min (p, q) , (p+ q − 1) /2) = q/2. Taking r1 = q and
r2 = q/2 we have

1

q + y
<

ψ (1 + y)− ψ (q + y)

1− q
<

1

q/2 + y
,

which can be changed into

ψ (1 + y)− 1− q

q/2 + y
< ψ (q + y) < ψ (1 + y)− 1− q

q + y
.
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Then integrating over [0, t] (t ∈ [0, 1]) for q yields

(2 + ψ (1 + y)) t− 2 (2y + 1) ln

(
t

2y
+ 1

)

< ln
Γ (t+ y)

Γ (y)
< (1 + ψ (1 + y)) t− (y + 1) ln

(
t

y
+ 1

)
,

(3− γ) t− 6 ln (t+ 2) < ln Γ (t+ 1) < (2− γ) t− 2 ln (t+ 1) ,

which implies (4.4).
Analogously, then integrating over [t, 1] (t ∈ [0, 1]) for q yields

(2 + ψ (1 + y)) (1− t) + 2 (2y + 1) ln
2y + t

2y + 1

< ln
Γ (1 + y)

Γ (t+ y)
< (1− t) (1 + ψ (1 + y)) + (y + 1) ln

y + t

y + 1
,

which implies (4.5). �

Remark 4. Putting y = 1 in inequalities (4.4) and (4.5) we derive

e(3−γ)t

(1 + t/2)6
< Γ (t+ 1) <

e(2−γ)t

(1 + t)2
,(4.6)

4
e−(2−γ)(1−t)

(t+ 1)
2 < Γ (t+ 1) < 36

e−(3−γ)(1−t)

(t+ 2)
6(4.7)

for t ∈ (0, 1). Note that

d

dt

[
e(3−γ)t

(1 + t/2)
6

]
= 64 (3− γ)

e(3−γ)t

(t+ 2)
7

(
t− 2γ

3− γ

)
,

which implies that the lower bound given in (4.6) has a minimum value at t =
2γ/ (3− γ) ≈ 0.476 49, that is,

e(3−γ)t

(1 + t/2)6
≥

[
e(3−γ)t

(1 + t/2)6

]
t=2γ/(3−γ)

=
(3− γ)

6

729
e2γ ≈ 0.880 08.

Therefore, we obtain a constant lower bound for Γ (t+ 1) on (0, 1):

0.88008 ≈ (3− γ)6

729
e2γ ≤ e(3−γ)t

(1 + t/2)
6 < Γ (t+ 1) .

This constant lower bound is superior to one given in [38, Corollary 3], since it is
more concise and

(3− γ)6

729
e2γ −

(
2

√
γ (1− γ)− (1− γ)

2γ − 1

)γ(1−γ)/(2γ−1)

≈ 4.183 6× 10−5 > 0.

Similarly, the lower bound given in (4.7) has a minimum value at t = γ/ (2− γ) ≈
0.405 69, which implies that for t ∈ (0, 1),

Γ (t+ 1) > 4
e−(2−γ)(1−t)

(t+ 1)
2 ≥

[
4
e−(2−γ)(1−t)

(t+ 1)
2

]
t=γ/(2−γ)

= (2− γ)
2
e2γ−2 ≈ 0.869 07.

This constant lower bound is superior to another one, e−γ/4, given in [38, Corollary
3].
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Corollary 6. If r ≥ 1, then the double inequality

(4.8)
1

x− 1
ln

(
x+ r

1 + r

)
<

ψ (x+ 1)− ψ (2)

x− 1
< ln

re

1 + r
+

1

x− 1
ln

(
x+ r

1 + r

)

holds for x > 0 with x �= 1. It is reversed if 0 < r ≤ 1/2. In particular, we have

(4.9) ψ (2) + ln

(
x+ 1

2

)
< (>)ψ (x+ 1) < (>)ψ (2) + ln

(
2x+ 1

3

)

for 0 < x > (<) 1.

Proof. Taking y = 1 and p → q = 1 in the double inequality (4.3) yields

1 <

(
1 + r

x+ r

)1/(x−1)

exp

(
ψ (x+ 1)− ψ (2)

x− 1

)
<

re

1 + r

for x > 0 with x �= 1 and r ≥ max (min (p, q) , (p+ q − 1) /2) = 1, which is equiva-
lent to (4.8). It is reversed if r ≤ min (min (p, q) , (p+ q − 1) /2) = 1/2.

Let r = 1 and r = 1/2 in (4.8) and its reverse, respectively. Then we obtain

1

x− 1
ln

(
x+ 1

2

)
<

ψ (x+ 1)− ψ (2)

x− 1
<

1

x− 1
ln

(
x+ 1/2

1 + 1/2

)

for x > 0 with x �= 1, which proves (4.9). �

As a direct consequence of Theorem 3, we have the following.

Corollary 7. For (p− q) (r − s) �= 0 and every nonnegative integer n, the inequal-
ity

(4.10) (−1)n
ψ(n) (x+ p)− ψ(n) (x+ q)

p− q
> (<) (−1)n

ψ(n) (x+ r)− ψ(n) (x+ s)

r − s

holds for x > (−min (p, q, r, s) ,∞) if and only if p+ q ≤ (≥) r+ s and min (p, q) ≤
(≥)min (r, s). In particular, the double inequality

(4.11)
n!

(x+ r1)
n+1 < (−1)

n ψ(n) (x+ p)− ψ(n) (x+ q)

p− q
<

n!

(x+ r2)
n+1

holds for x > −min (p, q, r1, r2) if and only if r1 ≥ max (min (p, q) , (p+ q − 1) /2)
and r2 ≤ min (min (p, q) , (p+ q − 1) /2), while the inequalities
(4.12)

(−1)n ψ(n+1) (x+ r1) < (−1)n
ψ(n) (x+ p)− ψ(n) (x+ q)

p− q
< (−1)n ψ(n+1) (x+ r2)

hold for x > −min (p, q, r1, r2) if and only if r1 ≥ (p+ q) /2 and r2 ≤ min (p, q).

Proof. The first assertion is an immediate consequence of Theorem 3. Letting
(r, s) = (ri, ri + 1) (i = 1, 2) in (4.10) and using the recurrence formula

ψ(n) (x+ 1)− ψ(n) (x) = (−1)n
n!

xn+1

yield the inequalities (4.11), while inequalities (4.12) follow by putting (r, s) →
(ri, ri) (i = 1, 2) in (4.10). �
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Remark 5. Clearly, inequalities (4.11) slightly improve the ones given in [13, The-
orem 3]. Inequalities (4.10) can be rewritten as

ψn+1 (x+ r1) <

∫ p

q
ψn+1 (x+ t) dt

p− q
< ψn+1 (x+ r2) ,

where ψn = (−1)
n−1

ψ(n), which was proved in [20, Corollary 1.4] for r1 = (p+ q) /2
and r2 = min (p, q).

The following is a consequence of the log-convexity of Gp,q/Gr,s in (x, y) on

(−ρ,∞)2 given in Theorem 4.

Corollary 8. Let p, q, r, s, x, y ∈ R with (p− q) (r − s) (x− y) �= 0 and ρ =
min (p, q, r, s).

(i) The inequality

1

p− q

∫ p

q

[ ∫ x
y

ψ′(u+v)dv

x−y − ψ′ (u+ x+y
2

)]
du

> (<)
1

r − s

∫ r

s

[ ∫ x
y

ψ′(u+v)dv

x−y − ψ′ (u+ x+y
2

)]
du

(4.13)

holds for x, y > −ρ if and only if p+ q ≤ (≥) r + s and min (p, q) ≤ (≥)min (r, s).
(ii) The double inequality

(4.14)

1

L (x+ r1, y + r1)
− 1

A (x+ r1, y + r1)

<
1

p− q

∫ p

q

[∫ x

y
ψ′ (u+ v) dv

x− y
− ψ′

(
u+

x+ y

2

)]
du

<
1

L (x+ r2, y + r2)
− 1

A (x+ r2, y + r2)

holds for x > −min (p, q, r1, r2) if and only if r1 ≥ max (min (p, q) , (p+ q − 1) /2)
and r2 ≤ min (min (p, q) , (p+ q − 1) /2), where L (a, b) = (a− b) / (ln a− ln b) and
A (a, b) = (a+ b) /2 are the logarithmic and arithmetical means of distinct positive
numbers a and b, respectively.

(iii) The double inequality

(4.15)

ψ (x+ r1)− ψ (y + r1)

x− y
− ψ′

(
x+ y

2
+ r1

)

<
1

p− q

∫ p

q

[∫ x

y
ψ′ (u+ v) dv

x− y
− ψ′

(
u+

x+ y

2

)]
du

<
ψ (x+ r2)− ψ (y + r2)

x− y
− ψ′

(
x+ y

2
+ r2

)

holds for x > −min (p, q, r1, r2) if and only if r1 ≥ (p+ q) /2 and r2 ≤ min (p, q).

Proof.
(i) By Theorem 4 we obtain that for x, y > −ρ,

1

2

[
ln

Gp,q (x, y)

Gr,s (x, y)
+ ln

Gp,q (y, x)

Gr,s (y, x)

]
≥ (≤) ln

Gp,q ((x+ y) /2, (x+ y) /2)

Gr,s ((x+ y) /2, (x+ y) /2)
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if p+ q ≤ (≥) r + s and min (p, q) ≤ (≥)min (r, s). This together with Gp,q (x, y) =
Gp,q (y, x) and

lnGp,q (x, y) =

∫ p

q

∫ x

y
ψ′ (u+ v) dudv

(p− q) (x− y)

for (p− q) (x− y) �= 0 yields (4.13), which proves the sufficiency.
Conversely, if inequality (4.13) holds for all x, y > −ρ, that is,

lnGp,q (x, y)− Gp,q

(
x+ y

2
,
x+ y

2

)
≥ (≤) lnGr,s (x, y)− lnGr,s

(
x+ y

2
,
x+ y

2

)
.

Dividing by (x− y)
2
and letting y → x gives

1

p− q

∫ p

q

1

24
ψ′′′ (u+ x) du > (<)

1

r − s

∫ r

s

1

24
ψ′′′ (u+ x) du,

which is written as

ψ−1
3

(∫ p

q
ψ3 (u+ x) du

p− q

)
− x < (>)ψ−1

3

(∫ r

s
ψ3 (u+ x) du

r − s

)
− x,

where ψn = (−1)
n−1

ψ(n) is decreasing on (0,∞). Similar to proof of necessity of
Theorem 2, it follows that p + q ≤ (≥) r + s and min (p, q) ≤ (≥)min (r, s), which
proves the necessity.

(ii) Letting (r, s) = (ri, ri + 1) (i = 1, 2) in (4.13) and noting that

lnGr,r+1 (x, y) =
1

x− y
ln

x+ r

y + r
and lnGr,r+1 (x, x) =

1

x+ r

give the inequalities (4.14).
(iii) Taking (r, s) → (ri, ri) (i = 1, 2) in (4.13) and noting that

lnGr,r (x, y) =
ψ (x+ r)− ψ (y + r)

x− y
and lnGr,r (x, x) = ψ′ (x+ r)

lead to (4.15).
This ends the proof. �

Remark 6. Let p, q > 0 with p+q−1 > 0. Then taking (x, y) = (1, 0) in the double
inequality (4.14) and noting that∫ 1

0

ψ′ (u+ v) dv = ψ (u+ 1)− ψ (u) =
1

u
,

we obtain

ln

(
1+

1

r1

)
− 1

r1 + 1/2
<

1

L (p, q)
− 1

p− q

∫ p

q

ψ′
(
u+

1

2

)
du < ln

(
1+

1

r2

)
− 1

r2 + 1/2

if r1 ≥ max (min (p, q) , (p+ q − 1) /2) and 0 < r2 ≤ min (min (p, q) , (p+ q − 1) /2).

Remark 7. Likewise, for p > q > 0, taking (x, y) = (1, 0) and (r1, r2) = ((p+ q) /2, q)
in the double inequality (4.14) we conclude that

2

p+ q
− ψ′

(
p+ q + 1

2

)
<

1

L (p, q)
− 1

p− q

∫ p

q

ψ′
(
u+

1

2

)
du <

1

q
− ψ′

(
1

2
+ q

)
.
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Clearly, taking into account the left-hand side inequality above and that the Her-
mite–Hadamard inequality [39] due to ψ′ is convex on (0,∞), we arrive at

(4.16) 0 <

∫ p

q
ψ′ (x+ 1/2) dx

p− q
− ψ′

(
p+ q + 1

2

)
<

1

L (p, q)
− 1

A (p, q)
.

Remark 8. Letting q = p+ 1 in the double inequality (4.16) we have

2

p+ 1/2
− ln

(
1 +

1

p

)
< ψ′ (p+ 1) <

1

p+ 1/2

for p > 0.
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[39] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985),

no. 3, 229–232, DOI 10.1007/BF02189414. MR791622

https://www.ams.org/mathscinet-getitem?mr=3339476
https://www.ams.org/mathscinet-getitem?mr=3538004
https://www.ams.org/mathscinet-getitem?mr=3545603
https://www.ams.org/mathscinet-getitem?mr=3711629
https://www.ams.org/mathscinet-getitem?mr=1225604
https://www.ams.org/mathscinet-getitem?mr=0029448
https://www.ams.org/mathscinet-getitem?mr=0103289
https://www.ams.org/mathscinet-getitem?mr=0308446
https://www.ams.org/mathscinet-getitem?mr=717706
https://www.ams.org/mathscinet-getitem?mr=732692
https://www.ams.org/mathscinet-getitem?mr=736455
https://www.ams.org/mathscinet-getitem?mr=1149288
https://www.ams.org/mathscinet-getitem?mr=1749300
https://www.ams.org/mathscinet-getitem?mr=2178284
https://www.ams.org/mathscinet-getitem?mr=2242773
https://www.ams.org/mathscinet-getitem?mr=2398355
https://www.ams.org/mathscinet-getitem?mr=2431210
https://www.ams.org/mathscinet-getitem?mr=3139572
https://www.ams.org/mathscinet-getitem?mr=3740576
https://www.ams.org/mathscinet-getitem?mr=3771780
https://www.ams.org/mathscinet-getitem?mr=791622


FUNCTIONS INVOLVING A GAMMA FUNCTION 4721

College of Science and Technology, North China Electric Power University, Baod-

ing, Hebei Province, 071051, People’s Republic of China — and — Department of Science

and Technology, State Grid Zhejiang Electric Power Company Research Institute,

Hangzhou, Zhejiang, 310014, People’s Republic of China

Email address: yzhkm@163.com

College of Science and Technology, North China Electric Power University, Baod-

ing, Hebei Province, 071051, People’s Republic of China

Email address: tianjf@ncepu.edu.cn


	1. Introduction
	2. Properties of the auxiliary function 𝜂_{𝑢,𝑣}(𝑡)
	3. Main results
	4. Some new inequalities for gamma, psi, and polygamma functions
	References

