WEIGHTED TRUDINGER-MOSER INEQUALITIES AND ASSOCIATED LIOUVILLE TYPE EQUATIONS

MARTA CALANCHI, EUGENIO MASSA, AND BERNHARD RUF

(Communicated by Joachim Krieger)

Abstract

We discuss some Trudinger-Moser inequalities with weighted Sobolev norms. Suitable logarithmic weights in these norms allow an improvement in the maximal growth for integrability when one restricts to radial functions.

The main results concern the application of these inequalities to the existence of solutions for certain mean-field equations of Liouville type. Sharp critical thresholds are found such that for parameters below these thresholds the corresponding functionals are coercive, and hence solutions are obtained as global minima of these functionals. In the critical cases the functionals are no longer coercive and solutions may not exist.

We also discuss a limiting case, in which the allowed growth is of double exponential type. Surprisingly, we are able to show that in this case a local minimum persists to exist for critical and also for slightly supercritical parameters. This allows us to obtain the existence of a second (mountainpass) solution for almost all slightly supercritical parameters using the Struwe monotonicity trick. This result is in contrast to the non-weighted case, where positive solutions do not exist (in star-shaped domains) in the critical and supercritical cases.

1. Introduction

The well-known Trudinger-Moser (TM) inequality provides continuous embeddings into exponential Orlicz spaces in the borderline cases of the standard Sobolev embeddings when the embeddings into Lebesgue L^{p} spaces hold for every $p<\infty$ but not for $p=\infty$. Let us recall Moser's result for the case $N=2$:

Theorem A (Moser Mos71]). Let $N=2$. Then

$$
\sup _{\int_{\Omega}|\nabla u|^{2} d x \leq 1} \int_{\Omega} e^{\alpha u^{2}} \begin{cases}\leq C|\Omega| & \text { if } \alpha \leq 4 \pi \tag{1.1}\\ =+\infty & \text { if } \alpha>4 \pi\end{cases}
$$

Received by the editors November 22, 2017, and, in revised form, March 29, 2018.
2010 Mathematics Subject Classification. Primary 35J25, 35B33, 46E35.
Key words and phrases. Trudinger-Moser inequality, Liouville type equations.
The first and third authors were partially supported by INdAM-GNAMPA Project 2016.
The second author was supported by grant \#2014/25398-0, São Paulo Research Foundation (FAPESP) and grants \#308354/2014-1, \#303447/2017-6, CNPq/Brazil.

A useful variant of the TM inequality is the following logarithmic TM inequality:
Theorem B (Moser Mos71]). Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\log \int_{\Omega} e^{u} d x \leq \frac{1}{16 \pi} \int_{\Omega}|\nabla u|^{2} d x+C, \quad u \in H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

The value $\frac{1}{16 \pi}$ is optimal (see e.g. CLMP92).
1.1. Weighted Trudinger-Moser inequalities. Recent results concern the influence of weights on such type of inequalities. In CT05, AS07, dFdOdS16, for instance, the authors consider the effect of power weights in the integral term on the maximal growth. On the other hand, in [Cal14, CR15c, CR15a, CR15b, CRS17] the interest is devoted to the impact of weights in the Sobolev norm.

We concentrate our attention on this second type of results. More precisely, let $w \in L^{1}(\Omega)$ be a non-negative function, and consider the weighted Sobolev space

$$
\begin{equation*}
H_{0}^{1}(\Omega, w)=c l\left\{u \in C_{0}^{\infty}(\Omega) ; \int_{\Omega}|\nabla u|^{2} w(x) d x<\infty\right\} . \tag{1.3}
\end{equation*}
$$

It turns out that for weighted Sobolev spaces of the form (1.3) logarithmic weights have a particular significance. However, as was observed in CR15a, Proposition 8], one needs to restrict attention to radial functions in order to obtain an actual improvement of the embedding inequalities. One is therefore led to consider problems of the following type: let $B \subset \mathbb{R}^{2}$ denote the unit ball in \mathbb{R}^{2}, and consider the weighted Sobolev space of radial functions

$$
\widetilde{H}_{\beta}=H_{0, r a d}^{1}\left(B, w_{\beta}\right):=c l\left\{u \in C_{0, r a d}^{\infty}(B) ;\|u\|_{\beta}^{2}:=\int_{B}|\nabla u|^{2} w_{\beta}(x) d x<\infty\right\},
$$

where

$$
\begin{equation*}
w_{\beta}(x)=\left(\log \frac{e}{|x|}\right)^{\beta}, \beta \geq 0 \tag{1.4}
\end{equation*}
$$

The following results were obtained in CR15a and will be fundamental in this paper.

Theorem C (CR15a]). Let $\beta \in[0,1)$. Then
(a)

$$
\int_{B} e^{|u|^{\gamma}} d x<+\infty, \text { for all } u \in \widetilde{H}_{\beta} \Longleftrightarrow \gamma \leq \gamma_{\beta}:=\frac{2}{1-\beta}
$$

and

$$
\begin{equation*}
\sup _{u \in \widetilde{H}_{\beta},\|u\|_{\beta} \leq 1} \int_{B} e^{\alpha|u|^{\gamma_{\beta}}} d x<+\infty \tag{b}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\alpha \leq \alpha_{\beta}:=2[2 \pi(1-\beta)]^{\frac{1}{1-\beta}} \quad(\text { critical growth }) . \tag{1.5}
\end{equation*}
$$

Remark 1.1. This result extends the Trudinger-Moser inequality (1.1). Indeed, for $\beta=0$ we recover the classical TM inequality where $\gamma_{0}=2$ and $\alpha_{0}=4 \pi$.

Going to the limiting case $\beta=1$ in Theorem \mathbb{C} one sees that the exponent γ of u in the integral can take any value; that is, we are again in a borderline case. But again, the embedding does not go into L^{∞}; in fact, we find a critical growth of double exponential type, as described in the following:

Theorem D (CR15a]). Let $\beta=1$ (i.e. $\left.w_{1}(x)=\log \frac{e}{|x|}\right)$. Then,
(a)

$$
\int_{B} e^{e^{u^{2}}} d x<+\infty \quad, \forall u \in \widetilde{H}_{1}=H_{0, r a d}^{1}\left(B, w_{1}\right)
$$

and
(b)

$$
\sup _{u \in \widetilde{H}_{1},\|u\|_{1} \leq 1} \int_{B} e^{a e^{2 \pi u^{2}}} d x<+\infty \Longleftrightarrow a \leq 2
$$

Finally, in the case $\beta>1$, one has the following result:
Theorem E (CR15a]. Let $\beta>1$. Then we have the following embedding:

$$
\widetilde{H}_{\beta}=H_{0, r a d}^{1}\left(B, w_{\beta}\right) \hookrightarrow L^{\infty}(B) .
$$

Logarithmic inequalities similar to (1.2) can be obtained also in this setting. We have the following results, which were partially obtained in a previous paper CR15c, but we recall the proofs for completeness in the Appendix.

Proposition 1.2.

(a) For $\beta \in[0,1)$, there exists a constant $C(\beta)$ such that

$$
\begin{equation*}
\log \left(\frac{1}{|B|} \int_{B} e^{|u|^{\theta_{\beta}}} d x\right) \leq \frac{1}{2 \lambda_{\beta}^{*}}\|u\|_{\beta}^{2}+C(\beta), \quad \forall u \in \widetilde{H}_{\beta}, \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{\beta}^{*}:=\pi(1-\beta)^{\beta}(2-\beta)^{2-\beta} 2^{1-\beta} \quad \text { and } \quad \theta_{\beta}=\frac{2}{2-\beta} \tag{1.7}
\end{equation*}
$$

(b) For $\beta=1$, there exists a constant $C_{M B}$ such that
(1.8) $\log \log \left(\frac{1}{|B|} \int_{B} e^{e^{|u|}} d x\right) \leq \frac{1}{2 \pi}\|u\|_{1}^{2}+\log \left(\frac{1}{8}+\frac{\log C_{M B}}{e^{\frac{1}{2 \pi}\|u\|_{1}^{2}}}\right), \quad \forall u \in \widetilde{H}_{1}$.

The values $\frac{1}{2 \lambda_{\beta}^{*}}$ and $\frac{1}{2 \pi}$ in (1.6) and (1.8), respectively, are optimal.
Remark 1.3. Notice that in the case $\beta=0$ inequality (1.6) gives the classical logarithmic TM inequality (1.2); actually, $\lambda_{0}^{*}=8 \pi$ and $\theta_{0}=1$.
Remark 1.4. The optimality of $\frac{1}{2 \lambda_{0}^{*}}$ can be found in CLMP92, while the optimality of $\frac{1}{2 \lambda_{\beta}^{*}}$ and $\frac{1}{2 \pi}$ in (1.6) and (1.8), respectively, is new, and it will be a consequence of Theorem 1.5 in this paper.
1.2. Mean field equations of Liouville type. The logarithmic version of the TM inequality is crucial in the study of mean field equations of Liouville type (see [Lio53]) of the form

$$
\left\{\begin{align*}
-\Delta u & =\lambda \frac{e^{u}}{\int_{\Omega} e^{u}} & & \text { in } \Omega \subset \mathbb{R}^{2}, \tag{1.9}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

Equation (1.9) was derived by Caglioti, Lions, Marchioro, and Pulvirenti in their pioneering works [CLMP92, CLMP95 from the mean field limit of point vortices of the Euler flow; see also Chanillo-Kiessling CK94 and Kiessling Kie93. Equation (1.9) occurs also in the study of multiple condensate solutions for the Chern-SimonsHiggs theory; see Tarantello Tar96, Tar04.

In particular, it has been shown (see also [Li99], CL10]) that equation (1.9) has a solution if

$$
\begin{equation*}
\lambda<8 \pi \tag{1.10}
\end{equation*}
$$

while a Pohozhaev identity shows that no solution exists for $\lambda \geq 8 \pi$ in star-shaped domains (see e.g. [LMP92]). In view of this, we call the case $\lambda<8 \pi$ subcritical, the case $\lambda=8 \pi$ critical, and the case $\lambda>8 \pi$ supercritical.

The existence of a solution in the subcritical case can be proved by using variational methods; in fact, solutions of (1.9) are critical points of the functional

$$
\begin{equation*}
J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}, \quad J(u)=\frac{1}{2}\|u\|^{2}-\lambda \log \int_{\Omega} e^{u} d x . \tag{1.11}
\end{equation*}
$$

Indeed, for $\lambda<8 \pi$, as a consequence of the logarithmic TM inequality, the functional J is coercive, hence bounded from below, and then admits an absolute minimum. For $\lambda=8 \pi$ the functional J is still bounded below, but no longer coercive, and the infimum is not attained.
1.3. Main results. In this article we concentrate our attention on some functionals similar to (1.11) and related non-local equations that generalize (1.9), under the impact of the above-mentioned weighted logarithmic inequalities.

We define the following functionals:
(i) For $\beta \in[0,1)$, let

$$
\begin{equation*}
J_{\lambda}: \widetilde{H}_{\beta} \rightarrow \mathbb{R}, \quad J_{\lambda}(u):=\frac{1}{2}\|u\|_{\beta}^{2}-\lambda \log \left(f_{B} e^{u^{\theta}} d x\right) \tag{1.12}
\end{equation*}
$$

where $\theta=\theta_{\beta}$ from Proposition 1.2, and writing $u^{\theta}:=|u|^{\theta-1} u$ and $f_{B}:=\frac{1}{|B|} \int_{B}$.
(ii) For $\beta=1$, let

$$
\begin{align*}
& =1, \text { let } \tag{1.13}\\
& I_{\lambda}: \widetilde{H}_{1} \rightarrow \mathbb{R}, \quad I_{\lambda}(u):=\frac{1}{2}\|u\|_{1}^{2}-\lambda \log \log \left(f_{B} e^{e^{u}} d x\right) .
\end{align*}
$$

Our purpose in this paper is to study the geometry of these functionals in dependence of the positive parameter λ and, as a consequence, to obtain existence results for some related non-local equations. In particular we will prove the following results.

Theorem 1.5.

(i) For $\beta \in[0,1)$, the functional J_{λ} is coercive for $\lambda \in\left[0, \lambda_{\beta}^{*}\right)$, and it is bounded from below if and only if $\lambda \leq \lambda_{\beta}^{*}$ (see expression (1.7)).
(ii) For $\beta=1$, the functional I_{λ} is coercive for $\lambda \in[0, \pi)$, and it is bounded from below if and only if $\lambda \leq \pi$.

Both results have a natural application to some weighted mean field equations of Liouville type. As for equation (1.9) we distinguish the subcritical and critical cases.

Theorem 1.6 (Subcritical case).
(i) Let $\beta \in[0,1)$ and $\theta=\theta_{\beta}=\frac{2}{2-\beta}$. Then the equation

$$
\left\{\begin{align*}
-\operatorname{div}\left(w_{\beta}(x) \nabla u\right) & =\lambda \frac{\theta|u|^{\theta-1} e^{u^{\theta}}}{\int_{B} e^{u^{\theta}}} & & \text { in } B \tag{1.14}\\
u & =0 & & \text { on } \partial B
\end{align*}\right.
$$

has a positive weak radial solution, which is a global minimizer for J_{λ}, for every value $\lambda \in\left(0, \lambda_{\beta}^{*}\right)$.
(ii) The equation

$$
\left\{\begin{align*}
-\operatorname{div}\left(w_{1}(x) \nabla u\right) & =\lambda \frac{e^{u}}{\log f_{B} e^{e^{u}}} \frac{e^{e^{u}}}{\int_{B} e^{e^{u}}} & & \text { in } B, \tag{1.15}\\
u & =0 & & \text { on } \partial B
\end{align*}\right.
$$

has a positive weak radial solution, which is a global minimizer for I_{λ}, for every $\lambda \in(0, \pi)$.

In contrast to the situation for equation (1.9), and somewhat surprisingly, for problem (1.15) with the double exponential non-linearity we can also prove an existence result for the critical and slightly supercritical case:
Theorem 1.7 (Critical and supercritical cases). There exists $\varepsilon_{0}>0$ such that equation (1.15) has a positive weak radial solution, which is a local minimizer for I_{λ}, also for $\lambda \in\left[\pi, \pi+\varepsilon_{0}\right)$. When $\lambda=\pi$ the minimum is global.
Remark 1.8. The non-linearities in the problems above are always non-negative, and so only trivial or positive solutions may exist. In fact, the trivial solution exists for problem (1.14) if $\beta \in(0,1)$, while for $\beta=0$ (problem (1.9)) and for $\beta=1$ (problem (1.15)) $u=0$ is not a solution.

We observe that in the supercritical situation, that is, for $\lambda \in\left(\pi, \pi+\varepsilon_{0}\right)$, the functional I_{λ} has a mountain-pass structure, since we have a local minimum, and directions along which the functional tends to $-\infty$. A direct application of the Mountain-Pass Theorem by Ambrosetti-Rabinowitz AR73] seems difficult due to loss of compactness. However, we can apply the so-called "monotonicity trick" by Struwe Str88 (see also [ST98,Jea99]) to obtain

Theorem 1.9. Let ε_{0} be as in Theorem 1.7, Then for a.e. $\lambda \in\left(\pi, \pi+\varepsilon_{0}\right)$ equation (1.15) has a second positive radial solution which is of mountain-pass type.

2. Proofs

We first prove the result concerning the geometry of the functionals J_{λ} and I_{λ}.
Proof of Theorem 1.5. Coercivity for $\lambda<\lambda_{\beta}^{*}$ (resp. $\lambda<\pi$) is an immediate consequence of (1.6) and (1.8); actually (with $\lambda \geq 0$)

$$
J_{\lambda}(u) \geq\left(\frac{1}{2}-\frac{\lambda}{2 \lambda_{\beta}^{*}}\right)\|u\|_{\beta}^{2}-\lambda C(\beta)
$$

and

$$
\begin{aligned}
I_{\lambda}(u) & \geq\left(\frac{1}{2}-\frac{\lambda}{2 \pi}\right)\|u\|_{1}^{2}-\lambda \log \left(\frac{1}{8}+\frac{\log C_{M B}}{e^{\frac{\|u\|_{1}^{2}}{2 \pi}}}\right) \\
& \geq\left(\frac{1}{2}-\frac{\lambda}{2 \pi}\right)\|u\|_{1}^{2}-\lambda \log \left(\frac{1}{8}+\log C_{M B}\right) .
\end{aligned}
$$

The above estimates also show that the functionals J_{λ} and I_{λ} are bounded from below when $\lambda \leq \lambda_{\beta}^{*}($ resp. $\lambda \leq \pi)$.

Sharpness is much more delicate. When λ exceeds those critical values, the functionals are not bounded from below: we will produce a sequence along which they tend to $-\infty$.

Case $(\beta \in(0,1))$. We evaluate the functional along a generalized Moser sequence (see CR15a]): let $u_{k}(x)=\frac{\psi_{k}(t)}{\sqrt{2 \pi(1-\beta)}}$ with $|x|=e^{-t}$, where

$$
\psi_{k}(t)= \begin{cases}\frac{(1+t)^{1-\beta}-1}{\sqrt{(1+k)^{1-\beta}-1}} & \text { for } t \leq k \tag{2.1}\\ \sqrt{(1+k)^{1-\beta}-1} & \text { for } t>k\end{cases}
$$

With this definition one has $\left\|u_{k}\right\|_{\beta}=1$.
We set $\alpha_{k}=C \sqrt{2 \pi(1-\beta)}\left(\sqrt{(1+k)^{1-\beta}-1}\right)^{1 /(1-\beta)}$, where C will be fixed later, and evaluate the functional (1.12) along the sequence $\left\{\alpha_{k} u_{k}\right\}$: using the new variable t the functional reads as

$$
J_{\lambda}\left(\alpha_{k} u_{k}\right)=\frac{\alpha_{k}^{2}}{2}-\lambda \log \left[2 \int_{0}^{\infty} \exp \left(\left|\frac{\alpha_{k}}{\sqrt{2 \pi(1-\beta)}} \psi_{k}(t)\right|^{\theta_{\beta}}-2 t\right) d t\right]
$$

We estimate

$$
\begin{aligned}
& \int_{0}^{\infty} \exp \left(\left|\frac{\alpha_{k}}{\sqrt{2 \pi(1-\beta)}} \psi_{k}(t)\right|^{\theta_{\beta}}-2 t\right) d t \\
&=\int_{0}^{\infty} \exp \left(\left|C\left(\sqrt{(1+k)^{1-\beta}-1}\right)^{\frac{1}{(1-\beta)}} \psi_{k}(t)\right|^{\theta_{\beta}}-2 t\right) d t \\
& \geq \int_{k}^{\infty} \exp \left(\left|C\left(\sqrt{(1+k)^{1-\beta}-1}\right)^{\frac{1}{(1-\beta)}+1}\right|^{\theta_{\beta}}-2 t\right) d t \\
&=\frac{1}{2} \exp \left[\left|C\left(\sqrt{(1+k)^{1-\beta}-1}\right)^{(2-\beta) /(1-\beta)}\right|^{2 /(2-\beta)}-2 k\right] \\
&=\frac{1}{2} \exp \left[C^{2 /(2-\beta)}\left[(1+k)^{1-\beta}-1\right]^{1 /(1-\beta)}-2 k\right] .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& J_{\lambda}\left(\alpha_{k} \psi_{k}\right) \leq C^{2}\left[(1+k)^{1-\beta}-1\right]^{\frac{1}{1-\beta}} \pi(1-\beta) \tag{2.2}\\
&-\lambda\left[C^{2 /(2-\beta)}\left[(1+k)^{1-\beta}-1\right]^{1 /(1-\beta)}-2 k\right]
\end{align*}
$$

We now set $C^{2 /(2-\beta)}=2 \frac{2-\beta}{1-\beta}+2 \delta$, for some $\delta>0$.

Since $(2+\delta)\left[(1+k)^{1-\beta}-1\right]^{1 /(1-\beta)}-2 k \rightarrow \infty$ when $k \rightarrow \infty$, we estimate, for k large,

$$
\begin{aligned}
C^{2 /(2-\beta)}\left[(1+k)^{1-\beta}-1\right]^{\frac{1}{1-\beta}}-2 k & \geq\left[2 \frac{2-\beta}{1-\beta}-2+\delta\right]\left[(1+k)^{1-\beta}-1\right]^{\frac{1}{1-\beta}} \\
& =\left[\frac{2}{1-\beta}+\delta\right]\left[(1+k)^{1-\beta}-1\right]^{\frac{1}{1-\beta}}
\end{aligned}
$$

Then

$$
\begin{equation*}
J\left(\alpha_{k} \psi_{k}\right) \leq\left[(1+k)^{1-\beta}-1\right]^{\frac{1}{1-\beta}}\left[\left(\left[2 \frac{2-\beta}{1-\beta}\right]+2 \delta\right)^{2-\beta} \pi(1-\beta)-\lambda\left[\frac{2}{1-\beta}+\delta\right]\right] \tag{2.3}
\end{equation*}
$$

Let $\lambda=(1+\varepsilon) \lambda_{\beta}^{*}=(1+\varepsilon)\left(\left[2 \frac{2-\beta}{1-\beta}\right]\right)^{2-\beta} \pi(1-\beta)^{2} / 2$, for some $\varepsilon>0$. Then (2.3) can be rewritten as

$$
J_{\lambda}\left(\alpha_{k} \psi_{k}\right) \leq\left[(1+k)^{1-\beta}-1\right]^{\frac{1}{1-\beta}}\left(2 \frac{2-\beta}{1-\beta}\right)^{2-\beta} \pi(1-\beta)\{\cdots\}
$$

where

$$
\{\cdots\}=\left\{\left(1+\frac{\delta(1-\beta)}{2-\beta}\right)^{2-\beta}-(1+\varepsilon)\left(1+\delta \frac{1-\beta}{2}\right)\right\} .
$$

Since this term tends to $-\varepsilon$ as $\delta \rightarrow 0$, the expression in braces is negative for $\delta>0$ small enough, and then $J \rightarrow-\infty$ along this sequence.

Case ($\beta=1$). Again we prove that the value $\lambda=\pi$ is sharp by considering a generalized Moser sequence: let $u_{k}(x)=\frac{\psi_{k}(t)}{\sqrt{2 \pi}}$ with $|x|=e^{-t}$, where now we use the sequence

$$
\psi_{k}(t)= \begin{cases}\frac{\log (1+t)}{\sqrt{\log (1+k)}} & \text { for } t \leq k \tag{2.4}\\ \sqrt{\log (1+k)} & \text { for } t>k\end{cases}
$$

Then $\left\|u_{k}\right\|_{1}=1$, and evaluating I_{λ} along the sequence $\left\{\alpha_{k} u_{k}\right\}$, with $\alpha_{k}=$ $C \sqrt{2 \pi \log (1+k)}$, we obtain

$$
I_{\lambda}\left(\alpha_{k} u_{k}\right)=\frac{\alpha_{k}^{2}}{2}-\lambda \log \log 2 \int_{0}^{\infty} \exp \left[e^{\left(\alpha_{k} \psi_{k} / \sqrt{2 \pi}\right)}-2 t\right] d t
$$

We estimate

$$
\begin{gathered}
\int_{0}^{\infty} \exp \left[e^{\left(\alpha_{k} \psi_{k} / \sqrt{2 \pi}\right)}-2 t\right] d t \geq \int_{k}^{\infty} \exp \left[e^{(C \sqrt{2 \pi \log (1+k)} \sqrt{\log (1+k)} / \sqrt{2 \pi})}-2 t\right] d t \\
=\int_{k}^{\infty} \exp \left[e^{(C \log (1+k)}-2 t\right]=\frac{1}{2} \exp \left[(1+k)^{C}-2 k\right] d t
\end{gathered}
$$

and then

$$
I_{\lambda}\left(\alpha_{k} u_{k}\right) \leq C^{2} \pi \log (1+k)-\lambda\left[\log \left((1+k)^{C}-2 k\right)\right] .
$$

For $\lambda=\pi+\varepsilon$ we choose $C=1+2 \delta(\varepsilon)$ and for k large we can estimate

$$
\log \left((1+k)^{1+2 \delta}-2 k\right) \geq \log \left((1+k)^{1+\delta}\right)
$$

and then

$$
I_{\lambda}\left(\alpha u_{k}\right) \leq(1+2 \delta)^{2} \pi \log (1+k)-(\pi+\varepsilon)(1+\delta) \log (1+k) .
$$

Since for $\delta>0$ small $(1+2 \delta)^{2} \pi<(\pi+\varepsilon)(1+\delta)$, we have proved that if $\lambda>\pi$, there exists a sequence along which $I_{\lambda} \rightarrow-\infty$.

In order to prove Theorem 1.6 we need a compactness result. The following lemma due to de Figueiredo-Miyagaki-Ruf (Lemma 2.1 in dFMR95) will be needed:

Lemma F (dFMR95). Let $\left(u_{n}\right)$ be a sequence of functions in $L^{1}(\Omega)$ converging to u in $L^{1}(\Omega)$. Assume that $F: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and that $F\left(u_{n}(x)\right)$ and $F(u(x))$ are also L^{1} functions. If

$$
\int_{\Omega}\left|F\left(u_{n}(x)\right) u_{n}(x)\right| d x \leq C
$$

then $F\left(u_{n}(x)\right)$ converges to $F(u(x))$ in L^{1}.
The compactness result is in the following lemma:
Lemma 2.1. Let $\beta \in[0,1)$ and $\theta \in\left(0, \gamma_{\beta}\right)$ or $\beta \geq 1$ and $\theta>0$.
Let $\left(u_{n}\right)$ be a bounded sequence in \widetilde{H}_{β}. Then there exists $u \in \widetilde{H}_{\beta}$ such that (up to a subsequence)

$$
\log f_{B} e^{u_{n}^{\theta}} d x \rightarrow \log f_{B} e^{u^{\theta}} d x \quad \text { as } n \rightarrow+\infty
$$

and, if $\beta \geq 1$,

$$
\log \log f_{B} e^{e^{u_{n}}} d x \rightarrow \log \log f_{B} e^{e^{u}} d x \quad \text { as } n \rightarrow+\infty
$$

Proof. Let $\left\|u_{n}\right\|_{\beta} \leq C$. Then there exists $u \in \widetilde{H}_{\beta}$ such that (up to a subsequence)

$$
u_{n} \rightharpoonup u \text { in } \widetilde{H}_{\beta}, \quad u_{n} \rightarrow u \text { in } L^{1}(B), \quad u_{n} \rightarrow u \text { a.e., as } n \rightarrow+\infty .
$$

Observe that the nonlinearity $e^{u^{\theta}}$ is subcritical with respect to the maximal growth γ_{β} given by Theorem C and that there exists a constant C_{1} (depending on C, θ, and β) such that

$$
\begin{equation*}
\left|t e^{t^{\theta}}\right| \leq C_{1} e^{\alpha_{\beta}\left(\frac{|t|}{C}\right)^{\gamma_{\beta}}}, \forall t \in \mathbb{R} . \tag{2.5}
\end{equation*}
$$

From Theorem C and this estimate we have that

$$
e^{\left|u_{n}\right|^{\theta}}, e^{|u|^{\theta}} \in L^{1} \quad \text { and } \quad \int_{B}\left|u_{n} e^{\left|u_{n}\right|^{\theta}}\right| d x \leq C_{2} .
$$

We now apply Lemma F using $F(t)=e^{t^{\theta}}$.
For the case $\beta \geq 1$ one proceeds in the same way using the inequalities

$$
\left|t e^{t^{\theta}}\right|,\left|t e^{e^{t}}\right| \leq C_{1} e^{2 e^{2 \pi\left(\frac{|t|}{C}\right)^{2}}}, \forall t \in \mathbb{R}
$$

Theorem D or E and applying Lemma F using $F(t)=e^{t^{\theta}}$ and $F(t)=e^{e^{t}}$.
We are now able to prove our first existence result.
Proof of Theorem 1.6. Since $\lambda<\lambda_{\beta}^{*}(\operatorname{resp} \lambda<\pi)$, the functional $J_{\lambda}\left(\right.$ resp. $\left.I_{\lambda}\right)$ is bounded from below by Theorem [1.5, and one can take a minimizing sequence $\left(u_{n}\right)$, i.e.,

$$
\lim _{n \rightarrow+\infty} J_{\lambda}\left(u_{n}\right)=m=\inf _{i \in \widetilde{H}_{\beta}} J_{\lambda}(u),
$$

which is trivially bounded in \widetilde{H}_{β} by coercivity. Therefore there exists $u \in \widetilde{H}_{\beta}$ such that (up to a subsequence)

$$
u_{n} \rightharpoonup u \text { in } \widetilde{H}_{\beta}, \quad u_{n} \rightarrow u \text { in } L^{1}(B), \quad u_{n} \rightarrow u \text { a.e., as } n \rightarrow+\infty .
$$

By Lemma 2.1 and the weak lower semicontinuity of the norm,

$$
m \leq J_{\lambda}(u) \leq \liminf _{n \rightarrow+\infty} J_{\lambda}\left(u_{n}\right)=m
$$

Then u is a global minimizer and therefore a solution of problem (1.14). The case $\beta=1$ is analogous.

When $\beta=0$ or $\beta=1$ the solution obtained is positive by Remark 1.8, For $\beta \in(0,1)$ we still have to show that the obtained solution is not trivial. This is the case since the origin is not a minimizer. Indeed, let $v \in \widetilde{H}_{\beta}, v \not \equiv 0,0 \leq v \leq 1$, $t \in(0,1)$: then $e^{(t v)^{\theta}} \geq 1+(t v)^{\theta}$ and

$$
f_{B} e^{(t v)^{\theta}} d x \geq 1+f_{B}(t v)^{\theta} d x
$$

Since $f_{B}(t v)^{\theta} d x \leq 1$ we can use the estimate $\log (1+\tau) \geq \frac{1}{2} \tau$ for $\tau \in(0,1)$ to conclude that

$$
\log f_{B} e^{(t v)^{\theta}} d x \geq \frac{1}{2} f_{B}(t v)^{\theta} d x
$$

With this we get

$$
J_{\lambda}(t v)=\frac{t^{2}}{2}\|v\|_{\beta}^{2}-\lambda \log f_{B} e^{(t v)^{\theta}} d x \leq \frac{t^{2}}{2}\|v\|_{\beta}^{2}-\frac{\lambda}{2} t^{\theta} f_{B} v^{\theta} d x .
$$

Since $\theta \in(1,2)$, the above expression is negative for t small and then $m<0=$ $J_{\lambda}(0)$.

In the next proof we consider problem (1.15) when $\lambda \geq \pi$.
Proof of Theorem 1.7. Beyond the threshold $\lambda=\pi$. The functional I_{π} is still bounded from below by Theorem 1.5. We need to prove that minimizing sequences are still bounded, despite that in this case coercivity does not hold. However, the particular form of the logarithmic TM inequality will help in this direction.

Let $\left(u_{n}\right)$ be a minimizing sequence, that is,

$$
I_{\pi}\left(u_{n}\right) \rightarrow m=\inf _{u \in \widetilde{H}_{1}} I_{\pi}(u)
$$

We observe first that the infimum cannot be positive, since $m \leq I_{\pi}(0)=0$. On the other hand, from inequality (1.8) we have

$$
I_{\pi}\left(u_{n}\right)=\frac{1}{2}\left\|u_{n}\right\|_{1}^{2}-\pi \log \log \left(f_{B} e^{e^{u_{n}}} d x\right) \geq-\pi \log \left(\frac{1}{8}+\frac{\log C_{M B}}{e^{\frac{\left\|u_{n}\right\|_{1}^{2}}{2 \pi}}}\right) .
$$

If $\left\|u_{n}\right\|_{1} \rightarrow \infty$ we would have

$$
0 \geq m=\lim _{n \rightarrow+\infty} I_{\pi}\left(u_{n}\right) \geq \liminf _{n \rightarrow+\infty}\left[-\pi \log \left(\frac{1}{8}+\frac{\log C_{M B}}{e^{\frac{\left\|u_{n}\right\|_{1}^{2}}{2 \pi}}}\right)\right]=\pi \log 8>0
$$

a contradiction. Then $\left(u_{n}\right)$ is bounded and we are done (as in the proof of Theorem (1.6).

Now we prove that a minimum (now only local) exists also for $\lambda=\pi+\varepsilon>\pi, \varepsilon$ small. Let $R>0$ be such that

$$
\begin{equation*}
\frac{\log C_{M B}}{e^{\frac{\|u\|_{1}^{2}}{2 \pi}}}<\frac{1}{8} \text { for }\|u\|_{1} \geq R \tag{2.6}
\end{equation*}
$$

Then for $\|u\|_{1}=R$ and every $\varepsilon>0$, one has

$$
\begin{equation*}
-(\pi+\varepsilon) \log \left(\frac{1}{8}+\frac{\log C_{M B}}{e^{\frac{\| \| \|_{1}^{2}}{2 \pi}}}\right) \geq-(\pi+\varepsilon) \log 1 / 4=(\pi+\varepsilon) \log 4 \geq \pi \log 4 \tag{2.7}
\end{equation*}
$$

As a consequence, for $\|u\|_{1}=R$ and $\varepsilon>0$ small enough,

$$
\begin{aligned}
I_{\pi+\varepsilon}(u) & \geq\left(\frac{1}{2}-\frac{\pi+\varepsilon}{2 \pi}\right) R^{2}+\pi \log 4 \\
& \geq-\frac{\varepsilon}{2 \pi} R^{2}+\pi \log 4>\pi \log 2>0
\end{aligned}
$$

Then let $B_{R}=\left\{u \in \widetilde{H}_{1}:\|u\|_{1}<R\right\}$. Since

$$
\begin{equation*}
\inf _{u \in \overline{B_{R}}} I_{\pi+\varepsilon}(u) \leq I_{\pi+\varepsilon}(0)=0<\inf _{u \in \partial B_{R}} I_{\pi+\varepsilon}(u) \tag{2.8}
\end{equation*}
$$

we conclude (up to a compactness argument as above) that the infimum is attained at a local minimum in B_{R}, which then yields a non-trivial positive solution.

We observe that the limiting value for ε_{0} can be estimated in terms of $C_{M B}$: in the argument above (but a finer estimate could be obtained) $R>2 \pi \log \left(8 \log C_{M B}\right)$ and then $\varepsilon_{0}<\frac{\log 2}{2 \log ^{2}\left(8 \log C_{M B}\right)}$.

In order to prove Theorem 1.9, we will use the following generalization (whose proof is given in the Appendix) of a result by Jeanjean Jea99] which is based on the so-called monotonicity trick by Struwe; see [Str88,ST98].

Theorem 2.2. Let X be a Banach space equipped with the norm $\|\cdot\|$, and let $\mu: X \rightarrow X$ be a continuous map. We consider a family $\left(I_{\lambda}\right)_{\lambda \in J}\left(J \subset \mathbb{R}^{+}\right.$is an open interval) of C^{1}-functionals on X of the form

$$
I_{\lambda}(u)=A(u)-\lambda B(u), \quad \lambda \in J
$$

and suppose that
(i) $B(u) \geq 0$ for all $u \in \mu(X)$;
(ii) $I_{\lambda}(\mu(u)) \leq I_{\lambda}(u)$, for all $u \in X$ and $\lambda \in J$;
(iii) either $A(u) \rightarrow+\infty$ or $B(u) \rightarrow+\infty$ as $\|u\| \rightarrow+\infty$.

Assume that there are two fixed points v_{0} and v_{1} of μ such that for the family of maps

$$
\begin{equation*}
\Gamma=\left\{\gamma \in C([0,1], X), \gamma(0)=v_{0}, \gamma(1)=v_{1}\right\} \tag{2.9}
\end{equation*}
$$

it holds that

$$
\begin{equation*}
c_{\lambda}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))>\max \left\{I_{\lambda}\left(v_{1}\right), I_{\lambda}\left(v_{0}\right)\right\}, \quad \text { for all } \lambda \in J \tag{2.10}
\end{equation*}
$$

Then for almost every $\lambda \in J$ there exists a bounded $P S$-sequence for I_{λ} at level c_{λ}; i.e. there is $\left\{u_{n}\right\}_{n} \subset X$ with
(a) $\left\{u_{n}\right\}_{n}$ is bounded,
(b) $I_{\lambda}\left(u_{n}\right) \rightarrow c_{\lambda}$,
(c) $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in the dual space X^{\prime} of X.

Remark 2.3. When μ is the identity, this is exactly Jea99, Theorem 1.1].
Proof of Theorem 1.9. We apply Theorem 2.2 to our functional $I_{\pi+\varepsilon}, \varepsilon \in\left(0, \varepsilon_{0}\right)$, with $X=\widetilde{H}_{1}$ and $\eta(u)=|u|$. In view of (2.8) and Theorem [1.5)(ii), for all $\varepsilon_{1} \in$ $\left(0, \varepsilon_{0}\right)$ there exists $v_{1} \geq 0$ such that $I_{\pi+\varepsilon}$ with $\varepsilon \in\left(\varepsilon_{1}, \varepsilon_{0}\right)$ satisfies condition (2.10) with $v_{0}=0$. Hence, we find for a.e. $\varepsilon \in\left(\varepsilon_{1}, \varepsilon_{0}\right)$ a sequence $\left\{v_{n}\right\}$ satisfying (a), (b), and (c). Due to the arbitrariness of ε_{1} this is true for a.e. $\varepsilon \in\left(0, \varepsilon_{0}\right)$.

Since $\left\{v_{n}\right\}$ is bounded, we find a subsequence converging weakly and a.e. to $v \in \widetilde{H}_{1}$. Then the proof is easily concluded: by Lemma 2.1 we have $f_{B} e^{e^{v_{n}}} d x \rightarrow$ $f_{B} e^{e^{v}} d x>1$, and similarly one also obtains $\int_{B} e^{v_{n}} e^{e^{v_{n}}} \varphi d x \rightarrow \int_{B} e^{v} e^{e^{v}} \varphi d x$, for all $\varphi \in \widetilde{H}_{1}$. Thus, from

$$
0 \leftarrow I_{\pi+\varepsilon}^{\prime}\left(v_{n}\right)\left(v_{n}-v\right)=\int_{B} \nabla v_{n} \nabla\left(v_{n}-v\right) w_{1} d x-(\pi+\varepsilon) \frac{\int_{B} e^{v_{n}} e^{e^{v_{n}}}\left(v_{n}-v\right) d x}{\log f_{B} e^{e^{v_{n}}} d x \int_{B} e^{e^{v_{n}}} d x},
$$

we conclude that $\int_{B} \nabla v_{n} \nabla\left(v_{n}-v\right) w_{1} d x \rightarrow 0$. As a consequence $v_{n} \rightarrow v$ strongly and v is a weak solution of equation (1.15). It is different from the first solution since $I_{\pi+\varepsilon}(v)>0$ and positive by Remark 1.8,

3. Appendix

In this appendix we give, for the sake of completeness, the proof of the logarithmic TM inequalities that were already proved in [R15c and the proof of Theorem 2.2 .

Proof of Proposition 1.2. Let $\beta \in(0,1)$. By Young's inequality, if δ, δ^{\prime} are two conjugate exponents, then for every $s, t \geq 0$ one has

$$
\begin{equation*}
s t \leq \frac{(\tau s)^{\delta^{\prime}}}{\delta^{\prime}}+\frac{t^{\delta}}{\delta \tau^{\delta}}, \quad \forall \tau>0 \tag{3.1}
\end{equation*}
$$

We need δ, δ^{\prime} to be conjugate exponents and to satisfy

$$
\left\{\begin{array}{l}
\theta \delta=\gamma_{\beta}=\frac{2}{1-\beta}, \\
\theta \delta^{\prime}=2 .
\end{array}\right.
$$

This implies that

$$
\theta=\frac{2}{2-\beta}, \quad \delta=\frac{2-\beta}{1-\beta}, \quad \delta^{\prime}=2-\beta .
$$

Then one has, by taking $s=\|u\|_{\beta}^{\theta}$ and $t=\left(\frac{|u|}{\|u\|_{\beta}}\right)^{\theta}$ in (3.1) and selecting τ so that $\delta \tau^{\delta}=\frac{1}{\alpha_{\beta}}$ (see equation (1.5)),

$$
\begin{equation*}
|u|^{\theta} \leq \frac{\|u\|_{\beta}^{2}}{2 \lambda_{\beta}^{*}}+\alpha_{\beta}\left(\frac{|u|}{\|u\|_{\beta}}\right)^{\gamma_{\beta}} \tag{3.2}
\end{equation*}
$$

where λ_{β}^{*} is given in (1.7). Now let

$$
C(\beta)=\log \left(\sup _{u \in \widetilde{H}_{\beta} \backslash\{0\}} f_{B} e^{\alpha_{\beta}\left(\frac{|u|}{\|u\|_{\beta}}\right)^{\gamma_{\beta}}} d x\right)
$$

which is finite by Theorem \mathbf{C} Then we conclude that

$$
\log f_{B} e^{|u|^{\theta}} d x \leq \log \left(e^{\frac{\|u\|_{\beta}^{2}}{2 \lambda_{\beta}^{\beta}}} f e^{\alpha_{\beta}\left(\frac{|u|}{\|u\|_{\beta}}\right)^{\gamma_{\beta}}} d x\right) \leq \frac{\|u\|_{\beta}^{2}}{2 \lambda_{\beta}^{*}}+C(\beta) .
$$

Consider now the case $\beta=1$. Taking $a=\|u\|_{1}, b=\frac{|u|}{\|u\|_{1}}$, and $\varepsilon^{2}=\pi$ in

$$
\begin{equation*}
a b \leq \frac{a^{2}}{4 \varepsilon^{2}}+\varepsilon^{2} b^{2} \tag{3.3}
\end{equation*}
$$

we get

$$
\begin{equation*}
|u| \leq \frac{1}{4 \pi}\|u\|_{1}^{2}+\pi\left(\frac{u}{\|u\|_{1}}\right)^{2} \tag{3.4}
\end{equation*}
$$

so that

$$
\begin{aligned}
\left(f_{B} e^{e^{|u|}} d x\right) & \leq f_{B} \exp \left(e^{\frac{1}{4 \pi}\|u\|_{1}^{2}+\pi\left(\frac{u}{\|u\|_{1}}\right)^{2}}\right) d x \\
& \leq f_{B} \exp \left(e^{\frac{1}{4 \pi}\|u\|_{1}^{2}} e^{\pi\left(\frac{u}{\|u\|_{1}}\right)^{2}}\right) d x
\end{aligned}
$$

Let

$$
C_{M B}=\sup _{u \in \widetilde{H}_{1} \backslash\{0\}} f_{B_{1}(0)} \exp \left(2 e^{2 \pi\left(\frac{|u|}{\|u\|_{1}}\right)^{2}}\right) d x
$$

(which is finite by virtue of Theorem (D).
Now taking $a=e^{\frac{1}{4 \pi}\|u\|_{1}^{2}}, b=e^{\pi\left(\frac{u}{\|u\|_{1}}\right)^{2}}$, and $\varepsilon^{2}=2$ in (3.3), one gets

$$
\begin{aligned}
\log \log \left(f_{B} e^{e^{u}} d x\right) & \leq \log \log f_{B} \exp \left(\frac{1}{8} e^{\frac{1}{2 \pi}\|u\|_{1}^{2}}+2 e^{2 \pi\left(\frac{u}{\|u\|_{1}}\right)^{2}}\right) d x \\
& =\log \left[\frac{1}{8} e^{\frac{1}{2 \pi}\|u\|_{1}^{2}}+\log f_{B} e^{2 e^{2 \pi\left(\frac{u}{\|u\|_{1}}\right)^{2}}} d x\right] \\
& \leq \log \left(\frac{1}{8} e^{\frac{1}{2 \pi}\|u\|_{1}^{2}}+\log C_{M B}\right) \\
& \leq \frac{1}{2 \pi}\|u\|_{1}^{2}+\log \left(\frac{1}{8}+\frac{\log C_{M B}}{e^{\frac{\|u\|_{1}^{2}}{2 \pi}}}\right)
\end{aligned}
$$

Proof of Theorem 2.2. It suffices to show that for every $\lambda \in J$,

$$
\begin{equation*}
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\mu \circ \gamma(t))=: c_{\lambda}^{\mu} . \tag{3.5}
\end{equation*}
$$

Indeed, observe first that given a path $\gamma \in \Gamma$, we also have that path $\mu \circ \gamma \in \Gamma$, since μ is continuous and v_{0}, v_{1} are fixed points of μ. Hence, $c_{\lambda}^{\mu} \geq c_{\lambda}$ because every path $\mu \circ \gamma$ on the right also appears on the left. Condition (ii) gives the reversed inequality. This, together with (i), implies that the map $\lambda \mapsto c_{\lambda}$ is non-increasing and then c_{λ}^{\prime} exists for almost every $\lambda \in J$.

Then the proof can be completed as in Jea99, Theorem 1.1], proceeding by the following steps:

1) Given $\lambda \in J$ at which c_{λ}^{\prime} exists and a sequence $\left\{\lambda_{n}\right\} \subseteq J$ with $\lambda_{n} \nearrow \lambda$, there exist a constant $K=K(\lambda)>0$ and a sequence of paths $\gamma_{n} \in \Gamma$ such that

$$
\max _{t \in[0,1]} I_{\lambda}\left(\gamma_{n}(t)\right) \leq c_{\lambda}+\left(-c_{\lambda}^{\prime}+2\right)\left(\lambda-\lambda_{n}\right) .
$$

Moreover, if $\gamma_{n}(t)$ satisfies $I_{\lambda}\left(\gamma_{n}(t)\right) \geq c_{\lambda}-\left(\lambda-\lambda_{n}\right)$, then $\left\|\gamma_{n}(t)\right\| \leq K$.

In the proof of this step, it is important to observe that, in view of (3.5), the paths γ_{n} can be chosen so that they have image in $\mu(X)$, which allows us to use condition (i).
2) For $\alpha>0$ let $F_{\alpha}=\left\{u \in X:\|u\| \leq K+1\right.$ and $\left.\left|I_{\lambda}(u)-c_{\lambda}\right| \leq \alpha\right\}$, where K is the constant of the previous step. Then

$$
\begin{equation*}
\inf \left\{\left\|I_{\lambda}^{\prime}(u)\right\|: u \in F_{\alpha}\right\}=0, \text { for every } \alpha>0 \tag{3.6}
\end{equation*}
$$

Then, choosing $\alpha=\varepsilon_{n} \rightarrow 0$, we obtain by 2) a $u_{n} \in F_{\varepsilon_{n}}$ such that $\left\|I_{\lambda}^{\prime}\left(u_{n}\right)\right\| \leq \varepsilon_{n}$, which satisfies $\left\|u_{n}\right\| \leq K+1$ and $\left|I_{\lambda}\left(u_{n}\right)-c_{\lambda}\right| \leq \varepsilon_{n}$.

References

[AR73] Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. MR 0370183
[AS07] Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl. 13 (2007), no. 5-6, 585-603, DOI 10.1007/s00030-006-4025-9. MR 2329019
[Cal14] Marta Calanchi, Some weighted inequalities of Trudinger-Moser type, Analysis and topology in nonlinear differential equations, Progr. Nonlinear Differential Equations Appl., vol. 85, Birkhäuser/Springer, Cham, 2014, pp. 163-174. MR3330728
[CK94] Sagun Chanillo and Michael Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994), no. 2, 217-238. MR 1262195
[CL10] Chiun-Chuan Chen and Chang-Shou Lin, Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 12371272, DOI 10.3934/dcds.2010.28.1237. MR2644788
[CLMP92] E. Caglioti, P.-L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992), no. 3, 501-525. MR 1145596
[CLMP95] E. Caglioti, P.-L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II, Comm. Math. Phys. 174 (1995), no. 2, 229-260. MR 1362165
[CR15a] Marta Calanchi and Bernhard Ruf, On Trudinger-Moser type inequalities with logarithmic weights, J. Differential Equations 258 (2015), no. 6, 1967-1989, DOI 10.1016/j.jde.2014.11.019. MR3302527
[CR15b] Marta Calanchi and Bernhard Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension N, Nonlinear Anal. 121 (2015), 403-411, DOI 10.1016/j.na.2015.02.001. MR3348931
[CR15c] Marta Calanchi and Bernhard Ruf, Weighted Trudinger-Moser inequalities and applications, Vestnik YuUrGU. Ser. Mat. Model. Progr. 8 (2015), no. 3, 42-55.
[CRS17] Marta Calanchi, Bernhard Ruf, and Federica Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 3, Art. 29, 18, DOI 10.1007/s00030-017-0453-y. MR3656913
[CT05] Marta Calanchi and Elide Terraneo, Non-radial maximizers for functionals with exponential non-linearity in \mathbb{R}^{2}, Adv. Nonlinear Stud. 5 (2005), no. 3, 337-350, DOI 10.1515/ans-2005-0302. MR2151760
[dFdOdS16] Djairo G. de Figueiredo, João Marcos B. do Ó, and Ederson Moreira dos Santos, Trudinger-Moser inequalities involving fast growth and weights with strong vanishing at zero, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3369-3380, DOI 10.1090/proc/13114. MR3503705
[dFMR95] D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, Elliptic equations in \mathbf{R}^{2} with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139-153, DOI 10.1007/BF01205003. MR 1386960
[Jea99] Louis Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbf{R}^{N}, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809, DOI 10.1017/S0308210500013147. MR 1718530
[Kie93] Michael K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math. 46 (1993), no. 1, 27-56, DOI 10.1002/cpa.3160460103. MR1193342
[Li99] Yan Yan Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), no. 2, 421-444, DOI 10.1007/s002200050536. MR 1673972
[Lio53] J. Liouville, Sur l' equation aux derivées partielles, J. Math. Pure Appl. 18 (1853), 71-72.
[Mos71] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092, DOI 10.1512/iumj.1971.20.20101. MR0301504
[ST98] Michael Struwe and Gabriella Tarantello, On multivortex solutions in Chern-Simons gauge theory (English, with Italian summary), Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 109-121. MR1619043
[Str88] Michael Struwe, Critical points of embeddings of $H_{0}^{1, n}$ into Orlicz spaces (English, with French summary), Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, 425-464. MR 970849
[Tar96] Gabriella Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), no. 8, 3769-3796, DOI 10.1063/1.531601. MR1400816
[Tar04] Gabriella Tarantello, Analytical aspects of Liouville-type equations with singular sources, Stationary partial differential equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 491-592, DOI 10.1016/S1874-5733(04)800093. MR 2103693

Dipartimento di Matematica, Universitá di Milano, Via Saldini 50, 20133 Milano, Italia

Email address: marta.calanchi@unimi.it
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970, São Carlos SP, Brazil

Email address: eug.massa@gmail.com
Dipartimento di Matematica, Universitá di Milano, Via Saldini 50, 20133 Milano, Italia

Email address: bernhard.ruf@unimi.it

