ERRATA
 A FIRST COURSE IN STOCHASTIC CALCULUS

This is the errata to the textbook A First Course in Stochastic Calculus published by the AMS in November 2021. I will keep the errata updated regularly. If you find any typos/mistakes please email me at lparguin@gmail.com. I will add your name to the acknowledgements.

Acknowledgements

I thank my colleague Prof. Elena Kosygina for pointing out omissions and corrections in the book. I am also extremely grateful to the following people for finding many typos/mistakes

- Prof. Joe Chen (Colgate) and his students Chris Deng and Hieu Do;
- Prof. Prof. Vassilis Papanicolaou (NTU Athens);
- Prof. Raluca Balan (Ottawa).

Chapter 1

- Equation (1.12): $\mathbf{E}\left[e^{a \lambda X}\right]$ should be $\mathbf{E}\left[e^{\lambda X}\right]$.

Chapter 2

- Equation 2.7: The inner integral should be $\int_{-\infty}^{\sqrt{6}-\frac{1}{\sqrt{3}} z_{1}}$.
- Example 2.14: Consider a Gaussian random vector $(X, Y)\left(\right.$ instead of $\left.\left(X_{1}, X_{2}\right)\right)$
- Example 2.17: As before Write (X, Y) (instead of $\left(X_{1}, X_{2}\right)$) to be consistent with Example 2.14
- Box-Mueller should be spelled Box-Muller throughout the chapter.
- Lemma 2.12 and Exercise 2.11: The Gaussian random variables have mean 0.
- Example 2.20: $\mathbf{E}\left[Z_{2}^{2}\right]$ should $\mathbf{E}\left[X_{1}^{2}\right]$ instead of $\mathbf{E}\left[X_{2}^{2}\right]$ twice.
- Lemma 2.23: The assumption that the processes are independent is missing.
- Example 2.29: The first covariance should be

$$
\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=\frac{e^{-(t-s)}}{2}\left(1-e^{-2 s}\right)
$$

To be consistent, the second covariance should be

$$
\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=\frac{e^{-(t-s)}}{2}
$$

- Exercise 2.3: Factors $1 / 2$ are missing in $e^{-x^{2}}$ and $e^{-y^{2}}$.
- Exercise 2.7: The index k of the summation should be j.
- Numerical Project 2.3: The covariances of the OU process should be $\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=$ $\frac{e^{-(t-s)}}{2}\left(1-e^{-2 s}\right)$ and $\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=\frac{e^{-(t-s)}}{2}$.

[^0]- Exercise 2.17 b): $\mathbf{E}\left[X_{i} F(\mathbf{Z})\right]$ should be $\mathbf{E}\left[X_{i} F(\mathbf{X})\right]$

Chapter 3

- Proof of Lemma 3.14, in the last step, one has to take the intersection over a countable number of δ 's (say $\delta=1 / n$).
- Proof of Corollary 3.17: To be precise, the statement $\lim _{n \rightarrow \infty} \sum_{j=0}^{2^{n}-1} \mid B_{t_{j+1}}(\omega)-$ $B_{t_{j}}(\omega) \mid<\infty$ should really be a lim sup but I avoided the use of lim sup as mentioned earlier in the chapter.
- Exercise 3.6 (c): The equation to prove should be $\lim _{t \rightarrow \infty} \frac{B_{t}}{t}$.

Chapter 4

- Equation above Example 4.2: $i \leq 1$ should be $i \geq 1$.
- Above Equation 4.14, $\left(X_{n} \geq 1\right)$ should read $\left(X_{n}, n \geq 1\right)$.
- Example 4.29: As stated, the example is a mean 0 random walk, which is more general than a symmetric random walk.
- Example 4.35: I refrained from using inf instead of min. This is ok if the min is thought of being taken on $[0, \infty]$, which is consistent with the convention that $\tau(\omega)$ if $X(\omega)$ never reaches a.
- Page 87-88: On one hand \rightarrow On the one hand
- P. 91 Line 5: $\left\{\max _{t<T} \widetilde{B}_{T} \geq a\right\}$ should be $\left\{\max _{t<T} \widetilde{B}_{t} \geq a\right\}$, where $\left(\widetilde{B}_{t}, t \geq 0\right)$ is $\left(B_{t}, t \geq 0\right)$ reflected at τ_{a}.
- Exercise 4.4c: It should be $\int_{\mathbb{R}} f(x, y) \mathrm{d} y=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$ and $\int_{\mathbb{R}} y f(x, y) \mathrm{d} x=\rho x \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$.
- Exercise 4.12 (c): It might be preferable to use the parameter λ instead of a in the MGF.
- Exercise 4.15: The last term in the equation should be $2^{n-1} \cdot\left(S_{n}-S_{n-1}\right)$.
- Exercise 4.16: Assume that \mathcal{F}_{t} is in \mathcal{F} for all $t \geq 0$.

Chapter 5

- P. 101 Equation after (5.3): M_{j+1} should be $M_{t_{j+1}}$.
- Lemma 5.11: The proof holds under the assumption that $\left(X_{t}\right)$ is bounded.
- Before Equation (5.26): the function should be $g(y)=C e^{-2 \mu y / \sigma^{2}}+C^{\prime}$.
- Example 5.8: The equation for the covariance $\mathbf{E}\left[I_{1} J_{1}\right]$ on page 107 should be a summation $\sum_{i, j=0}^{2}$ and not $\sum_{i, j=0}^{3}$.
- Proof of Corollary 5.18: We should have

$$
I_{t}^{(n)}=\sum_{i=0}^{j-1} f\left(t_{i}\right)\left(B_{t_{i+1}}-B_{t_{i}}\right)+f\left(t_{j}\right)\left(B_{t}-B_{t_{j}}\right)
$$

- Examples 5.19 and 5.20: It would more appropriate to entitle these examples as "OU process/Brownian bridge in terms of Itô integrals" as these processes are not exactly Itô integrals.
- Exercise 5.17 (a): The ODE is for the function g not f.
- Exercise 5.19 (b): You should find the mean and variance of X in terms of X_{n}.

Chapter 6

- Project 6.2: $X_{t}=\left(B_{t}^{(1)}\right)^{2}+\left(B_{t}^{(2)}\right)^{2}-2 t$ and not $-t$.

Chapter 7

- P. 157 Line 8: $\left\langle I_{t}\right\rangle$ should be $\langle I\rangle_{t}$.
- Example 7.11 on p. 160: the last line should refer to Theorem 9.11.
- Example 7.12 p.161: In the second equation the derivative before $\left(\mathrm{d} S_{t}\right)^{2}$ should be $\partial_{1}^{2} f\left(t, S_{t}\right)$. Same in the following equation.
- Theorem 7.18: A $\frac{1}{2}$ is missing in front of $\sum_{j, k}$.
- Equation 7.20 p. 164, second line: the integrand of $\mathrm{d} X_{u}$ should be $\mu^{\prime}\left(X_{u}\right)$.
- Exercise 7.8d): As a bonus exercise, one can use the stopped martingale $t \wedge \tau-2 X_{t \wedge \tau}$ to show that $\mathbf{E}[\tau]<\infty$, hence $\mathbf{P}(\tau<\infty)=1$. (Thank you Elena Kosygina for this one!)
- Exercise 7.13: $\left(V_{t}, s \leq T\right)$ should be $\left(V_{s}, s \leq T\right)$. Also the equation to prove is obviously wrong! It should be

$$
\mathbf{E}\left[\left(\int_{0}^{t^{\prime}} V_{s} \mathrm{~d} B_{s}-\int_{0}^{t} V_{s} \mathrm{~d} B_{s}\right)^{2}-\int_{t}^{t^{\prime}} V_{s}^{2} \mathrm{~d} s \mid \mathcal{F}_{t}\right]=0
$$

Chapter 8

- Exercise 8.4: It should be $W_{t}=B_{t+s}-B_{s}$.

Chapter 9

- Equation 9.19: there should be a - in front of Θ_{s} in the Itô integral.

Chapter 10

- Figure 10.1: The figure gives the payoff for a European call AND the five option strategies of Example 10.8.
- Equation 10.28: There is a minus missing in Θ_{t}.
- Example 10.23: The first derivative should read

$$
\frac{\partial C_{t}}{\partial K}=\left(S_{t} N^{\prime}\left(d_{+}\right)-K e^{-r(T-t)} N^{\prime}\left(d_{-}\right)\right) \frac{\partial d_{ \pm}}{\partial K}-e^{-r(T-t)} N\left(d_{-}\right)=-e^{-r(T-t)} N\left(d_{-}\right)
$$

And the second derivative should be

$$
\frac{\partial^{2} C_{t}}{\partial K^{2}}=-e^{-r(T-t)} N^{\prime}\left(d_{-}\right) \cdot \frac{\partial d_{-}}{\partial K}=e^{-r(T-t)} \frac{e^{-\left(d_{-}\right)^{2} / 2}}{K \sigma \sqrt{2 \pi(T-t)}}>0
$$

- P. 225 Item (2): the second-to-last sentence with some probability at time T should be with some probability at time τ.
- Equation 10.7: the term $a_{t} R_{t} \mathrm{~d} t$ should be $a_{t} R_{t} D_{t}^{-1} \mathrm{~d} t$.
- Equations 10.19 and 10.20: the a_{t} 's for the calls and the puts in the following equations should have the factor $e^{-r T}$ and not $e^{-r(T-t)}$.
- Right above Equation 10.32: $\widetilde{\mathbf{P}}$ should be \mathbf{P}.
- Example 10.33: The function $r(x)$ is actually just the constant function $r(x)=r$. The equation for $\partial_{t} f$ should then have r instead of $r x$ on the right.
- Example 10.48: An equal sign is missing.
- Equation 10.52: ∂f^{2} should be $\partial^{2} f$.
- Exercise 10.2: with the data given, the option is a plain butterfly. To get a skip strike butterfly with puts, change the last strike from 200 to 250.
- Exercise 10.9: This is not an option per se as the payoff might be negative...
- Exercise 10.11b): The equation should be

$$
\widetilde{S}_{t}=S_{0} \int_{0}^{t} e^{-r s} \sigma \mathrm{~d} \widetilde{B}_{s}
$$

- Exercise 10.16a): All B 's should be \widetilde{B}.
- Exercise 10.18c): There is no square in the last $h(s)$ in the integral for $g(t)$.

[^0]: Date: Louis-Pierre Arguin, August 132023.

