1 Uniquely Colorable Graphs

A complete k-partite graph has only one partition into k color classes. Thus it has only one way to be colored, provided that we don’t care which particular colors are used.

Definition 1. A graph is uniquely k-colorable if any k-coloring produces the same vertex partition. A graph is uniquely colorable if any minimum coloring produces the same vertex partition.

Adding edges consistent with a minimum coloring of a graph limits the possible minimum colorings, until eventually the graph is uniquely colorable. Thus uniquely k-colorable graphs are a larger class containing maximal k-chromatic graphs. A sufficiently large size guarantees a graph is uniquely k-colorable.

Theorem 2. (Bollobas [1978]) If G is a k-colorable graph with $\delta (G) > \frac{3k-5}{3k-2}n$, then G is uniquely k-colorable.

Proof. We use induction on k. Let $k = 2$. If G is not connected, let H be a component of G of order $m \leq \frac{n}{2}$. Then $\delta (H) > \frac{m}{2}$, so H contains a triangle. But this is impossible, so G is connected and uniquely 2-colorable.

Now let $k \geq 3$ and suppose the result holds for smaller values of k. Given $x \in V(G)$, let $G_x = G[N(x)]$. Denote the order of G_x by n_x. Then $n_x > \frac{3k-5}{3k-2}n$, and

$$d_{G_x}(y) \geq \frac{3k-5}{3k-2}n - (n - n_x) = n_x - \frac{3}{3k-2}n > \frac{3(k-1)-5}{3(k-1)-2}n_x.$$

Therefore by the induction hypothesis G_x is uniquely $k-1$-colorable.

Now let u_1 and u_2 be vertices of G. As $d(u_i) > \frac{3k-5}{3k-2}n \geq \frac{3}{2}n > \frac{1}{7}n$, there is a vertex x adjacent to both u_1 and u_2, so u_1 and u_2 belong to G_x. Now a k-coloring of G always gives a $k-1$-coloring of G_x. As this $k-1$-coloring is unique, either u_1 and u_2 get the same color or they get different colors, independently of the k-coloring of G. Thus G is uniquely colorable.

One way to produce a uniquely colorable graph is to have many overlapping cliques. Trees are uniquely colorable, as every edge corresponds to a 2-clique. If G is uniquely k-colorable, and a vertex v of degree $k-1$ is added so that it is adjacent to vertices in all but one color class, the new graph is uniquely k-colorable. Thus k-trees are uniquely colorable. Adding a vertex with degree less than $k-1$ yields more than one possible color for this vertex, so a uniquely k-colorable graph G has $\delta(G) \geq k-1$.

Lemma 3. (HHR [1969]) In a uniquely colorable graph, any two color classes induce a connected graph.

Proof. If not, the colors could be exchanged on one component of the graph they induce.

Bollobas [1978] showed that any graph with $\delta(G) > \frac{k-2}{k-1}n$ so that each pair of color classes induce a connected subgraph is uniquely k-colorable.

Theorem 4. (Shao ji [1990]) A uniquely $k+1$-colorable graph has $m \geq kn - \frac{k(k+1)}{2}$.

Proof. Let G be uniquely $k+1$-colorable with color classes V_i. Each edge of G is in exactly one subgraph induced by two color classes. Thus

$$m(G) = \sum_{i \neq j} m(G[V_i \cup V_j])$$

$$\geq \sum_{i \neq j} (|V_i \cup V_j| - 1)$$

$$= \sum_{i \neq j} |V_i \cup V_j| - \binom{k+1}{2}$$

$$= kn - \frac{k(k+1)}{2}.$$

Uniquely colorable maximal k-degenerate graphs have $m = kn - \frac{k(k+1)}{2}$. Note that any uniquely 4-colorable graph has $m \geq 3n - 6$. Thus any uniquely 4-colorable planar graph is maximal planar (Chartrand/Geller [1969]). A natural example of such graphs are planar 3-trees.

Theorem 5. (Fowler [1998]) Every uniquely 4-colorable planar graph is a 3-tree.
The proof of this theorem uses techniques from the proof of the Four Color Theorem. In fact, Fowler showed that any maximal planar graph that is not a 3-tree has at least two 4-colorings, which generalizes the Four Color Theorem.

Any 3-colorable maximal planar graph is uniquely 3-colorable, but maximality is not required. Aksionov [1977] showed that any uniquely 3-colorable planar graph with \(n \geq 5 \) has at least three triangles, and all such graphs are maximal 2-degenerate. LZSX [2017] proved that any uniquely 3-colorable planar graph with at most four triangles has two adjacent triangles.

Surprisingly, there are also triangle-free uniquely 3-colorable graphs. The example below has one edge deleted from the Chvátal graph (HHR [1969]).

![Graph](image)

This result has been generalized to large girths using a probabilistic argument.

Theorem 6. (Nesetril [1973], Erdős [1974], Bollobás/Sauer [1976]) For all \(k \geq 2 \) and \(g \geq 3 \) there is a uniquely \(k \)-colorable graph with girth at least \(g \).

The graph above has \(m > 2n - 3 \). AMS [2001] showed that the following graph is uniquely 3-colorable, triangle-free, and has \(m = 2n - 3 \).

![Graph](image)

Li/Xu [2016] found an example of such a graph with order 16.

Exercises

1. Characterize uniquely 2-colorable graphs.
2. Determine which graphs in the following classes are uniquely colorable.
 a. \(K_n \)
 b. \(C_n \)
 c. \(W_n \)
3. Show that if \(G \) is \(k \)-critical and uniquely \(k \)-colorable, then \(G = K_k \).
4. Prove or disprove: If \(G \) is \((k + 1)\)-critical, then \(G - e \) is uniquely \(k \)-colorable for any edge \(e \).
5. (Bollobás [1978]) Show that the bound in Theorem 2 is sharp for all \(k \).
6. (Bollobás [1978]) Show that the graph \(H \) formed from \(K_3 \square K_2 \) by substituting \(K_1 \) for each vertex. Form \(G \) by joining \(H \) to \(K_{3 \ldots, 3} \) (there are \(k - 3 \) partite sets). Show that this graph is not uniquely \(k \)-colorable and \(\delta(G) = \frac{k^2 + k}{2} n \). (Note: Bollobás showed that any graph with larger minimum degree so that each pair of color classes induce a connected subgraph is uniquely \(k \)-colorable.)
7. Prove or disprove: A maximal \(k \)-degenerate graph is uniquely colorable if and only if it is a \(k \)-tree.
8. Prove or disprove: A chordal graph is uniquely colorable if and only if it is a \(k \)-tree.

9. Let \(G \) be a uniquely \(k \)-colorable graph with \(d(v) = k - 1 \) for some vertex \(v \). Show that \(G - v \) is uniquely colorable.

10. Show that a uniquely \(k \)-colorable graph \(G \) has \(\kappa(G) \geq k - 1 \).

11. Show that \(G \) and \(H \) are uniquely colorable graphs if and only if \(G + H \) is uniquely colorable.

12. (Li/Xu [2016]) Let \(G_1 \) and \(G_2 \) be uniquely 3-colorable graphs and \(u_i \) and \(v_i \) be differently colored vertices in the unique coloring of \(G_i, i \in \{1, 2\} \).
 a. Form \(G \) by identifying \(u_1 \) with \(u_2 \) and \(v_1 \) with \(v_2 \). Show that \(G \) is uniquely 3-colorable.
 b. Form \(G \) by identifying \(u_1 \) with \(u_2 \) and adding edge \(v_1v_2 \). Show that \(G \) is uniquely 3-colorable.
 c. Describe a method for constructing a uniquely 3-colorable graph from \(G_1 \cup G_2 \) by adding three edges.

13. (Chartrand/Geller [1969]) Show that an outerplanar graph \(G \) of order \(n \geq 3 \) is uniquely 3-colorable if and only if \(G \) is maximal outerplanar.

14. (Chartrand/Geller [1969]) Show that if a 2-connected 3-chromatic plane graph \(G \) and at most one region of \(G \) is not a triangle, then \(G \) is uniquely 3-colorable. Show that this statement is false if there are two non-triangular regions.

15. Verify that the graph formed by deleting one edge from the outer 4-cycle of the Chvatal graph is uniquely 3-colorable.

16. (Chao/Chen [1993]) Show that for all \(n \geq 12 \), there is a uniquely 3-colorable triangle-free graph.

17. (Chao/Chen [1993]) Show that there is a 5-regular uniquely 3-colorable triangle-free graph of order 24.

18. Prove or disprove: There is a cubic uniquely 3-colorable graph.

19. + (Li/Xu [2016]) Show that the following graph is uniquely 3-colorable, triangle-free, and has \(m = 2n - 3 \). (Note: Li/Xu use a construction based on this graph to show that there are infinitely many 4-regular uniquely 3-colorable triangle-free graphs.)

20. + Verify that the graph of AMS [2001] is uniquely 3-colorable.

References

